用户名: 密码: 验证码:
热处理结合化学处理脱除梨病毒研究及热处理植株中病毒siRNAs鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒危害可严重影响梨生长势和降低果品产量与品质,栽培无病毒种苗是减轻梨病毒病危害的重要途径,热处理和化学处理是获得无病毒果树种质的主要方法。大量的研究表明持续高温或采用一定浓度的病毒抑制剂处理可以脱除植物病毒,但梨对高温相对敏感,长时间的高温处理易造成梨植株的大量死亡,化学处理也可导致梨植株产生药害,同时需要较长的处理周期。本研究以感染有苹果茎沟病毒(Apple stem grooving virus, ASGV)和苹果褪绿叶斑病毒(Apple chlorotic leaf spot virus, ACLSV)的砂梨“金水2号”离体植株为试验材料,采用热处理(35°C)与化学处理(病毒醚)相结合的方法进行梨病毒脱除的研究,以期提高病毒脱除效果。同时对继代培养过程中梨离体植株的ASGV分子群体结构特点进行了系统分析,测定了一个ASGV砂梨分离物的全长基因组序列。并以热处理的砂梨离体植株为材料,采用高通量测序方法分析了该植株中ASGV的siRNA组成特点,定量分析了其在热处理35d过程中的含量变化。结果如下:
     1.以砂梨“黄花”离体植株为研究材料,采用RT-PCR技术对ASGV进行检测的结果表明,该病毒在20次继代培养的“黄花”离体植株中可以稳定增殖。对扩增产物进行克隆,每次继代的植株中挑选大于20个克隆的单链构象多态性(SSCP)分析的结果显示,“黄花”离体植株中存在ASGV的一个优势分子变种,继代培养对ASGV的分子群体结构没有明显影响。
     2.根据GenBank登录序列设计合成引物,对来源于砂梨“黄花”离体植株的ASGV的全基因组进行了扩增和序列分析,该分离物的全基因组(除去聚合A尾)由6496个核苷酸组成(命名为ASGV-HH),包含两个开放阅读框(ORF),分别编码241kDa聚合蛋白和36kDa运动蛋白。全基因组序列与已报道的来源于日本的苹果分离物ASGV-P-209,日本的百合分离物CTLV-L和CTLV-Li-23,韩国的砂梨分离物ASGV-P,台湾的柑橘分离物CTLV-K和CTLV-LCd-NA-1,以及美国的柑橘分离物CTLV-ML的相似性为79.8-87.1%,其中,ASGV-HH的复制酶编码区序列与日本的苹果分离物ASGV-P-209(?)似性最高,核苷酸和氨基酸现相似性分别为86.2%和89.9%,其CP和MP的核苷酸序列则与来源于日本的百合分离物CTLV-L同源性最高,分别为93.7%和87.6%。根据该病毒的可变区Ⅱ的氨基酸序列构建系统进化树显示,ASGV-HH与CTLV-L亲缘关系最近,而与来源于韩国的梨分离物ASGV-P亲缘关系较远。
     3.以感染ASGV和ACLSV的砂梨“金水2号”离体植株为研究材料,比较分析了热处理(35℃)、化学处理(病毒醚)及二者相结合对梨离体植株生长的影响及脱除这两种病毒的效果,结果显示15-25μg/ml病毒醚处理5-30d对梨离体植株的生长和增殖有明显的促进作用,株高由未处理植株的2.10cm增加至2.57-2.61cm,增殖系数由未处理植株的3.27增加至4.09-8.82。分别于处理30d、35d和40d切取0.5mm和1mm的茎尖进行培养,继代1-2次后采用RT-PCR的方法对再生植株的带毒情况进行检测,结果表明化学处理与热处理相结合可明显提高病毒脱除效果,采用15μg/mL和20μg/mL病毒醚结合35℃处理40d所获再生植株的ACLSV和ASGV脱除率分别由病毒醚单独处理的50.0-60.0%和41.7-50.0%提高至61.5-69.2%和53.8-76.9%,采用25μg/mL病毒醚结合35℃处理40d后切取的0.5-1.0mm茎尖所获再生植株的病毒脱除率达100%。采用该方法对“圆黄梨”、“黄花梨”、“雪花梨”和苹果“潮南”离体植株进行了处理,脱病毒率“圆黄梨”和苹果的为100.0%,“黄花梨”和“雪花梨”的分别为84.6%和64.8%。
     4.采用高通量测序方法对经热处理的砂梨“黄花”离体植株中小分子RNA进行了鉴定,共测得16,372,275种,其中与ASGV-HH序列匹配的siRNA有3111种(简称vsiRNA),这些vsiRNA的大小在18-25nt,21nt和22nt所占比例最大,占总数的82.7%。各vsiRNA的出现频率为1-103次。vsiRNA在ASGV-HH基因组的正负链上的分布有一定的偏向性,在正链上分布频率较高,为55.8%。根据vsiRNA所对应ASGV-HH基因组序列,选取与ASGV基因组6个保守结构域的对应的6个vsiRNAs,采用定量RT-PCR (qRT-PCR)分析其在热处理梨植株中相对含量的时间动态变化,结果表明各vsiRNA的含量在热处理初期呈明显下降趋势,而至25d时均出现一个峰值。其中,对应Met、Het、P-Pro和MP的vsiRNA在热处理25d植株中的含量较处理前的植株低,而对应CP和Rdrp的vsiRNA在热处理25d植株中的含量明显高于处理前的植株,分别为处理前的1.3和2.5倍。ASGV的含量随热处理时间的延长呈明显的下降趋势,第5d即开始减低,至第25d时病毒RT-PCR产物的扩增条带已经极其微弱,推测高温促进了病毒RNA沉默的发生。
Virus diseases have serious effect on the growth of pear plants and decrease their fruit quality and productivity. Utilizing certified healthy propagation materials is one of the most effective measures for the controlling of virus diseases. Thermotherapy and chemotherapy are the most widely used methods for the production of virus-free plant materials. Many study results have demonstrated that plant viruses could be eliminated by continuous treatment under high temperature or by using antiviral chemicals at a proper concentration. Pear plants are relatively sensitive to high temperature, which can cause a high death rate. Meanwhile, chemotherapy can induce phytotoxicity of host and usually cost long time. In this study, in order to improve the virus elimination efficiency, sand pear Pyrus pyrifolia cv. Jinshui no.2infected with Apple stem grooving virus (ASGV) and Apple chlorolic leaf spot virus (ACLSV) was used as the experimental material, and thermotherapy (35℃) combined with chemotherapy (Ribavirin) was used to eliminate the viruses from in vitro pears. Meanwhile, the population structure of ASGV in in vitro plants of pear was investigated during20sub-culturings and the full genome of an ASGV isolate from sand pear was sequenced. Moreover, the siRNAs derived from ASGV in in vitro sand pears treated by thermotherapy was characterized by high-throughput sequencing, and the titers of six siRNAs were tested during a35d thermotherapy course. Results obtained are as follows:
     1. In vitro sand pear P. pyrifolia cv.'Huanghua' was used as material. The RT-PCR results showed that ASGV can replicate stably in in vitro sand pear cultures during20passage sub-cultures. The RT-PCR products were cloned and single-strand conformation polymorphism (SSCP) of PCR products of more than20clones from each sub-culturing showed that ASGV persisted as a dominant molecular variant in in vitro cultures of 'Huanghua', and continues sub-culturings had no significant effect on the constitution of ASGV molecular variants.
