用户名: 密码: 验证码:
红壤丘陵区耐酸牧草筛选与铝毒控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南方红壤丘陵区水热条件优越,牧草发展潜力巨大,大量的荒山荒地及幼龄林果园等待开发利用,然而这些土地酸化严重,需要选择耐酸的牧草品种和采用适当的施肥管理措施才能使牧草良好建植并获得高产。针对这一目的,开展了一系列研究,布置了田间试验筛选适宜于酸性红壤上栽培的牧草品种,通过盆栽试验研究了一些当家牧草品种生长的适宜土壤pH范围,通过水培试验研究了它们的抗铝毒的能力及机理,采用盆栽和田间试验研究了这些牧草的合理施肥及混播栽培技术,建立了大型径流观测场,研究了将耐酸牧草纳入林果园生态系统中对控制水土流失、培肥酸性红壤、调节水热状况的效果。获得的主要结论如下:
     1、马唐、扁穗牛鞭草、桂牧1号、矮象草、狗尾草、罗顿豆、圆叶决明和大翼豆等暖季型品种极其耐酸,在不施肥和石灰的情况下也能良好生长,如施用适当肥料,则产量更高。鸡脚草、多花黑麦草和白三叶等冷季型品种只有在施用适当肥料和石灰情况下才能生长良好。一年生禾本科牧草品种墨西哥玉米产量很高,但不太耐酸,且必须在施用较多肥料情况下才能获得高产。
     2、豆科牧草中圆叶决明极其耐酸,适宜生长在土壤pH5以下的土壤中;罗顿豆和大翼豆也比较耐酸,在土壤pH4.5时也能生长良好,但最适宜生长的土壤pH在5-5.5之间;白三叶不耐酸,适合于种植在pH5.5-6.5的土壤上;禾本科牧草中马唐的耐酸能力非常强,在土壤pH4.5-5范围内生长最好;狗尾草的耐酸性能力比马唐稍差,适宜生长在pH5-6的土壤上;墨西哥玉米的适宜pH范围为5.5-6.5;鸡脚草在酸性土壤中生长很差,适宜种植的土壤pH范围为5.5-6.5。
     3、在测试的8个牧草品种中,抗铝毒能力排序为圆叶决明>马唐>大翼豆=罗顿豆>狗尾草>墨西哥玉米>鸡脚草>白三叶,铝胁迫对根系伸长的影响则刚好相反。
     4、在AlCl3浓度为30μmol·L-1条件下,去除牧草幼根根尖吸附的粘胶物质对圆叶决明、马唐和狗尾草等耐铝能力强的牧草品种的根系伸长影响最大,而对耐铝能力差的白三叶和鸡脚草影响很少,说明根系分泌粘胶是圆叶决明、马唐和狗尾草等牧草品种抵抗铝毒的机制之一。
     5、在铝诱导下,圆叶决明、罗顿豆、大翼豆、狗尾草、墨西哥玉米等品种根系分泌出柠檬酸,其分泌量反映其耐铝性能。根系分泌柠檬酸是这些品种耐铝的原因之一。
     6、在不施磷肥情况下,施用低量石灰(0.7-1.4g·kg-1)可快速提高白三叶、墨西哥玉米和大翼豆的产量,继续增施石灰,白三叶产量缓慢提高,而大翼豆和墨西哥玉米产量下降,施用磷肥可减缓下降趋势。施用磷肥可减轻土壤酸度对牧草的毒害,施用低量石灰(0.7-1.4g·kg-1)下,配施磷肥可大幅提高白三叶、大翼豆和墨西哥玉米的产量;圆叶决明非常耐酸,施用石灰反而抑制其生长,但施用磷肥可大幅提高其产量。
     7、耐酸豆科牧草罗顿豆与马唐、狗尾草、牛鞭草等耐酸禾本科牧草混种均能良好生长,罗顿豆与它们混种时的生物产量和粗蛋白质产量均明显高于禾本科牧草单播。在3种禾本科牧草中,马唐分蘖能力强,竞争能力强,罗顿豆与马唐以2:1比率混播最好。牛鞭草茎多叶少,对罗顿豆生长的影响小,提高牛鞭草混种比率对罗顿豆产量的影响不大,罗顿豆与牛鞭草1:2混播时生物产量和粗蛋白质产量最高。狗尾草的叶片较大,但分蘖扩展能力比马唐差,竞争能力介于马唐和牛鞭草之间,狗尾草与罗顿豆1:1比率混播(条播或撒播)最好。
     8、在红壤丘陵区经济林果园中种植耐酸耐瘠的豆科牧草能明显减少水土流失,并减少土壤有机质和土壤全氮、全磷、全钾、速效氮、速效磷、速效钾等养分的流失;种植豆科牧草4年后,土壤有机质和土壤全氮、碱解氮、速效磷、速效钾等养分的含量都有明显增加,因而培肥了土壤,土壤交换性Ca2+和Mg2+的含量增加,交换性Al3+的含量减少,从而减轻了酸害;种植牧草还可调节土壤水热状况,提高土壤表层水分含量,降低高温干旱期土壤温度,改善了林果园的生态条件。
The potential of developing forages is tremendous due to the high rainfall, long sunshine and high temperature in red soils hilly region. Plentiful wasteland and new developed orchard are suitable to develop forage. However, the soil is very acid in these lands, thus seriously affects forages growth. Therefore, selecting suitable aciduric forages and using suitable fertilizing and planting management measures are necessary to get better establishment and higher yield. In this study, filed experiment was set up to select aciduric forages for acid red soil, suitable soil pH range of forages growth was determined by pot experiments, the tolerant ability and mechanism of forages to aluminium toxicity were studied by a series of water culture experiments, the effects of lime and phosphorus fertilizer on forages growth were studied by pot experiments, suitable combination ratio of forage legume Lotononis bainesii and3grasses was studied in a filed experiment. Runoff plots were set up to study the effects of forage on erosion control, improving soil and ecological condition in forest plantation or orchard. The main conclusions are as follows:
