用户名: 密码: 验证码:
不同外源物质提高盐胁迫下黄连种子及幼苗抗逆性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是影响农业生产与生态环境的一个重要因素,由于工业的发展和人口的不断增加,农业用耕地面积越来越少,因此提高作物的单产及抗逆性成为未来农业可持续发展及环境治理所面临的重要课题。土壤盐渍化是由于长期使用含有某些难溶性盐类的水灌溉或化肥的过度使用造成的,原始土壤和生产用水对设施土壤次生盐渍化形成有重要影响,不合理的施肥、特殊的水分运行方式、不合理的种植方式都是造成设施土壤次生盐渍化的重要因素。土壤盐渍化越来越成为影响作物生长、分布和产量的非生物因素。如何能使现有的作物正常生长在盐渍生境中并能获得一定的产量,这是长期以来科研工作者要努力解决的问题。
     黄连(Coptis chinensis Franch.)又名味连、川黄连、鸡爪连,为毛茛科黄连属多年生草本植物,三级渐危种,为我国著名的传统中药。黄连在四川、重庆、湖南、湖北等省均有栽培,重庆石柱是黄连的主产区之一。黄连根部有效成份小檗碱的独特药效使得黄连极具药用价值,但在长期的栽培种植过程中,由于施肥方式的单一和栽培地的局限,使得黄连栽培地土壤的理化性质发生了较大的改变,土壤的日渐盐化便是其中之一。近年来发现多种外源化学物质能够诱导植物产生抗盐性,为了深入研究外源性物质对盐胁迫下植物的具体作用,本研究中以黄连种子和幼苗为材料,选择了5-氨基乙酰丙酸(ALA)、一氧化氮(NO)供体硝普钠(SNP)、一氧化碳(CO)供体高铁血红蛋白(Hematin)、亚精胺(Spd)及水杨酸(SA)共5种外源性化学物质对NaCl模拟盐胁迫下的黄连种子萌发生理、幼苗光合特性及叶绿素荧光特性、抗氧化酶体系及保护性渗透物质、次生代谢产物等的影响做了研究,根据实验结果了解了黄连的耐盐机理,并提出了缓解盐胁迫的方法,为黄连在栽培生产中遇到的盐胁迫问题提供理论依据和解决方法,并通过一系列问题的探讨,为黄连的大面积优质推广,规范黄连的种植提供理论依据。本研究的主要结果如下:
     1.不同浓度的NaCl处理对黄连种子的萌发均有不同程度的抑制作用,较低浓度的NaCl (25mmol-L-1)处理黄连种子后,各萌发指标(发芽势、发芽率、发芽指数及活力指数)的变化并不明显。但是当NaCl浓度达到50mmol·L-1时,黄连种子的各萌发指标便显著降低,随着浓度的进一步升高,各指标变化趋势相似且不断降低,当浓度为400mmol·L-1时,黄连种子的4个萌发指标均降为零,这意味着在此浓度下,黄连种子的萌发完全被抑制。当用外源性物质进行处理后,各指标均有不同程度的提高,并且每种外源物质在所设置的4个浓度梯度中,均存在着相对效果最佳的处理浓度。
     2.在不同浓度NaCl模拟的盐胁迫下,黄连植株叶片的Chla、Chlb、Chl a+b、Car含量均发生了不同程度的降低,且随着胁迫程度的增大和处理时间的延长降低幅度逐渐增大。Chla/b在盐胁迫初期呈现出先升高后降低的趋势,随着胁迫时间的进一步延长,呈现出规律性的降低现象。Car/Chl(a+b)的变化则自始至终都呈现出升高的趋势,这说明盐胁迫对Chl a的伤害较Chl b更大,对总叶绿素的伤害比对Car的伤害作用更加明显。不同外源物质处理均提高了各种色素的含量,提高了Chl a/b比值,即对Chl a的含量的促进作用大于对Chl b的作用;Car/Chl a+b的比值则随着处理时间的延长呈现出降低趋势,此结果表明外源物质处理显著提高了总叶绿素含量,且提高幅度高于Car。
     3.在不同浓度的NaCl胁迫下,黄连植株的的净光合速率(Pn),气孔导度(Gs)及叶片蒸腾速率(Tr)均发生下降,并且随着胁迫时间和胁迫浓度的增加,下降幅度逐渐增大,胞间CO2浓度(Ci)则呈上升趋势。这说明在盐胁迫下,黄连净光合速率降低的主要影响因素是非气孔因素。在应用外源性物质进行处理后,黄连的Pn、Gs及Tr均有不同程度的提高,Ci也有不同程度的降低,并且不同的浓度梯度存在着显著的效果差异,这说明外源物质对维持黄连幼苗叶片正常的光合作用,维持光系统的较高活性具有积极的作用。
     4.黄连植株在经过盐胁迫后,黄连叶片的最大荧光(Fm)、最大光化学效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo). PSⅡ有效光化学效率(Fv'/Fm')、PSⅡ实际光化学效率(ΦPSⅡ)、光化学淬灭系数(qP)、电子传递率(ETR)和光化学速率(PCR)和光化学反应能(P)均有不同程度的降低,而初始荧光(Fo)、非光化学淬灭系数(NPQ)、天线色素热耗散能(D)和非光化学反应耗散能(E)则呈升高趋势。上述结果说明盐胁迫显著地抑制了PS Ⅱ的功能,造成了PS Ⅱ反应中心的破坏。PS Ⅱ天线色素吸收的能量流向光化学的部分减少,以荧光形式等散失的能量增加,并且随着时间的延长,破坏程度越高。并降低了PSⅡ反应中心QA的氧化态数量,使QA→QB传递电子的能力下降,从而形成较多的QB,导致PSⅡ反应中心放氧活性降低。在经过外源性物质处理后,显著提高了黄连叶片Fm、Fv/Fm、Fv/Fo、ΦPSⅡ、 Fv'/Fm、qP、ETR、PCR和P的水平,降低了Fo、NPQ、E和D的值,提高了ΦPS Ⅱ的水平,减少PSⅡ和电子传递链的过分还原,可能还增强了假循环式光合磷酸化过程,用来消耗多余的能量,保护光合器官免受过多光能而造成伤害,减轻了膜脂过氧化作用,进而缓解了盐胁迫对黄连造成的伤害。
     5.盐胁迫提高了黄连幼苗叶片的相对电导率及质膜过氧化指标(H202含量、02产生速率、LOX酶活性、MDA含量)。经过5种外源物质的处理后,均显著的降低了黄连叶片膜氧化的水平,叶片的相对电导率、H202含量、02产生速率及MDA含量均显著降低,并且ALA、SNP及Hematin显著地降低了LOX的活性。Spd和SA处理对LOX的活性的影响并不明显,但是其它指标均有显著降低,这可能是两种物质缓解胁迫及膜氧化的方式与其它3种物质有所差异。