     2. The complete genome of an ASGV isolate from in vitro 'Huanghua' was sequenced. The primers used in this study were designed basing on the available sequences from GenBank. The ASGV isolate named ASGV-HH contained6,496nucleotides excluding the poly (A) tail, and consisted of two open reading frames (ORFs), a214kDa polyprotein and a36kDa movement protein, respectively. The full genome of ASGV-HH had identities ranging from79.8%to87.1%with previously reported ASGV isolates ASGV-P-209from apple, CTLV-L and CTLV-Li-23from lily in Japan, ASGV-P from pear in South Korea, CTLV-K and CTLV-LCd-NA-1from citrus in Taiwan, and CTLV-ML from citrus in USA. ASGV-HH had highest identities of86.2%nt and89.9%aa in Rep region with isolate ASGV-P-209. ASGV-HH had highest identities of93.7%and87.6%with isolate CTLV-L in CP and MP, respectively. The phylogenetic tree constructed by amino acid sequences of variable region Ⅱ showed that ASGV-HH was closed to CTLV-L, and separated from isolate ASGV-P in the tree.
     3. In vitro cultures of P. pyrifolia cv. Jinshui no.2infected by ACLSV and ASGV, were used as materials to evaluate the effects of thermotherapy at35±0.5℃, chemotherapy with ribavirin, and combinations of chemotherapy and thermotherapy on the growth and virus elimination of in vitro pears. Results showed that the15-25μg/mL ribavirin could significantly improve the growth and proliferation of in vitro pears during5-30d treatment periods. The growth of in vitro pears treated by15-25μg/mL ribavirin was increased from2.10cm to2.57-2.61cm, and the proliferation was increased from3.27to4.09-8.82. Shoot tips of0.5-1.0mm long were excised from in vitro plants treated for30d,35d and40d, and viruses in regenerated plants were detected after one or two sub-culturing by RT-PCR. Results showed that the combination of chemotherapy and thermotherapy could enhance the efficiency of virus elimination. The virus elimination efficiency of treatments of15or20μg/mL ribavirin combined with thermotherapy at35±0.5℃for40d were53.8-76.9%for ACLSV and61.5-69.2%for ASGV, which were much higher than50.0-60.0%and41.7-50.0%of virus elimination rates achieved by treatment with15and20μg/mL ribavirin. A high virus eradication efficiency of100%was achieved by chemotherapy of ribavirin at25μg/mL combined with thermotherapy at35℃for40days, followed by culturing of0.5-1.0mm long meristem-tips. Furthermore, the treatment protocol was used for the virus elimination from other three in vitro-cultured pears,'Huanghua','Xuehua','Yuanhuang', and one in vitro-cultured apple 'Chaonan'. The virus elimination rate of100.0%for 'Yuanhuang' and 'Chaonan', and84.6%and64.8%for,'Huanghua' and 'Xuehua' were achieved, respectively.
     4. Small RNAs in in vitro 'Huanghua' treated by thermotherapy were detected by high-throughput sequencing, and a total of16,372,275unique reads was identified. Sequence alignment to the genome of ASGV-HH revealed3,111reads of ASGV siRNAs (named vsiRNA). The sizes of vsiRNAs ranged from18nt to25nt, and vsiRNAs of21nt and22nt account82.7%of total vsiRNAs. The detected frequency of vsiRNAs was 1-103times. There was a slight bias of vsiRNAs toward the sense strand of ASGV genome, which was55.8%. The titers of six vsiRNAs from six conserved regions of the ASGV genome during thermotherapy were analyzed by Real-Time qRT-PCR. The results showed that the titer of vsiRNAs decreased during the primary period of thermotherapy, and then had a peak in the in vitro cultures treated for25days. The titers of vsiRNAs derived from Met, Het, P-Pro and MP in in vitro pear treated by high temperature for25days was lower than that in untreated pears, whereas, the titer of vsiRNAs of CP and Rdrp in in vitro pear treated by high temperature for25days was higher than that in untreated pears for1.3and2.5times, respectively. During thermotherapy, the titer of ASGV in in vitro cultures decreased, and the band of RT-PCR products in agarose gel was very weak when the treatment was prolonged for25days. It was speculated that high temperature enhanced the RNA silencing.