     (1) Some of Warm season grasses such as Digit aria eriantha cv Premier Hemarthria compressa, Pennisetum purpureum, Pennisetum purpureum cv Mott, Setaria sphacelata cv Soland, and legumes such as Chamaecrista rotundifolia cv Wynn, Lotononis bainesii and Macroptilium atropurpureum cv Siratro had high acid tolerance ability. They grew well in the acid soil (pH is4.5) even no fertilizer and lime were applied. Some of cool season species such as Trifolium repens cv Haifa, Dactylis glomerata cv Porto and Lolium multiflorum cv Tetila grew poorly in the acid soil if no ferilizer and lime, however they grew well if ferilizers and lime were applied.
     (2) Chamaecrista rotundifolia cv Wynn was the most acid tolerant legume species which grew best in the soil with pH less than5. The suitable soil pH was5-5.5for Macroptilium atropurpureum cv Siratro and Lotononis bainesii. Trifolium repens cv Haifa was not acid tolerant which was suitable to grow in the soil with pH5.5-6.5. Digitaria eriantha cv Premier had high ability of acid tolerance and grew best in the soil with pH4.5-5. The soil pH ranges of Setaria sphacelata cv Soland, Zea Mexicana and Dactylis glomerata cv Porto were5-6,5.5-6.5and5.5-6.5, respectively.
     (3) The order of acid tolerant ability of8forages tested to aluminium toxicity was Chamaecrista rotundifolia cv Wynn, Digitaria eriantha cv Premier, Macroptilium atropurpureum cv Siratro, Lotononis bainesii, Setaria sphacelata cv Soland, Zea Mexicana, Dactylis glomerata cv Porto and Trifolium repens cv Haifa.
     (4) The effects of wiping off mucilage glue absorbed on radicle of Chamaecrista rotundifolia cv Wynn, Digitaria eriantha cv Premier and Setaria sphacelata cv Soland on radicle elongation were the highest, and the lowest for Dactylis glomerata cv Porto and Trifolium repens cv Haifa, when these forages were planted in a solution with AICl3concentration of30μmol·L-1. It shows that the radicles excreting mucilage glue is one of mechanisms of forage forbearing aluminium toxicity.
     (5) The roots of Chamaecrista rotundifolia cv Wynn, Setaria sphacelata cv Soland, Lotononis bainesii, Macroptilium atropurpureum cv Siratro and Zea Mexicana excreted citric acid in the solution with high concentration of Al3+. The amount of excreting citric acid was relative with the ability of forbearing aluminium toxicity of these forages. It shows that root excreting citric acid is one of reasons of forbearing aluminium toxicity of these forages.