     6.低浓度和中等浓度的盐处理使黄连叶片SOD酶活性在前期和中期呈显著的上升趋势,而在处理后期则呈现逐渐下降的趋势,高浓度盐处理则呈现持续下降的变化趋势,这可能是由于高浓度下SOD的防御功能已经达到极限,可能会通过其它方式进行调节。POD活性在盐处理初期随处理浓度的升高逐渐升高,在处理的中后期,中低浓度处理仍然使得活性升高,而高浓度处理则呈现出降低趋势。中低浓度的盐处理使得CAT活性呈现出逐渐升高的趋势,而高盐处理则使得CAT呈现出先升高后下降的趋势,并且在盐处理后期,CAT活性降到最低。APX活性在胁迫初期显著升高,并且随着NaCl浓度的增大,活性升高的趋势逐渐加大,中低浓度的NaCl处理呈现出先增加后降低的趋势,高浓度NaCl处理则呈现出持续下降的趋势。GR活性在低浓度NaCl处理的整个过程出现不断升高的趋势,高浓度处理在整个过程呈现出不断降低的变化趋势,而中等浓度处理则呈现出先升高后降低的变化趋势。外源物质的应用在不同的处理时期有效的提高了盐胁迫下黄连幼苗叶片SOD、POD、CAT、APX及GR活性,从而形成了较为有效的抗氧化体系,有效地清除因为膜质过氧化积累下来的活性氧,以实现缓解过氧化的目标。
     7.盐胁迫下,可溶性糖在处理前期和中期均呈上升趋势,但是在处理后期呈现出下降趋势,游离脯氨酸含量在整个过程一直呈现上升趋势,可溶性蛋白在处理初期随着NaCl浓度的增大呈现出不断升高的趋势,但是随着处理时间的延长,含量均有不同程度的降低。总黄酮含量整体呈上升趋势,并且随着时间的延长呈上升趋势,处理中期和后期的差异并不显著。盐酸小檗碱在低浓度NaCl处理下含量升高,而在高浓度下(>100mmol·L-1)含量呈逐渐下降的趋势。当用外源物质进行处理后,可溶性蛋白、可溶性糖和游离脯氨酸含量均有显著的增加,并存在着浓度梯度效应。总黄酮含量也有增加,但是各处理浓度之间差异并不显著,盐酸小檗碱含量在经过外源物质处理后也有显著的升高。
     8.在用外源物质进行处理盐胁迫下黄连种子及种苗的过程中,各指标出现最佳效果的时间虽略有差异,但是最佳处理浓度基本一致。种子在进行外源物质处理时,筛选出基本的最佳浓度分别是:ALA (10mg·L-I)、SNP (0.1mmol·L-1)、Hematin (0.5μmol·L-1)、Spd (0.25mmol·L-1)、SA(10mg-L-1)。黄连植株在进行处理时,最佳处理浓度分别是:ALA(50mg·L-1)、SNP (0.25mmol·L-1)、Hematin (2.0μmol·L-1)、Spd (0.50mmol·L-1)、SA(50mg·L-1)。
     综上所述,5种外源物质通过提高盐胁迫下黄连种子萌发指标、植株叶片光合色素含量、抗氧化酶活性、光合参数(Pn、Gs、Tr, Fm、Fv/Fm、Fv/Fo、ΦPSⅡ、Fv'/Fm、qP、ETR、PCR和P)的水平,代谢产物(可溶性糖、游离脯氨酸、可溶性蛋白质、黄酮)的含量,降低Ci、Fo、NPQ、E、D H2O2含量、O2产生速率、LOX酶活性、MDA含量等的方式缓解了盐胁迫对黄连的伤害,提高了黄连的抗盐性。
Soil salinity is an important factor affecting agricultural production and ecological environment, the proportion of arable land becoming less and less with the development of industry and the increase of population. So improving the crop resistance to adversity has become an important problem to the future sustainable development of agriculture and environmental management. Given the erosion of large areas of land and increased salinity stress experienced by numerous plants worldwide, soil salinity has become a global problem. Soil salinity, a major abiotic stress that affects germination, crop growth, and productivity, is a common adverse environmental factor. Soil salinity affects plant growth, the global geographic distribution of vegetation, and medicinal plant yields. Soil salinity is a long-term using of water for irrigation contains some insoluble salts or excessive use of fertilizers. The original soil and water for production formation of the facilities secondary soil salinity, unreasonable fertilization, unconscionable cropping patterns are the important factors in the soil salinity. It is a significant problem to the scientists to let the crops growth normally in the salinity habitats and obtain a certain yield.
     Coptis chinensis Franch. is a well-known traditional Chinese medicinal plant belonging to the medically and economically important of genus Coptis family Ranunculaceae with other name like "weilian","chuanhuanglian","jizhualian", and so on. It is widely distributed in the province of Sichuan, Chongqing, Hunan, Hubei. Shizhu is the main producing areas in Chongqing. The active ingredient berberine in the root of C. chinensis