引文
1.宾金华.茉莉酸甲酯诱导烟草幼苗抗病与过氧化物酶活性和木质素含量的关系.应用与环境生物学报,1999,5(2):160-164
    2.陈静,冯振群,蒋士君.钙信号在烟草普通花叶病高温隐症中的作用.烟草科技,2007(11):67-69
    3.董雅凤,于济民,洪霓.梨树苹果茎沟病毒的脱毒技术研究.中国果树,1998,4:8-10
    4.董雅凤,张尊平,张少瑜.苹果和梨树茎尖培养结合热处理脱病毒研究.北方果树,2002,2:9-11
    5.洪霓,王国平,张尊平.梨病毒脱除技术研究.中国果树,1995,4:5-7
    6.李慧,丛郁,王宏伟,盛宝龙,蔺经,常有宏.豆梨植物络合素合酶PcPCS1基因克隆及其表达分析.园艺学报,2010,37(6):880-890
    7.孙燕霞,张献军,刘兰伟,刘秀君,刘红梅.高温激活RNA沉默介导的心叶烟抗病毒防御反应.植物病理学报,2008,38(1):58-63
    8.谭蓉蓉.物理及化学处理脱除砂梨潜隐病毒研究.[硕士论文].武汉:华中农业大学图书馆,2006
    9.唐敏,王国平,吴官维,洪霓.超低温处理对梨茎尖培养及潜隐病毒脱除的影响.见:郭泽建,侯明生主编.2011年学术年会论文集.中国植物病毒学会,北京,1998,北京:中国农业科技术出版社,2011,281
    10.王国平,洪霓.我国落叶果树的病毒病及其研究现状.中国果树,1997,3:43-45
    11.王国平,洪霓,张尊平,卢士昌,董雅凤.我国北方梨产区主栽品种病毒种类的鉴定研究.中国果树,1994,2:15-17
    12.王利平.热处理和化学处理对梨离体植株中病毒的影响.[硕士论文].武汉:华中农业大学图书馆,2006
    13.王小青,赵志,蒋士君,谈文.接TMV的烟草高温胁迫后防御酶活性的变化.烟草科技,2006,12(233):51-54
    14.张兴桃,温国蕾,王晓丹,赵爽,庄木,李艳红.低温对黄瓜花叶病毒CMV-BG株2b基因多态性的影响.植物病理学报,2008,38(1):51-57
    15.张占英.栎皮黄铜处理结合茎尖培养脱除砂梨植株中牵引病毒研究.[硕士论文]. 武汉:华中农业大学图书馆,2008
    16.张尊平,张少瑜,洪霓,董雅凤,姜修风,王国平,于济民,周宗山.热处理脱除梨病毒技术研究.北方果树,2001,5:8-9
    17.郑银英,洪霓,王国平,胡红菊.苹果茎沟病毒分离物外壳蛋白基因的克隆和序列分析.植物病理学报报,2006,36:62-67
    18. Acosta-Leal R, Fawley MW, Rush CM. Changes in the intraisolate genetic structure of Beet necrotic yellow vein virus populations associated with plant resistance breakdown. Virology,2008,376:60-68
    19. Adams MJ, Antoniw JF, Bar-Joseph M, Brunt AA, Candresse T, Foster GD, Martelli GP, Milne RG, Zavriev SK, Fauquet CM. The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Arch Virol,2004,149: 1045-1060
    20. Aleman-Verdaguer ME, Goudou-Urbino C, Dubern J, Beachy RN, Fauquet C. Analysis of the sequence diversity of the P1, HC, P3, NIb, and CP genomic regions of several Yam mosaic potyvirus isolates:implications for the intraspecies molecular diversity of potyviruses. J Gen Virol,1997,78:1253-1264
    21. Astruc N, Marcos JF, Macquaire G, Candresse T, Pallfis V. Studies on the diagnosis of Hop stunt viroid in fruit trees:Identification of new hosts and application of a nucleic acid extraction procedure based on non-organic solvents. Eur J Plant Pathol, 1996,102:837-846
    22. Ayllon MA, Rubio L, Sentandreu V, Moya A, Guerri J, Moreno P. Variations in two gene sequences of Citrus tristeza virus after host passage. Virus Genes,2006,32: 119-28
    23. Baker R, Phillips DJ. Obtaining pathogen-free stock by shoot tip cultures. In: Symposium on pathogen free stock. Phytopathology,1962,52:1242-1244
    24. Beidler JL, Hilliard PR, Rill RL. Ultrasensitive staining of nucleic acids with silver. Anal Biochem,1982,126:374-380
    25. Bennetzen JL. Transposable element contributions to plant gene and genome evolution. Plant Mol Biol,2000,42:251-269
    26. Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins FJ, Hohn T, Pooggin MM. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res, 2006,34:6233-6246
    27. Bracho MA, Moya A, Barrio E. Contribution of Taq polymerase-induced errors to the estimation of RNA virus diversity. J Gen Virol,1998,79:2921-2928
    28. Bradford FC, Joley L. Infectious variegation of the apple. Jour Agr Res,1933,46: 901-908
    29. Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe DC. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J,1998,17 (22):6739-6746
    30. Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L, Zurcher EJ. Apple stem pitting virus. Plant viruses online:descriptions and lists from the VIDE database. CAB International, London, UK.1996
    31. Calavan EC, Christiansen DW, Roistacher CN. Symptoms associated with Tatter leaf virus infection of Troyer citrange rootstock. Plant Dis,1963,47:971-975
    32. Cameron HR. Pear vein yellows. In:Fridlund PR. (Eds) Virus and Virus like Diseases of Pome Fruits and Simulating Noninfectious Disorders. Cooperative Extension College of Agriculture and Home Economics Washington State University, Pullman, WA,1989, pp 175-181
    33. Campbell AI. The effect of some latent virus infections on the growth and cropping of apples. J Hort Sci,1963,38:15-19
    34. Cembali T, Folwell RJ, Wandschneider P, Eastwell KC, Howell WE. Economic implications of a virus prevention program in deciduous tree fruits in the US. Crop Prot,2003,22:1149-1156
    35. Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM. Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol Biol,2004,56:601-611
    36. Chellappan P, Vanitharani R, Fauquet CM. Short interfering RNA accumulation correlates with host recovery in DNA virus infected host, and gene silencing targets specificviral sequences. J Virol,2004,14:7465-7477
    37. Cheplick SM, Agrios GN. Effect of injected antiviral compounds on apple mosaic, scar skin and dapple apple disease of apple trees. PI Dis,1983,67:1130-1133
    38. Choi HK, Tong L, Minor W, Dumas P, Boege U, Rossmann MG, Wengler G. Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature,1991,354:37-43
    39. Cieslinska M. Application of thermo- and chemotherapy in vitro for eliminating some viruses infecting Prunus sp. fruit trees. J Fruit Ornam Plant Res,2007,15:117-124
    40. Cieslinska M. Elimination of Apple chlorotic leaf spot virus (ACLSV) from pear by in vitro thermotherapy and chemotherapy. Acta Hortic,2002,596:481-484
    41. Cieslinska M, Zawadzka B. Preliminary results of investigation on elimination of viruses from apple, pear and raspberry using thermotherapy and chemotherapy in vitro. Phytopathol Pol,1999,17:41-48
    42. Clover GRG, Pearson MN, Elliott DR, Tang Z, Smales TE, Alexander BJR. Characterization of a strain of Apple stem grooving virus in Actinidia chinensis from China. Plant Pathol,2003,52:371-378
    43. Cooper VC, Walkey DGA. Thermal inactivation of Cherry leaf roll virus in tissue cultures of Nicotiana rustica raised from seeds and meristem tips. Ann Appl Biol, 1978,88:273-278
    44. Cuevas JM, Moya A, Sanjuan R. Following the very initial growth of biological RNA viral clones. J Gen Virol,2005,86:435-443
    45. De Fazio G, Caner J, Vicente M. Inhibitory effect of virazole (Ribavirin) on the replication of Tomato white necrosis virus (VNBT). Arch Virol,1978,58:153-156
    46. De Fluiter J, Thung TH. Waarnemingen omtrent de dwergziekte bij framboos en wilde braam. Tijdschr O Plz,1951,57:108-114
    47. Deogratias JM, Dosba F, Lutz A. Eradication of Prune dwarf virus, Prunus necrotic ringspot virus and Apple chlorotic leaf spot virus in sweet cherries by a combination of chemotherapy, thermotherapy, and in vitro culture. Can J Plant pathol,1989,11: 337-342
    48. Desvignes JC, Boye R. Different diseases caused by the Chlorotic leaf spot virus on the fruit trees. Acta Hortic,1988,235:31-38
    49. Ding S W, Li WX, Symons RH. A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitates long distance virus movement. EMBO J,1995,14 (23): 5762-5772
    50. Domingo E, Holland JJ. Mutation rates and rapid evolution of RNA viruses. Evolutionary biology of viruses. Raven Press, New York,1994, pp 161-184