     (6) Applying0.7-1.4g·kg-1lime could increase quickly the yield of Trifolium repens cv Haifa, Macroptilium atropurpureum cv Siratro, and Zea Mexicana. The yield of Trifolium repens cv Haifa increased slowly when applying2.1-2.8g·kg-1lime, however the yields of Macroptilium atropurpureum cv Siratro, and Zea Mexicana decreased, applying phosphorus could slow down the decrease trend of yield. Applying phosphorus could alleviate the damage of soil acid to forage. Applying phosphorus and0.7-1.4g·kg-1lime could increase hugely the yields of Trifolium repens cv Haifa, Macroptilium atropurpureum cv Siratro, and Zea Mexicana. The ability of Chamaecrista rotundifolia cv Wynn forbearing aluminium toxicity was very high, applying lime restrained its growth, but applying phosphorus increased its yield.
     (7) Lotononis bainesii could grow well when it was mixed sowing with Digitaria eriantha cv Premier or Setaria sphacelata cv Soland or Hemarthria compressa. The biomass and crude protein yields in the mixed sowing treatments were higher significantly than that in grass monoculture treatments. Mixed sowing could promote the growth of grass, sustain pasture productivity. The competitive ability of Digitaria eriantha cv Premier was the highest among3grass species. The best mixed ratio of Digitaria eriantha cv Premier and Lotononis bainesii was1:2. The competitive effect of Hemarthria compressa on growth of Lotononis bainesii was little as it has little leaf. The biomass and crude protein yield were the highest when it was mixed sowing with Lotononis bainesii as a ratio of2:1. The competitive ability of Setaria sphacelata cv Soland was middle, the best ratio sown with Lotononis bainesii was1:1(broadcast or row sowing).
     (8) Planting aciduric forage legume in the forest plantation or orchard could reduce soil erosion significantly, and reduce the loss of nutrients and organic matter. Soil organic matter, total N, Available N, available P and available K increased after planting forages for4years, thus improved soil fertility. Soil exchangeable Ca+and Mg2+increased and Al3+decreased, thus alleviated aluminium toxicity in the soil. Planting forages in orchard could temper the soil moisture and temperature, increase soil water content in surface soil, decrease soil temperature during hot and dry season, thus improve the ecological condition of orchard.
引文
1.李正民,舒惠玲,胡久华.中国南方草业发展的前景.中国草地,1995,(6):62-65
    2.李庆逵.中国红壤.北京:科学出版社,1983,7-20.
    3.赵其国.红壤物质循环及其调控.北京:科学出版社,2002,7-39.
    4. Lee J. and Pritchard M. W. Aluminum toxicity expression on nutrient uptake, growth and root morphology of Trifolium repens L. cv. "Grasslands Huia". Plant and Soil,1984, (82):101-116
    5. Pan W. L., Hopkins A. G. and Jackson W. A. Aluminum-inhibited shoot development in soybean:A possible consequence of impaired cytokinin supply. Comm. Soil Sci. Plant Anal.,1988, (19):1143-1153
    6.孔晓玲,季国亮.我国南方土壤的酸度与交换性氢铝的关系.土壤通报,1992,23(5):203-204
    7. Clarkson D.T. Effect of aluminum on the uptake and metabolism of phosphorus by barley seedings. Plant Physio..1966, (41):165-172
    8. Munns D. N. Soil acidity and growth of legume. Ⅱ. Reactions of aluminum and phosphate, calcium and pH on Medicago sativa L. and Trifolium subterraneum L. in solution culture. Aust. J. Agri. Res.,1965,16(7):43-55
    9. Delhaize E, Ryan P. R. Uptake on environmental stress:Aluminum toxicity and tolerance in plants, Plant Physio.,1995, (107):315-321
    10. Hideaki Matsumoto. Cell biology of aluminum toxicity and tolerance in higher Plants. International Review of Cytology,2000, (200):1-46
    11. Munns D. N. Soil acidity and nodulation. In:Andrew, C. S. and Kamprath, ed., Mineral Nutrition of Legumes in Tropical and subtropical soils. CSIRO, Melbourne, Australia,1978:247-263
    12. Wright A. J. Soil aluminum toxicity and plant growth. Comm Soil Sci. Plant Anal.,1989; (20):1479-1497
    13. Foy C. D. Physiological effects of hydrogen, aluminum and manganese toxicities in acid soils. In:F. Adams(ed.), Soil Acidity and Liming.2nd. Ed. Soc. Soil Sci. Agronomy,1984,57-97
    14.徐仁扣.pH、温度和水土比对酸性土壤溶液中铝离子形态分布的影响.热带亚热带土壤科学.1998,7(1):26-30
    15. Baligar V. C., Wright R. J., Fageria N. K., Foy C. D. Differential responses of forage legumes to aluminium. J. Plant Nutr.,1988,11(5):549-561
    16. Mugwira L.M., Haque I. Screening forage and browse legumes germplasm to nutrient stress I:Tolerance of Medicago sativa L to aluminum and low phosphorus in soils and nutrient solutions. J. Plant Nutr.,1993,16(1):45-51
    17. Duguma B., Kang B.T. and Okali, D.U.U. Effect of liming and phosphorus application on performance of Leucaena leucocaphala in acid soils. Plant Soil, 1988, (110):57-61
    18. Helyar K. R. and Anderson A. J. Effects of lime on the growth of five species on aluminium toxicity and phosphorus availability. Aust. J. Agri. Res.,1971, (22): 707-721.