with distinctive therapeutic effectiveness make it of great medicinal value. In the long-term cultivation process, due to the limitations of single fertilization methods and the areas of cultivated land, the physical and chemical properties of soil has large changes. In recent years, more and more research had fund that variety of exogenous chemicals can induce plants to improve the salt tolerance under salt stress. In this study, seeds and seedlings of C. chinensis were used to research the specific role of exogenous substances under salinity stress. The5-aminolevulinic acid (ALA), nitric oxide (NO) donor sodium nitroprusside (SNP), carbon monoxide (CO) donor hematin, spermidine (Spd) and salicylic acid (SA) were applied to study the effects to the seed germination, photosynthetic characteristics of seedlings, chlorophyll fluorescence characteristics, lipid peroxidation, antioxidant enzyme machinery, permeability protection substances, secondary metabolites of C. chinensis seeds and seedlings. The main results of this study as follows:
     1. Seed germination indices, such as Gv, Gr, Gi, and Vi, of C. chinensis were inhibited with different degrees under different concentrations of NaCl. The treatment with lower NaCl concentration dose not show an obviously change compared with the control. When the concentration of NaCl got50mmol·L-1, the germination indices reflected the same trend and showed an obvious inhibition with the improvement of the concentration. When the concentration got400mmol·L-1, every indices became to zero and this result means the germination was inhibited completely. With the treatments of different exogenous substances, every index improved with different degrees. Every exogenous substance with different concentrations got an appropriate concentration finally.
     2. The Chi content of C. chinensis seedling leaves treated under different concentrations of NaCl stress were inhibited with different degrees and yielded lower concentrations than the control. Chi a, Chi b, and total Chi concentrations decreased with similar tendencies following treatment days. Chi a/b has the trend of increased first and then decreased in the early days of treatment, and decreased with the treatment days. The change of Car/Chl (a+b) shown a tendency of decrease in the whole process of treatment. This result shown that the injury of salinity stress to Chi a was more severe compared with Chi b, the stress to total Chi was more obvious to Car. The content of different pigments, the level of Chi a/b were all improved and the level was Car/Chl a+b decreased with the treatments of different exogenous substances. The result indicated that exogenous substances increased the content of total Chi and the level improved more significant to Car.