    51. Donaire L, Barajas D, Martinez-Garcia B, Martinez-Priego L, Pagan I, Llave C. Structural and genetic requirements for the biogenesis of Tobacco rattle virus-derived small interfering RNAs. J Virol,2008,82:5167-5177
    52. Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C, Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology,2009,392:203-214
    53. Dong F, Mochizuki T, Ohki ST. Tobacco ringspot virus persists in the shoot apical meristem but not in the root apical meristem of infected tobacco. Eur J Plant Pathol, 2010,126:117-126
    54. Drake JW. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci USA,1993,90:4171-4175
    55. Dunez J, Marenaud G, Delbos RP, Lansac M. Variability of symptoms induced by the Apple chlorotic leaf spot virus (ACLSV). A type of CLSV probably responsible for bark split disease of prune trees. Plant Dis,1972,56:293-295
    56. Dziedzic E. Elimination of Prunus necrotic ring spot virus (PNRSV) from plum 'Earliblue'shoots through thermotherapy in vitro. J Fruit Ornam Plant Res,2008,16, 101-109
    57. Faccioli G, Rubies-Autonell C, Resca R. Potato leafroll virus distribution in potato meristem tips and production of virus-free plants. Potato Res,1988,31:511-520
    58. French R, Stenger DC. Population structure within lineages of Wheat streak mosaic virus derived from a common founding event exhibits stochastic variation inconsistent with the deterministic quasi-species model. Virology,2005,343: 179-189
    59. Fulton RW. Purification and serology of Rose mosaic virus. Phytopathology,1967,57: 1197-1201
    60. Gadiou S, Kundu JK, Paunovic S, Garcia-Diez P, Komorowska B, Gospodaryk A, Handa A, Massart S, Birisik N, Takur PD, Polischuk V. Genetic diversity of Flexiviruses infecting pome fruit trees. J Plant Pathol,2010,92:685-691.
    61. Gambino G, Bondaz J, Gribaudo I. Detection and elimination of viruses in callus, somatic embryos and regenerated plantlets of grapevine. Eur J Plant Pathol,2006, 114:397-404
    62. Garcia-Arenal F, Fraile A, Malpica JM. Variation and evolution of plant virus populations. Int Microbiol,2003,6:225-232
    63. Gella R. Effect of some virus diseases on the performance of two clones of Agua de Aranjuez pear. Acta Hortic,1990,256:137-142
    64. Gilmer RM. Probable coidentity of Shiro line pattern virus and Apple mosaic virus. Phytopathology,1956,46:127-128
    65. Gong M, Van-der LAH, Knight MR, Trewavas AJ. Heat shock induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermo tolerance. Plant Physiol,1998,116:429
    66. Greber RS, Teakle DS, Mink GI. Thrips-facilitated transmission of Prune dwarf and Prunus necrotic ringspot viruses from cherry pollen to cucumber. Plant Dis,1992,76: 1039-1041
    67. Grout BWW. Meristem-tip culture for propagation and virus elimination, In:Hall R D. (Eds) Methods in Molecular Biology, vol 111:plant cell culture protocols. Humana Press Inc, Totowa, New Jersey,1990, pp 115-123
    68. Gupta S. Current and potential future uses of intravenous gamma globulin in the treatment of autoimmune disorders. Immunology & Allergy Practice,1986,8: 370-377
    69. Habili N, Symons RH. Evolutionary relationship between luteoviruses and other RNA plant viruses based on sequence motifs in their putative RNA polymerases and nucleic acid helicases. Nucleic Acids Res,1989,17:9543-9555
    70. Hall JS, French R, Morris TJ, Stenger DC. Structure and temporal dynamics of populations within Wheat streak mosaic virus isolates. J Virol,2001,75:10231-10243
    71. Hannon GJ. RNA interference. Nature,2002,418:244-251
    72. Hansen AJ. Antiviral chemicals for plant disease control. Crit Rev Plant Sci,1989,8: 45-88
    73. Hansen AJ. Effect of ribavirin on green ring mottle causal agent and necrotic ringspot virus in Prunus species. Plant Dis,1984,68:216-218
    74. Hansen AJ, Hildebrandt AC. The distribution of Tobacco mosaic virus in plant callus cultures, Virology,1966,28:15-21
    75. Hansen AJ, Lane WD. Elimination of Apple chlorotic leaf spot virus from apple shoot cultures by ribavirin. Plant Dis,1985,69:134-135
    76. Harding SA, Oh SH, Roberts DM. Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J, 1997,16:1137-1144
    77. Harrison BD. Studies on the effect of temperature on virus multiplication in inoculated leaves. Ann appl Biol,1956,44:215-226
    78. Hauptmanova A, Polak J. The elimination of Plum pox virus in plum cv. Bluefree and apricot cv. Hanita by chemotherapy of in vitro cultures. Hort Sci (Prague),2011,38: 49-53
    79. Hayashi K. PCR-SSCP:A simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl,1991,1:34-38
    80. Heo WD, Lee SH, Kim MC, Kim JC, Chung WS, Chun HJ, Lee KJ, Park CY, Park HC, Choi JY, Cho MJ. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci USA,1999,96:766-771
    81. Hidetaka T, Hiroshi M, Nobuyuki Y, Tsuyoshi T, Narinobu I. Congstruction of an infection cDNA clone of the Apple stem grooving Capillovirus (isolate Li-23) genome containing a Cauliflower mosaic virus 35S RNA promoter. Ann Phytopathol Soc Jpn,1997,63:432-436
    82. Hirata H, Lu X, Yamaji Y, Kagiwada S, Ugaki M, Namba S. A single silent substitution in the genome of Apple stem grooving virus causes symptom attenuation. J Gen Virol,2003,84:2579-2583
    83. Hirata H, Yamaji Y, Komatsu K, Kagiwada S, Oshima K, Okano Y, Takahashi S, Ugaki M, Namba S. Pseudo-polyprotein translated from the full-length ORF1 of capillovirus is important for pathogenicity, but a truncated ORF1 protein without variable and CP regions is sufficient for replication. Virus Res,2010,152:1-9
    84. Hirohiko H, Kazuhiko S, Yoshiaki O, Hidehtto T, Mari K. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA,1996,93: 7783-7788
    85. Hollings M. Disease control through virus-free stock. Annu Rev Phytopathol,1965,3: 367-396
    86. Holmes HE. The Diels-Alder Reaction:Ethylenic and Acetyilenic Dienophiles. Organ React,1948,4:60
    87. Hughes CG, Steindl DRL. Ratoon stunting disease of sugarcane. Queensland Bureau of Sugar Experiment Stations Technical Communication No.2,1955
    88. Hutvagner G, Zamore PD. A micro RNA in multiple-turnover RNAi enzyme complex. Science,2002,297:2056-2060
    89. Inouye N, Maeda T, Mitsuhata K. Citrus tatter leaf virus isolated from lily. Ann Phytopath Soc Jpn,1979,45:712-720
    90. James D, Trytten P, MacKenzie DJ, Towers GHN, French CJ. Elimination of Apple stem grooving virus by chemotherapy and development of an immunocapture RT-PCR for rapid sensitive screening. Ann Appl Biol,1997,131:459-470
    91. Jelkmann W. Apple stem pitting virus, In:Monette PL. (Eds) Filamentous viruses of woody plants. Research Signpost, Trivandrum,1997, pp 133-142
    92. Jelkmann W, Kunze L. Plum pseudopox in German prune after infection with an isolate of Apple chlorotic leafspot virus causing plum line pattern. Acta Hortic,1995, 386:122-125.