    19. Koch S.A. The effect of pH and lime on the growth of five tropical forage leguems in an acid soil. Master thesis. University of New England, Australia. 1993,62-76
    20. Michalk D.L.,黄志凯.地三叶草在亚热带酸性瘦瘠土壤对石灰、镁和硼的反应.草业科学,1992,9(6):43-47
    21. Ogata S., Gyamfi J.A. and Fujita K. Effect of phosphorus and pH on dry matter production, nitrogen fixation and critical phosphorus concentration in pigeon pea (cajanus cajam (L) Millsp.). J. Plant Nutr.,1988,34(1):55-64.
    22.张久权,Home P.石灰和养分对华中南红壤上牧草生长的影响.见:张马祥主编:中国红壤与牧草.北京:中国农业科技出版社,1993,163-166
    23. Fallon R. E. Seeding emergence response in ryegrass (Loliumspp.)to fungicide seed treatment. N. Z. J. Agricultural Research,1980, (23):385-391
    24.谢良商.红壤丘陵区牧草引种建植及其生态效益,中国农科院红壤实验站主编,红壤丘陵区农业发展研究,1995,318-324
    25.曹景勤.低丘红壤NP配比对黑麦草产量和植株养分累积的影响.中国草地,1994,(6):28-31
    26.林齐民,吕滨.福建省红壤性土壤镁肥肥效及其合理施用的研究.国际平衡施肥学术讨论会论文集.北京:农业出版社,1990,60-68
    27.金义梅,于徐根,向红飞等.豆科牧草追施钾肥试验.草业科学,1994,11(2):59-61
    28. Lal R. Soil surface management in the tropics for intensive land use and high sustained production. Adv. Soil Sci,1986, (5):1-109
    29.熊毅,李庆逵.中国土壤.科学出版社,1990,1-66
    30. Islam A.K. pH optima for crop growth:Results of a flowing solution culture experiments with six species. Plant and Soil,1980, (54):339-357
    31. Murach D. and Matzner E. The influence of soil acidification on root growth of Norway spruce and Europen beech. IUFRO workshop Woody plant growth in a changing chemical and physical environemnt, Vancouver(CDN),1989,45-62
    32. Lee J. and Pritchard M. W. Aluminum toxicity expression on nutrient uptake, growth and root morphology of Trifolium repens L. cv. "Grasslands Huia". Plant and Soil,1984,(82):101-116
    33. Taylor G. J. The Physio. of aluminum phytotoxicity. Metal Ions in Biological Systems.1988,(24):123-163
    34. Zhao X. J, Sucoff E. and Stadelmann J. Al3+ and Ca2+ alteration of membrane permeability of Quercus rubra root cortex cells. Plant Physiol,1987, (83): 159-162
    35. Pan W.L, Hopkins A.G and Jackson W.A. Aluminum-inhibited shoot development in soybean:A possible consequence of impaired cytokinin supply. Comm. Soil Sci. Plant Anal,1988, (19):1143-1153
    36. Fageria N.K. Response of rice cultivars to liming in Cerrdo soils. Pesqui. Agropec. Bras,1984, (19):883-889
    37. Foy C.D. Plant adaption to acid, aluminum-toxic soils. Comm. Soil Sci. Plant Anal.,1988, (19):959-987
    38. Clarkson D.T. Effect of aluminum on the uptake and metabolism of phosphorus by barley seedings. Plant Physio.,1966,41:165-172
    39. Munns D.N. Soil acidity and growth of legume. Ⅱ. Reactions of aluminum and phosphate, calcium and pH on Medicago sativa L. and Trifolium subterraneum L. in solution culture. Australian J.Agri. Res,1965,16(7):43-55
    40.夏建华,钟爱平.铝与植物代谢.湖南农学院学报,1982,(4):117-122
    41. Jarvis S.C and Hatch D.J. Diffenential effects of low concentration of aluminum on the growth of four genotypes of white clover. Plant and Soil,1987, (99):241-253