     3. The level of Pn, Gs, and Tr of C. chinensis seedlings were all decreased with the treatment days and the increased concentrations of NaCl under salinity stress, and the value of Ci increased with the opposite tendency. These results indicate that the main influencing factor to the decreasing net photosynthetic rate of C. chinensis is non-stomatal factors. After treated with different exogenous substances, the Pn, Gs, and Tr were all increased with different degrees, and the level of Ci was decreased. Among the different concentrations in the same exogenous substance has a appropriate concentration. It indicated that exogenous substances have a positive effect of to maintain normal photosynthesis and the higher activity of photosynthetical system of C. chinensis.
     4. The indices, such as maximum fluorescence (Fm), potential maximum photochemical efficiency (Fv/Fm), potential photochemical efficiency (Fv/Fo), photochemical efficiency (Fv'/Fm'), actual photochemical efficiency ((DPSII), and photochemical quench coefficient (qP), electronic transfer rate (PCR), photochemistry rate (ETR), and absorbed light in photochemistry energy (P) were all significantly decreased with NaCl stress compared with the control, the values of these parameters increased with the number of treatment days, while the minimal fluorescence (Fo), non-photochemical quenching coefficient (NPQ), antenna heat dissipation (D), excess energy (E) were all increased. These results indicate that the primary light energy conversion efficiency of PSII was significantly inhibited under salinity stress and the PSII response centre is damaged by photooxidation and photoinhibition. The energy absorbed by the PS II antenna pigments to the photochemical energy reduced and the part that dissipated with the form of fluorescent improved. The number of PSII open centres and the original electronic receptor QAs decreased. With the treatments of different exogenous substances, the level of Fm、Fv/Fm、Fv/Fo、ΦPSⅡ、Fv'/Fm、 qP、ETR、PCR, and P were all improved significantly, the level of Fo、NPQ、E和1D were all decreased. The photosystem, by increasing non-radiative heat dissipation, could consume the excessive light energy absorbed by PSII. Consequently, the PSII response centre is protected from damage by photooxidation and photoinhibition for absorbing excess light energy and the salinity stress-induced damage to C. chinensis had been alleviated.
     5. An age-dependent increase in TBARS concentration, H2O2content, LOX activity, production rate of O2-, and the relative conductivity were all observed in leaves subjected to NaCl-only treatment. The level of plasma membrane peroxidation was decreased with five different exogenous substances, the TBARS concentration, H2O2content, the production rate of O2-, and the relative conductivity were all decreased significantly. ALA, SNP, and Hematin treatments decreased the LOX activity significantly. The effects of Spd and SA treatments to the LOX activity were not significantly. This might due to the form alleviating the membrane peroxidation was different to other three substances.
     6. NaCl treatments with lower and medium concentrations made the SOD activity of C. chinensis leaves increased significantly in the early and mid, and decreased in the late period of treatment. The SOD activity decreased with higher concentration of NaCl treatments has a continuing trend. This may be the defense function of the SOD has reached its limitation and adjusted by other modes. POD activity gradually increased with the increase of NaCl concentration in the early period and the treatments with lower and medium concentrations in the mid and late period were also increased, while the higher concentration showed a decreasing trend. The lower and medium concentrations of NaCl treatments increased the CAT activity and the higher concentration showed a trend that increased first and then decreased. In the late period of the NaCl treatment, CAT activity got the minimum. APX activity in the initial period of salinity stress was significantly increased, and the low and mid concentrations of NaCl treatment showing a trend of increasing first and then decreasing. The higher concentration of NaCl treatment shown a continuous decline trend. GR activity in the whole process of the low concentration of NaCl treatment has a rising trend, and showing a continuous decrease trend with the higher concentration. Medium concentrations treatment made a trend that increasing first and then decreasing. The application of exogenous substances in different treatment periods to C. chinensis improved the activities of SOD, POD, CAT, and APX and GR effectively. This can form a more effective antioxidant system and remove the accumulated lipid peroxidation reactive oxygen species in order to ease the oxidation of the target.