    93. Ji JP, Loeb LA. Fidelity of HIV-1 reverse transcriptase copying RNA in vitro. Biochemistry,1992,31:954-958
    94. Johnson J. The relation of air temperature to the mosaic disease of potatoes and other plants. Phytopathology,1922,12:438-440
    95. Kadare G, Haenni AL. Virus-encoded RNA helicases. J Virol,1997,71:2583-2590
    96. Kaeppler SM, Phililips RL. Tissue culture-induced DNA methylation variation in maize. Proc Natl Acad Sci USA,1993,90:8773-8776
    97. Kassanis B. Therapy of virus-infected plants. J roy agr Soc England,1965,126: 105-114
    98. Kearney CM, Donson J, Jones GE, Dawson WO. Low level of genetic drift in foreign sequences replicating in an RNA virus in plants. Virology,1993,192:11-17
    99. Kearney CM, Thomson MJ, Roland KE. Genome evolution of Tobacco mosaic virus populations during long-term passaging in a diverse range of hosts. Arch Virol,1999, 144:1513-1526
    100.Klein RE, Livingston CH. Eradication of Potato virus X from potato by ribavirin treatment of cultured potato shoot-tips. Am Potato J,1982,59:359-365
    101.Klerks MM, Leone G, Lindner JL, Schoen CD, van den Heuvel JFJM. Rapid and sensitive detection of Apple stem pitting virus in apple trees through RNA amplification and probing with fluorescent molecular beacons. Phytopathology,2001, 91:1085-1091
    102.Kong P, Hong CX, Jeffers SN, Richardson PA. Single-strand-conformation polymorphism of ribosomal DNA for rapid species differentiation in genus Phytophthora. Fungal Genet Biol,2003,39:238-249
    103.Kong P, Rubio L, Polek M, Falk BW. Population structure and genetic diversity within California Citrus tristeza virus (CTV) isolates. Virus Genes,2000,21: 139-145
    104.Kooter JM, Matzke MA, Meyer P. Listening to the silent genes:Transgene silencing, gene regulation and pathogen control. Trends Plant Sci,1999,4:340-347
    105.Koubouris GC, Maliogka VI, Efthimiou K, Katis NI, Vasilakakis MD. Elimination of Plum pox virus through in vitro thermotherapy and shoot tip culture compared to conventional heat treatment in apricot cultivar Bebecou. J Gen Plant Pathol,2007,73: 370-373
    106.Kristensen HR, Thomsen A. Apple mosaic virus-host plant and virus. Phytopatholo Mediterr,1963,2:97
    107.Kurath G, Rey CME, Dodds JA. Analysis of genetic heterogeneity within the type strain of Satellite tobacco mosaic virus reveals several variants and a strong bias for G to A substitution mutations. Virology,1992,189:233-244
    108.Leone G, Lindner JL, van der Meer FA, Schoen CD. Symptoms on apple and pear indicators after back-transmission from Nicotiana occidentalis confirm the identity of Apple stem pitting virus with Pear vein yellows virus. Acta Hortic,1998,472:61-65
    109.Lerch B. Inhibition of the biosynthesis of Potato virus X by ribavirin. J Phytopathol, 1977,89:44-49
    110.Lerch B. On the inhibition of plant virus multiplication by Ribavirin. Antiviral Res, 1987,7:257-270
    111.Liberti D, Marais A, Svanella-Dumas L, Dulucq MJ, Alioto D, Ragozzino A, Rodoni B, Candresse T. Characterization of Apricot pseudo-chlorotic leaf spot virus, a novel Trichovirus isolated from stone fruit trees. Phytopathology,2005,95:420-426
    112.Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell,2001, 107:297-307
    113.Lister RM. Apple stem grooving virus. CMI/AAB Descriptions of Plant Viruses, No. 31. Commonw. Mycol. Inst./Assoc Appl Biol, Kew, Eng,1970
    114.Lister RM, Bancroft JB, Nadakavukaren MJ. Some sap-transmissible viruses from apple. Phytopathology,1965,55:859-70
    115.Llave C, Kasschau KD, Rector MA, Carrington JC. Endogenous and silencing-associated small RNAs in plants. Plant Cell,2002,14:1605-1619
    116.Magome H, Terauchi H, Yoshikawa N, Takahashi T. Analysis of double-stranded RNA in tissues infected with Apple stem grooving capillovirus. Ann Phytopathol Soc Jpn,1997,63:450-454
    117.Magome H, Yoshikawa N, Takahashi T, Miyakawa T. Molecular variability of the Genomes of Capilloviruses from apple, Japanese pear, European pear, and citrus trees. Phytopathology,1997,89:136-140
    118.Magome H, Yoshikawa N, Takahashi T. Single-strand conformation polymorphism analysis of Apple stem grooving capillovirus sequence variants. Phytopathology, 1999,89:136-140
    119.Maliogka VI, Skiada FG, Eleftheriou EP, Katis NI. Elimination of a new ampelovirus (GLRaV-Pr) and Grapevine rupestris stem pitting associated virus (GRSPaV) from two Vitis vinifera cultivars combining in vitro thermotherapy with shoot tip culture. Sci Hortic,2009,123:280-282
    120.Manganaris GA, Economou AS, Boubourakas IN, Katis NI. Elimination of PPV and PNRSV through thermotherapy and meristem-tip culture in nectarine. Plant Cell Rep, 2003,22:195-200
    121.Martelli GP, Candresse T, Namba S. Trichovirus, a new genus of plant viruses. Arch Virol,1994,134:451-455
    122.Martelli GP, Jelkmann W. Foveavirus, a new plant virus genus. Arch Virol,1998, 143:1245-1249
    123.Matousek J. The variability of Hop latent viroid as induced upon heat treatment. Virology,2001,287 (2):349-358
    124.Matzke MA, Matzke AJ, Pruss GJ, Vance VB. RNA-based silencing strategies in plants. Curr Opin Genet Dev,2001,11:221-227
    125.Meer FA van der. The effect of a hot-water treatment on a virus of Opuntia exaltata. Neth J PI Path,1967,73:58-59
    126.Mellor FC, Stace-Smith R. Eradication of Potato virus X by thermotherapy. Phytopathology,1967,57:674-678
    127.Mink GI. Apple chlorotic leaf spot. In:Fridlund PR. (Eds) Virus and Virus- like Diseases of Pome Fruits and Simulating Noninfectious Disorders, Pullman, Washington,1989, pp 8-19