    42. Hutton E.M. Centrosema breeding for acid tropical soils, with emphasis on efficient Ca adsorption. Tropical Agriculture,1985, (62):273-280
    43. Burmester C.H et al. Response of soybean to lime and molybdenum on Ultisols in Northern Alabama. Soil Sci. Soc. Am J,1988, (52):1391-1394
    44. Wood M. Coope J.E and Holding A. J. Soil acidity factors and nodulation of Trifolum repens. Plant and Soil,1984, (78):367-379
    45. Munns D.N. Soil acidity and nodulation. In:Andrew, C. S. and Kamprath, eds., Mineral Nutrition of Legumes in Tropical and subtropical soils. CSIRO, Melbourne, Australia,1978,247-263
    46. Wright A. J. Soil aluminum toxicity and plant growth. Comm Soil Sci. Plant Anal, 1989, (20):1479-1497
    47. Foy C. D. Physiological effects of hydrogen, aluminum and manganese toxicities in acid soils. In:F. Adams (ed.), Soil Acidity and Liming.2nd. Ed. Soc. Soil Sci. Agronomy,1984, (12):57-97
    48.王月平,章艺,吴玉环等.植物铝毒害及抗铝毒机制.湖北农业科学,2011,50(19):3900-3903
    49. Hariah K., Noordwink, Stulen I. et al. Aluminium avoidance by mucuna pruriens. Plant Physio.,1992, (86):17-24
    50. Hariah K., Noordwink, Stulen I., et al. Phosphate nutrition effeet on aluminum avoidance of mucuna pruriens. Plant Physio.,1993, (33):75-83
    51.金华斌,杨庆.花生基因型耐铝性生物标定.中国油料作物学报,1999,21(4):51-56
    52. Ma J. F., Zheng S.J, Matsumoto H. Detoxifying aluminum with buck wheat. Nature,1997, (390):569 - 570
    53. Larsen, P. B. Degenhardt J, Tai CY, et al. Aluminum resistant arabidopsis mutants that exhibit altered patterns of alunlinum aecumulation and organic acid release from roots. Plant Physio.,1998, (117):9-18
    54. Campbell, T. A. Effeet of aluminum stress on alfalfa root Proteins. J. Plant Nutr.,1994,17(23):461-471
    55.朱睦元.大麦耐酸铝愈伤组织变异体的筛选及其特性研究.植物学报,1990,32(10):743-746
    56. Blarney F.P. Role of root cation-exchange capacity in different alaluminum tolerance of Lotus Species. J. Plant Nutr.,1990, (13):729-744
    57. Horst W.J. Effect of aluminum o nmembrane Properties of soybean (Glycinemax) cells in suspension culture. Plant and soil,1995, (158):419-428
    58. Marschner H. Mechanisms of adaptation of plants to acid soils. Plant and Soil, 1991, (134):1-20
    59. Talor G.J. Current views of the aluminum stress response:the physiological basis of tolerance. Curr. Topics Plant Biochem. Physio.,1991, (10):57-95
    60. Pellet D.M, Papernik L.A, Kochian L.V. Multiple aluminum resistance mechanism in wheat:The roles of root apical phosphate and malate exudation. Plant Physio.,1996, (112):591-597
    61. Ma J.F., Ryan P.R., Delhaize E, Aluminum tolerance in Plants and the complex role of organic acid. Trends in Plant science,2001,6(6):273-278
    62. Miyasaka S., Quta J.G, Howell R.K., etal. Mechanism of aluminum tolerance in snap beans. Plant Physio.,1991, (96):737-743.