    128.Miyakawa T. A bud-union abnormality of satsuma mandarin on Poncirus trifoliate rootstock in Japan. Proceedings of the 8th Conference of the International Organization of Citrus Virologists. University of California., Riverside,1976, p 125-131
    129.Miyakawa T. Occurrence and varietal distribution of Tatter leaf-citrange stunt virus and its effects on Japanese citrus. In:Calavan EC, Gamsey SM, Timmer LW. (Eds) Proceedings of the 8th Conference of the International Organization of Citrus Virologists. University of California. Riverside,1980, p 220-224
    130.Miyakawa T, Ito T. Tatter leaf-citrange stunt. Compendium of Citrus Diseases. APS Press, St. Paul, MN,2000, p 60
    131.Molnar A, Csorba T, Lakatos L, Varallyay E, Lacomme C, Burgyan J. Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol,2005,79:7812-7818
    132.Moya A, Elena SF, Bracho A, Miralles R, Barrio E. The evolution of RNA viruses:a population genetics view. Proc Natl Acad Sci USA,2000,97:6967-6973
    133.Murashige T. Clonal crops through tissue culture. In:Barz W, Reinhard E, Zenk MH. (Eds) Plant Tissue Culture and its Biotechnological Applications, Springer-Verlag, NY,1977, pp 392-403
    134.Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant,1962,15:473-497
    135.Nemchinov L, Hadidi A, Foster JA, Candresse T, Verderevskaya T. Sensitive detection of Apple chlorotic leaf spot virus from infected apple or peach tissue using RT-PCR, IC-RT-PCR, or multiplex IC-RT-PCR. Acta Hortic,1995,386:51-62
    136.Nemeth M. Plum pox (Sharka). In:Virus, Mycoplasma and Rickettsia Diseases of Fruit Trees. Budapest:Academiai Kiado,1986, p 463-479
    137.Nishio T, Kawai A, Takahashi T, Namba S, Yamashita S. Purification and properties of Citrus tatter leaf virus. Phytopath Soc Jpn,1989,55:254-258
    138.Ohira K, Ito T, Kawal A, Namba S, Kusumi T, Tsuchizaki T. Nucleotide sequence of the 3'-terminal region of Citrus tatter leaf virus lily strain. Virus Genes,1994,8: 165-167
    139.Ohira K, Namba S, Rozanov M, Kusumi T, Tsuchizaki T. Complete sequence of an infectious full-length cDNA clone of Citrus tatter leaf capillovirus:comparative sequence analysis of Capillovirus genomes. J Gen Virol,1995,76:2305-2309
    140.Oxford JS. Specific inhibitors of influenza virus replication as potential chemoprophylactic agents. J Antimicrob Chemother,1975,1:7-23
    141.Pantaleo V, Saldarelli P, Miozzi L, Giampetruzzi A, Gisel A, Dalmay T, Bisztray G, Burgyan J, Moxon S. Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. Virology,2010,408:49-56
    142.Paprstein F, Sedlak J, Polak J, Svobodova L, Hassan M, Bryxiova M. Results of in vitro thermotherapy of apple cultivars. Plant Cell Tiss Organ Cult,2008,94:347-352
    143.Pasquini G, Faggioli F, Pilotti M, Lumia V, Barba M. Characterization of Apple chlorotic leaf spot virus isolates from Italy. Acta Hortic,1998,472:195-202
    144.Paunovic S, Ruzic D, Vujovic T, Milenkovic S, Jevremovic D. In vitro production of Plum pox virus-free plums by chemotherapy with ribavirin. Biotechnol Biotechnol Equip,2007,21:417-421
    145.Petrzik K. Capsid protein sequence gene analysis of Apple mosaic virus infecting pears. Eur J Plant Pathol,2005,111:355-360
    146.Petrzik K, Lenz O. Remarkable variability of Apple mosaic virus capsid protein gene after nucleotide position141. Acta Virol,2002,147:1275-1285
    147.Phillips RL, Kaepplert SM, Olhoft P. Genetic instability of plant tissue cultures: Breakdown of normal controls. Proc Nati Acad Sci USA,1994,91:5222-5226
    148.Plese N, Hoxha E, Milicic D. Pathological anatomy of trees affected with Apple stem grooving virus. Phytopathology,1975,82:315-325
    149.Postman JD, Hadid A. Elimination of Apple scar skin viroid from pears by in vitro thermotherapy and apical meristem culture. Acta Hortic,1995,386:536-543
    150.Ptacek J, Skopek J, Dedic P, Matousek J. Immunocapture RT-PCR probing of Potato virus Y isolates. Acta Virol,2002,46:63-68
    151.Pupola N, Morocko-Bicevska I, Kale A, Zeltins A. Occurrence and diversity of pome fruit viruses in apple and pear orchards in Latvia. J Phytopathol,2011,159:597-605
    152.Quecini V, Lopes ML, Pacheco FTH, Ongarelli MDG. Ribavirin, a guanosin analogue mammalian antiviral agent, impairs Tomato spotted wilt virus multiplication in tobacco cell cultures. Arch Phytopathol Plant Prot,2006,41:1-13
    153.Rana T, Chandel V, Kumar Y, Ram R, Hallan V, Zaidi AA. Molecular variability analyses of Apple chlorotic leaf spot virus capsid protein. J Biosci,2010,35:605-615
    154.Ratcliff F, Harrison BD, Baulcombe DC. A similarity between viral defense and gene silencing in plants. Science,1997,276:1558-1560
    155.Retheesh ST, Bhat AI. Simultaneous elimination of Cucumber mosaic virus and Cymbidium mosaic virus infecting Vanilla planifolia through meristem culture. Crop Prot,2010,29:1214-1217
    156.Reynolds ES. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol,1963,17:208-212
    157.Rodriquez-Cerezo E, Elena SF, Moya A, Garcia-Arenal F. High genetic stability in natural populations of the plant RNA virus Tobacco mild green mosaic virus. J Mol Evol,1991,32:328-332
    158.Rodriquez-Cerezo E, Garcia-Arenal F. Genetic heterogeneity of the RNA genome population of the plant virus U5-TMV. Virology,1989,170:418-423
    159.Ruiz-Ruiz S, Navarro B, Gisel A, Pena L, Navarro L, Moreno P, Di Serio F, Flores R. Citrus tristeza virus infection induces the accumulation of viral small RNAs (21-24-nt) mapping preferentially at the 3'-terminal region of the genomic RNA and affects the host small RNA profile. Plant Mol Biol,2011,75:607-619
    160.Rybicki EP. The Bromoviridae. In:Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD. (Eds) Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses. Murphy FA, Vienna & New York:Springer-Verlag,1995, pp 450-457
    161.Saksena KN, Mink GI. Properties of an inhibitor of Apple chlorotic leaf spot virus from Chenopodium quinoa. Phytopathology,1969,59:61-63
    162.Schneider WL, Roossinck MJ. Evolutionarily related Sindbislike plant viruses maintain different levels of population diversity in a common host. J Virol,2000,74: 3130-3134
    163.Schwarz K, Jelkmann W. Detection and characterization of European Apple stem pitting virus isolates of apple and pear by PCR and partial sequence analysis. Acta Hortic,1998,472:75-85
    164.Semancik JS, Weathers LG. Partial purification of a mechanically transmissible virus associated with tatter leaf of citrus. Phytopathology,1965,55:1354-8
    165.Shepard JM. Factors influencing female choice in the lek mating system of the ruff. Living Bird,1975,14:87-111
    166.Shiel PJ, Berger PH. The complete nucleotide sequence of Apple mosaic virus (ApMV) RNA1 and RNA2:ApMV is more closely related to Alfalfa mosaic virus than to other ilarviruses. J Gen Virol,2000,81:273-278
    167.Shim HK, Hwang KH, Shim CK, Hong SB, Son SW, Kim D, Choi YM, Chung Y, Kim DH, Jee HJ, Lee SC. Ecopathological analysis of Apple stem grooving virus-K harboring Talaromyces flavus. Plant Pathol,2006a,22:248-254
    168.Shim HK, Hwang KH, Shim CK, Son SW, Kim D, Choi YM, Chung YC, Kim DH, Jee HJ, Lee SC. Molecular Characterization of Apple stem grooving virus isolated from Talaromyces flaws. Plant Pathol,2006b,22:260-264
    169.Shim HK, Min Y, Hong SY, Kwon MS, Kim HR, Choi YM, Lee SC, Yang JM. Nucleotide sequences of a Korean isolate of Apple stem grooving virus associated with black necrotic leaf spot disease on pear (Pyrus pyrifolia). Mol Cells,2004,18: 192-199
    170.Sidwell RW, Huffman JH, Kahre GP, Allen LB, Witkowski JT, Robins RK. Broad spectrum antiviral activity of virazole:1-D-Ribofuranosyl-1,2,4-Triazole-3-Carboxamide. Science,1972,177:705-706
    171.Simpkins I, Walkey DGA, Neely HA. Chemical suppression of virus in cultured plant tissues. Ann Appl Biol,1981,99:161-169
    172. Sip V. Eradiction of Potato viruses A and S by thermo therapy and sprout tip culture. Potato Res,1972,15:270-273
    173.Skotnicki ML, Mackenzie AM, Gibbs AJ. Genetic variation in populations of Kennedya yellow mosaic tymovirus. Arch Virol,1996,141:99-110
    174.Smith DB, McAllister J, Casino C, Simmonds P. Virus'quasispecies':making a mountain out of a molehill? J Gen Virol,1997,78:1511-1519
    175.Smith RA. Mechanisms of action of ribavirin, In:Smith RA, Kirkpatrick W. (Eds) Ribavirin a Broad Spectrum Antiviral Agent, Academic Press, New York,1980, pp 99-118
    176.Sokal RR, Rohlf FJ, Stavolone L, Alioto D, Ragozzino A, Laliberte J. Variability among Turnip mosaic potyvirus isolates. Phytopathology,1998,88:1200-1204
    177.Sos-Hegedus A, Lovas A, Kondrak M, Kovacs G, Banfalvi Z. Active RNA silencing at low temperature indicates distinct pathways for antisense-mediated gene-silencing in potato. Plant Mol Biol,2005,59:595-602
    178.Stouffer RF. Apple stem pitting, In:Fridlund PR. (Eds) Virus and Virus-like Diseases of Pome Fruits and Simulating Noninfectious Disorders. Washington State University, Pullman, WA, USA,1989, pp 138-144.
    179.Sutic DD, Ford RE, Tosic MT. Virus diseases of fruit trees. In:Handbook of plant virus diseases (Boca Raton:CRC Press),1999, pp 345-347
    180.Szittya G, Silhavy D, Molnar A, Havelda Z, Lovas A, Lakatos L, Banfalvi Z, Burgyan J. Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J,2003,22:633-640
    181.Takeuchi M, lshihara A, Furuya T. (Eds) Plant tissue culture. Tokyo:Tokyo Asakura 1972, p 333
    182.Tan RR, Wang LP, Hong N, Wang GP. Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. Plant Cell Tiss Organ Cult, 2010,101:229-235
    183.Tatineni S, Afunian MR, Gowda S, Hilf ME, Bar-Joseph M, Dawson WO. Characterization of the 5'-and 3'-terminal subgenomic RNAs produced by a Capillovirus:Evidence for a CP subgenomic RNA. Virology,2009a,385:521-528
    184.Tatineni S, Afunian MR, Hilf ME, Gowda S, Dawson WO, Garnsey SM. Molecular characterization of Citrus tatter leaf virus historically associated with Meyer lemon trees:complete genome sequence and development of biologically active in vitro transcripts. Am Phytopath Society,2009b,99:423-431
    185.TenHouten JG, Quak F, van der Meer FA. Heat treatment and meristem culture for the production of virus-free plant material. Netherlands J Plant Pathology,1968,74: 17-24
    186.Terauchi H, Magome H, Yoshikawa N, Takahashi T. Nucleotide sequence of the genome of Apple stem grooving capillovirus isolate and construction of an infectious cDNA clone of the genome containing a Cauliflower mosaic virus 35S RNA. Ann Phytopathol Soc Jpn,1997,63:432-436
    187.Tuttle JR, Idris AM, Brown JK, Haigler CH, Robertson D. Geminivirus-mediated gene silencing from Cotton leaf crumple virus is enhanced by low temperature in cotton. Plant Physiol,2008,148:41-50
    188.Ulrychova M, Petru E. Elimination of mycoplasma in tobacco callus tissues (Nicotiana glauca Grah.) culturedin vitro in the presence of 2,4-D in nutrient medium. Biol Plant,1975,2:103-108
    189.Valero M, Ibanez A, Morte A. Effects of high vineyard temperatures on the Grapevine leafroll associated virus elimination from Vitis vinifera L. cv. Napoleon tissue cultures. Sci Hortic,2003,97:289-296
    190.Velazquez K, Renovell A, Comellas M, Serra P, Garcia ML, Pina JA, Navarro L, Moreno P, Guerri J. Effect of temperature on RNA silencing of a negative-stranded RNA plant virus:Citrus psorosis virus. Plant Pathol,2010,59:982-990