    63. Ma J.F., Role of organic acids in detoxification of alluminum in higher Plants. Plant Cell Physio.,2000,41(4),383-390
    64. Li X.F., Ma J.F., Syuntaro H. etal. Mucilage strongly binds aluminum but does not prevent roots from aluminum injury in Zea mays, Physiologia Plantarum, 2000, (108):152-160
    65. Delhaize E., Ryan P.R, Randall P.J. Aluminum tolerance in wheat (Triticum aestivum L.):Aluminum-stimulated exeretion of malic acid from root apices. Plant Physio.,1993, (103):695-702
    66. De la Fuente J.M., Ramirez-Rodrigue Z.V., Cabrera-Ponce J.L etal., Aluminum tolerance in Transgenic Plants by alteration of citrate synthesis. Science,1997, (276):1566-1568
    67. Ma J.F., Hiradate S., Nomoto K. etal. Internal detoxification mechanism of Al in hydrangea:Identifieation of AI form in the leaves. Plant Physio.,1997, (113): 1033-1039
    68. Ma J.F., Hiradate S., Matsumoto H., High aluminum resistance in buck wheat: Oxalic acid detoxifies aluminum internally. Plant Physio.,1998, (117):753-759
    69. Suhayda C.G., Haug A., Organic acids reduce aluminium toxieity in maize root membranes. Physio. Plant,1986, (68):189-195
    70. Cambraia J., Galvani F.R., Stevaro M.M. Effects of aluminium on organic acids, sugars and amino acids composition of root system of sorghum. J. Plant Nutr., 1983, (6):313-322
    71. Klimashshevskii E.L, Chernysheva N.F. Content of organic acids and Physiologically active compounds in plants differing in their susceptibility to the toxicity or A13+. Sov.Agr. Sci.,1980, (2):5-7
    72. Lee E.H., Foy C.D. Aluminium tolerance of two soapbean cultivars related to organic acid content evaluated by high-Performance liquid chromatography. J. Plant Nutr.,1986,9(12):1481-1498
    73. Foy C.D., Lee E.H., Wilding S.B. Differential aluminium tolerance of two barley cultivars related to their organic acids in their roots. J. Plant Nutr.,1987, (10): 1089-1101
    74. Delhaize E., Ryan P.R., Randall P.J. Aluminium tolerance in wheat:Ⅱ Aluminum-stimulated exeretion of malic acid from root apices. Plant Physio.,1993, (103): 695-702
    75. Ryan P.R., Delhaize E., Randall P.J. Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots, Plant Physio.,1995, (196):103-110
    76. Pelleto M., Grunes D.L., Koehian G.L. Organic acid exudation as an aluminum tolerance mechanism in maize(ZeamaysL.), Planta,1995, (196):788-795
    77. Kochian L.V. Cellular mechanisms of aluminum toxicity and resistance in Plant, Ann. Rev. Plant Physio. Plant Mol. Biol.,1995, (46):237-260
    78. Ma J.F., Zheng S.J., Matsumoto H. Specific secretion of citric acid induced by Al stress in cassia tora, Plant Cell Physio.,1997,38(9):1019-1025
    79.申建波,张福锁.根分泌物的生态效应.中国农业科技导报,1999,1(4):21-27
    80. Horst W.J., Wagner A., Matsumoto H. Mucilage Protects roots from aluminum injury. Zeitschrift fur Pflanzenphysiologie,1982, (2):152-160
    81. Henderson M., Ownby J.D. The role of root cap mueilage secretion in aluminum tolerance in wheat. Curr. Topics Plant Biochem. Physio.,1991,108(2): 152-160
    82.黎晓峰,马建锋,松本英明.玉米根冠粘胶和铝的结合及有机酸累积.植物生理与分子生物学学报,2002,28(2):121-126
    83.谢良商,张久权,文石林.南方红壤丘陵区牧草的肥料管理.见:陈福兴主编:红壤丘陵区农业发展研究,中国农业科技出版社,1995,332-337
    84.Michalk D L,黄志凯.地三叶草在亚热带酸性瘦瘠土壤对石灰、镁和硼的反应.草业科学,1992,9(6):43-47
    85. Sanchez P A and Sanlinas J G. Low input technology for managing Oxisols and Ultisols in tropical America. Adv. Agronomy,1981, (34):279-406
    86.文石林,黄平娜,徐明岗等.氮、磷、钾和镁对罗顿豆生长的影响.中国草地,1999,(4):17-20
    87.秦瑞君,陈福兴.低分子有机酸对降低土壤铝毒的作用.土壤肥料,1996,(5):12-14
    88. Spain J. M. Pasture establishment and management in the Llanos Orientales of Columbia. In:Sanchez, P. A. (ed.), Pasture production in acid soils of the tropics. Proceeding of seminar at CLAT, Cali, Columbia,1978,17-21
    89.黄毅斌等.生态牧草筛选及其在生态果园应用的研究.中国农业生态学报,2001,(3):52-55
    90.王义林,谢忠志.百喜草在生态果园中的应用.现代园艺,2007,(3):33-35
    91.章家恩等.赤红壤坡地幼龄果园间种不同牧草的生态环境效应.土壤与环境,2000,9(1):42-44
    92. Belbin L. Patn. Pattern Analysis Package Reference Manual. (CSIRO Divisionof Wildlife and Rangelands:Canberra),1987.
    93.刘荣乐,张马祥.湘南丘陵红壤持水特征及水分状况的研究.中国农业科学院,1992,25(2):82-89
    94.韩德梁,徐智明,艾琳等.磷肥和钾肥对老龄多叶老芒麦牧草生物量和品质的影响.植物营养与肥料学报,2009,15(6):1486-1490
    95.雷宏军,朱端卫,刘鑫等.酸性土壤在改良条件下磷的吸附-解吸特性.土壤 学报,2004,41(4):636-640
    96.王宁,李九玉,徐仁扣.土壤酸化及酸性土壤的改良和管理.安徽农学通报,2007,13(23):48-51
    97.王文军,郭熙盛,武际等.施用白云石对酸性黄红壤作物产量及化学性质的影响.土壤通报,2006,37(4):723-726
    98.吴刚,李金英,曾晓舵.土壤钙的生物有效性及与其它元素的相互作用.土壤与环境,2002,11(3):319-322
    99.雷宏军,刘鑫,朱端卫.酸性土壤磷分级新方法建立与生物学评价.土壤学报,2007,44(5):860-866
    100.陈明昌,许仙菊,张强.磷、钾与钙配合对保护地番茄钙吸收的影响.植物营养与肥料学报,2005,11(2):236-242
    101.谢良商,文石林,张久权.磷肥和石灰对红壤上园叶决明生长的影响.见徐明岗,张久权,文石林主编.红壤丘林区牧草栽培与利用.北京:中国农业科技出版社,1998:103-107
    102.陈翠玲,蒋爱凤,任秀娟等.潮土区不同质地类型土壤对酸缓冲性能的研究.河南农业科学,2005(10):64-66
    103.张建国,盛炜彤,熊有强等.施肥对盆栽杉木苗土壤养分含量的影响.林业科学,2006,42(4):44-50
    104.邓菊芬,唐宗英,黄必志等.大麦对白三叶生长发育的影响及其控制杂草的效果.草地学报,2007,(02):176-179
    105.王平,周道玮,张宝田.禾-豆混播草地种间竞争与共存.生态学报,2009,29(5):2560-2566
    106.杨义成,龙忠富,卢敏.威宁草芦与豆科牧草混播种间竞争初探.贵州农业科学,2008,36(1):70-73
    107.郑伟,朱进忠,库尔班等.不同混播方式下豆禾混播草地种间竞争动态研究.草地学报,2010,18(4):568-575
    108.曹景勤,陈碧云.低丘红攘豆科牧草与非豆科黑麦草混播效果的研究.江西畜枚兽医杂志,1993(2):48-48
    109.韩德梁,何胜江,陈超等.豆禾混播草地群落稳定性的比较.生态环境,2008,17(5):1974-1979
    110.巴吐尔.阿不都热和曼.牧草混播的优越性及牧草混播的选择原则.新疆农业 科技,2009,(05):67-68
    111.余华阳,刘斌,于徐根等.罗顿豆引种及品比试验小结.江西畜牧兽医杂志,2004(3):21
    112.A Bogban,李兰兴.优质耐寒的热带豆科牧草-罗顿豆.国外畜牧学.草原与牧草,1988,(04):35-37
    113.易克贤.我国亚热带有栽培前途的豆科牧草—罗顿豆.中国草地,1992,补充卷(6):73
    114.颜水华,陈志阳.草灌混播在边坡绿化防护中的应用.中国农村小康科技,2010,(10):37-38,79
    115.郑煜基,卓慕宁,李定强等.草灌混播在边坡绿化防护中的应用.生态环境,2007,(1):155-157
    116.鲍士旦.土壤农化分析3版.北京:中国农业出版社,2000:267
    117.Foy C. D. Plant adaptation to acid, aluminum toxic soils. Comm. Soil Sci. Plant Anal.,1988, (19):959-987
    118.罗献宝.酸、铝胁迫对苜蓿初生根伸长的影响.广西大学硕士学位论文,2003
    119.张芬琴,于金兰.铝处理对苜蓿种子萌发及其幼苗生理生化特性的影响.草业学报,1999,8(3):61-65
    120.林咸永,朱炳良,章永松等.地上部分生长性状指标在小麦耐铝性筛选中的应用.浙江大学学报(农业与生命科学版),2002,28(3):860-866
    121.Wagat suma T., Akiba R. Low surface negativity of root protoplasts from aluminum tolerant plant specie. Soil Science and Plant Nutr..1989, (35):443-452
    122.Pellet D. M, Papernik L. A, John D. J, et al. Involvement of multiple aluminum exclusion mechanism in aluminum tolerance in wheat. Plant and Soil,1997, (192): 63-68
    123.Dodge C. S, Hiatt A. J. Relationships of pH to ion uptake imbalance by varieties of wheat (Triticum aestivum L.). Ag ronomy Journal,1992,64:476-481
    124.Pellet D. M, Papernik L. A, Kochian L. V. Multiple aluminum tolerance mechanisms in wheat:Roles of root apical phosphate and malate exudation. Plant Physio.,1996,112:591-597