    191.Verma N, Ram R, Hallan V, Kumar K, Zaidi A. Production of Cucumber mosaic virus-free chrysanthemums by meristem tip culture. Crop Prot,2004,23:469-473
    192.Verma N, Ram R, Zaidi AA. In vitro production of Prunus necrotic ringspot virus-free begonias through chemo-and thermotherapy. Sci Hortic,2005,103: 239-247
    193.Walkey DGA, Webb MJW. Tubular inclusion bodies in plants infected with viruses of the NEPO type. J Gen Virol,1970,7:159-166
    194. Wang GP, Hong N, Zhang ZP, Lu SC, Dong YF. Identification of virus species in pears cultivated in northern china. China Fruits,1994,5:1-4
    195.Wang LP, Hong N, Wang GP, Xu WX, Michelutti R, Wang AM. Distribution of Apple stem grooving virus and Apple chlorotic leaf spot virus in infected in vitro pear shoots. Crop Prot,2010,29:1447-1451
    196. Wang LP, Wang GP, Hong N, Tang RR, Deng XY, Zhang H. Effect of thermotherapy on elimination of Apple stem grooving virus and Apple chlorotic leaf spot virus for in vitro-cultured pear shoot tips. Hortscience,2006,41:729-732
    197.Wang PJ, Hu CY. Rgeneration of virus-free plants through in vitro culture. In: Fiechter A. (Eds) advances in biochemical engineering. Springer, Berlin Heidelberg, New York. Plant Cell Cult Ⅱ,1980,18:61-99
    198.Wang QC, Cuellar WJ, Rajamaki ML, Hirata Y, Valkonen JPT. Combined thermotherapy and cryotherapy for efficient virus eradication:relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Mol Plant Pathol,2008,8:1-14
    199.Wang QC, Panis B, Engelmann F, Lambardi M, Valkonen JPT. Cryotherapy of shoot tips:a technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. Ann Appl Biol,2009, 154:351-363
    200. Wang QC, Valkonen JPT. Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. J Virol Methods,2008,154: 135-145
    201.Waterhouse PM, Wang MB, Lough T. Gene silencing as an adaptative defense against viruses. Nature,2001,411:834-842
    202.Waterworth HE, Gilmer RM. Dark green epinasty of Chenopodium quinoa, a syndrome induced by a virus latent in apple and pear. Phytopathology,1969,59: 334-338
    203.Welland CM, Cantos M, Troncoso A, Perez-Camacho F. Regeneration of virus-free plants by in vitro chemotherapy of GFLV (Grapevine fanleaf virus) infected explants of Vitis vinifera L. cv.'Zalema'. Acta Hortic,2004,652:463-466
    204.Welsh MF, van der Meer FA. Apple stem grooving virus. In:Fridlund PR. (Eds) Virus and Viruslike Diseases of Pome Fruits and Simulating Non-infectious Disorders. Washington State University, Pullman, USA,1989, pp 127-137
    205. White P. Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol,1934,9:585-600
    206.Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biol,2000,2:70-75
    207.Witkowski JT, Robins RK, Sidwell RW, Simon LN. Design, synthesis, and broad antiviral activity of 1-D-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides. J Med Chem,1972,15:150
    208.Wu YQ, Zhang DM, Chen SY, Wang XF, Wang WH. Comparison of three ELISA methods for the detection of Apple chlorotic leaf spot virus and Apple stem grooving virus. Acta Hort,1998,472:55-60
    209.Wu ZB, Zheng YX, Su CC, Chang CJ, Jan FJ. Identification and characterization of Apple stem grooving virus causing leaf distortion on pear(Pyrus pyrifolia) in Taiwan. Eur J Plant Pathol,2010,128:71-79
    210.Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lelli AD, Zilberman D, Jacobsen SE, Carrington JC. Genetic and functional diversification of small RNA pathways in plants. PloS Biol,2004,2:E104
    211.Yan F, Zhang HM, Adams MJ, Yang J, Peng JJ, Antoniw JF, Zhou YJ, Chen JP. Characterization of siRNAs derived from Rice stripe virus in infected rice piants by deep sequencing. Arch Virol,2010,155:935-940
    212.Yanase H. Back transmission of Apple stem grooving virus to apple seedlings and induction of symptoms of apple topworking disease in Mitsuba Kaido(Malus sieboldii) and Kobano Zumi (Malus sieboldii var. arborescens) rootstocks. Acta Hortic,1983,130:117-122
    213.Yanase H. Studies on apple latent viruses in Japan. Bulletin of the Fruit Tree Research Station, Japan, Series C,1974,1:47-109
    214.Yanase H, Koganezawa H, Fridlund PR. Correlation of pear necrotic spot with pear vein yellows and apple stem pitting, and a flexuous filamentous virus associated with them. Acta Hortic,1989,235:157-158
    215.Yanase H, Yamaguchi A, Mink G, Sawamura K. Back transmission of Apple chlorotic leaf spot virus (type strain) to apple and production of apple topworking disease symptoms in Maruba Kaido(Malus prunifolia Borkh. Vat ringo Asami). Ann Phytopathol Soc Jpn,1979,45:369-374
    216.Yoshikawa N, Iida H, Goto S, Magome H, Takahashi T, Terai Y. Grapevine berry inner necrosis, a new trichovirus:comparative studies with several known trichoviruses. Arch Virol,1997,142:1351-1363
    217.Yoshikawa N, Imaizumi M, Takahashi T, Inouye N. Striking similarities between the nucleotide sequence and genome organization of Citrus tatter leaf and Apple stem grooving Capilloviruses. J Gen Virol,1993,74:2743-2747
    218.Yoshikawa N, Sasaki E, Kato M, Takahashi T. The nucleotide sequence of Apple stem grooving capillovirus genome. Virology,1992,191:98-105
    219.Yoshikawa N, Sasamoto K, Sakurada M, Takahashi T, Yanase H. Apple stem grooving and Citrus tatter leaf capilloviruses obtained from a single shoot of Japanese Pear(Pyrus serotind). Ann Phytopathol Soc Jpn,1996,62:119-124
    220.Yoshikawa N, Takahashi T. Evidence for translation of Apple stem grooving capillovirus genomic RNA. J Gen Virol,1992,73:1313-1315
    221.Zilka S, Faingersh E, Rotbaum A, Tam Y, Spiegel S, Malca N. In vitro production of virus-free pear plants. Acta Hortic,2002,596:477-479

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700