    125.Delhaize E, Ryan P. R. Aluminum toxicity and tolerance in plants. Plant Physio., 1995, (7):315-321
    126.Minobu K, Masao S, Yoko Y, et al. Aluminum stress increases K+ efflux activities o f ATP and PPi dependent H+ pumps of to no plast enriched membrane vesicles from barley root. Plant Cell Physio.,1992, (33):1035-1039
    127.Basu U, Basu A, Taylor G J. Differential exudation polypeptides by roots of aluminum tolerance and sensitiv ecultivars Triticum aestivum L. in response to aluminum stress. Plant Physio.,1994, (106):151-158
    128.Rengel Z, Robinson D. L. Aluminum and plantage effects on absorption of cations in the Donnan free space of ryegrass roots. Plant and Soil,1989, (116): 223-227
    129.Rengel Z, Robinson D. L. Determination of cation exchange capacity of ryegrass root by summing exchangeable cations. Plant Cell Physio.,1995, (36):1493-1502
    130.凌桂芝.铝诱导柱花草和黑麦根系分泌有机酸及其调控机理的研究.广西大学硕士学位论文,2004
    131.储祥云,黄昌勇,何振立.磷肥和石灰对酸性土壤上一年生黑麦草生长的影响.浙江农业大学学报,1999,25(1):19-22
    132.黄锦龙,陆发熹.磷肥配施生石灰对赤红壤化学性质及花生生长的影响.土壤肥料,1990,(3):17-19
    133.Duguma B.,莫治雄.在酸性土壤上施用石灰和磷对银合欢生长的影响.亚热带植物通讯,1990,(1):57-58,62
    134.Duguma B., Kang B T. Effect of liming and phosphorus application on performance of leucaena 1 eucocaphala in acid soils. Plant and Soil,1988,110(1): 57-61
    135.Helyar K. R, Anderson A J. Effects of lime on the growth of five species, on alum inium toxicity, and phosphorus availability. Australian J. Agricultural Research, 1971,22(5):707-720
    136.Ogata S, Gyamfi J. A., Fujita K. Effect of phosphorus and pH on dry matter product ion, nitrogen fixation and critical phosphorus concent ration in pigeon pea. Soil science and plant nutrition,1944,34(1):55-64
    137.Helyar K. R., Anderson A. J. Responses of five pasture species to phosphorus, lime, and nitrogen on an infertile acid soil with a high phosphate sorption capacity. Austral ian J. Agricultural Research,1970,21(5):677-692
    138.Tothill J.C. Measuring botanical composition of grasslands. L.R. Wilson, ed. Plant Relations in Pasture. CSIRO, Canberra, Australia.1978:385-401
    139.Haynes R L. Competitive aspects of the grass-legume association. Advance in Agronomy,1981,33(4):227-259
    140.兰兴平,王峰.禾本科牧草与豆科牧草混播的四大优点.四川畜牧兽医,2004,(12):4261
    141.张永亮,王建丽,胡自治.杂花苜蓿与无芒雀麦混播群落种间竞争及稳定性.草地学报,2007,(01):43-49
    142.张强强,靳瑰丽,朱进忠等.不同建植年限混播人工草地主要植物种群空间分布格局分析.草地学报,2011,(05):735-739
    143.李洪影,高飞,刘昭明等.青贮玉米不同混播方式对饲料作物产量和品质的影响.草地学报,2011,(5):825-829
    144.李估恺,孙涛,旺扎等.西藏地区燕麦与箭筈豌豆不同混播比例对牧草产量和质量的影响.草地学报,2011,(5):830-833
    145.Costin A. B. Runoff and soil and nutrients losses from an improved pasture at Ginninderra, southm tableland, New South Wales. Aust. J. Agri. Res.,1980, (31):533-546
    146.刘兆红.豆科牧草与根瘤菌共生固氮作用知识简介.青海草业.2007,16(3):59-60.55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700