     7. The content of soluble sugars has a increasing trend in the early and mid period of treatment, while in the late period, the content of soluble sugars decreased. The content of free proline increased in the whole process of the treatment. The soluble protein has the increasing tendency in the early period of treatment with the increase of NaCl concentrations, and the content has a decreasing trend with different degrees with the treatment time. Total flavones content increased with the treatment times and has no significant in the mid and late period of the treatment. The content of berberine hydrochloride increased with the lower concentration of NaCl, while the content decreased in the higher NaCl concentration. The application of exogenous substances in different treatment periods to C. chinensis increased the content of soluble sugars, free proline, soluble protein, and berberine hydrochloride. Total flavones content also has a improvement, but there is no significant difference between different concentrations.
     8. In the process of C. chinensis treated with different exogenous substance under salinity stress, the time that got the optimum result of every indices has a slightly different, while the optimum concentration to every indices was the same. The seeds of C. chinensis treated with different exogenous substance got the optimum concentration were as follows:ALA (10mg-L-1)、 SNP (0.1mmol·L-1)、Hematin(0.5μmol·L-1)、Spd (0.25mmol·L-1)、SA (10mg·L-1).The seedlings of C. chinensis treated with different exogenous substance got the optimum concentration were as follows:ALA (50mg·L-1)、SNP (0.25mmol·L-1)、Hematin (2.0μmol·L-1)、Spd (0.50mmol·L-1)、 SA (50mg·L-1)
引文
[1]邬建国.自然保护区与自然保护生物学:概念和模型.见:刘建国.当代生态学博论.北京:中国科学技术出版社,1992.
    [2]Soule N E. What is conservation Biology. Bioscience [M].1985,11-12.
    [3]白隆华,缪剑华.论生物多样性与中药资源可持续发展[J].中药研究与信息,2005,7(7):29-31.
    [4]张新时.对生物多样性的几点认识.生物多样性研究进展---首届全国多样性保护与持续利用研讨会论文集[M].中国科学技术出版社,1995.
    [5]何平.珍稀濒危植物保护生物学[M].重庆,西南师范大学出版社,2005.
    [6]Lovejoy T E. Changing in biological diversity. In:Soule M E, Wilcox B A. Conservation Biology:An Evolutionary-ecological Perspective. Sinauer Associates Sunderland,1980.
    [7]Norse, E A, Mcmanus, R E. Ecology and Resources Biological Diversity. The Wilderness Society. Washington D C,1980, pp.31-80.
    [8]Norse, E A, Rosenbaum, K L, Wilcove, D S. Plant Breeding Systems. George Allen and Unwin, London.Stout, M L. Conservation Biological Diversity in our National Forests. The Wilderness Society, Washington, D C, 1986, pp.116.
    [9]McNeely J A. Lessons from the past:forests and biodiversity. Biodiversity and conservation,1994,3:3-20.
    [10]马克平.论生物多样性的概念[J].生物多样性,1993,1:20-22
    [11]马克平,钱迎倩,王晨.生物多样性研究的现状与发展趋势[J].科学导报,1995,(1):27-30.
    [12]Gaston K.J, Spicer J I. Biodiversity:an introduction. Oxford:Blackwell Science,1998.
    [13]洪德元.生物多样性面临的危机[J].中国科学学院院刊.1990.2:117-120.
    [14]朱大保.生物多样性与林木育种[J].生物多样性,1994,2(3):157-161.
    [15]Epstein E. In"Better Crops For Food" (Ciba Foundation Symposium 97),1983, pp.61-82, Pitman, London.
    [16]章文华.植物抗盐机理与盐害防治[J].植物生理学通讯,1997,33(6):479-479.
    [17]赵可夫,范海编著.盐生植物及其对盐渍生境的适应生理[M].科学出版社,2005.9.
    [18]Serrano R, Mulet J, Rios G, et al. A glimpse of mechanis msof ion homeostasis during salt stress[J].J.Exp.Bot., 1999,50:1023-1036.
    [19]Garmina G, Ana M R, Carmen M B, et al. The yeast HALL gene improves salt tolerance of transgenic tomato[J]. Plant Physiol.,2000,123:393-402.
    [20]Kjell O H, Susanne S, Abul M, et al. Improved tolerance of salinity and low temperature in transgenic tobacco producing glycine betain[J] J.Exp.Bot.,2000,51:177-185.
    [21]Paul M H, Ray A B. Plant cellular and molecular responses to high salinity [J]. Annu.Rev. PlantPhysiol. Plant Mol.Biol,2000,51:463-499.
    [22]牛彩霞.盐胁迫对辣椒种子萌发与幼苗生理特性的影响[D]甘肃农业大学,2006.
    [23]王学军.日光温室土壤次生盐渍化分析[J].北方园艺,1998,3(4):12-13.
    [24]程美廷.温室土壤盐分积累、盐害及其防治[J].土壤肥料,1990,(1):1-4.
    [25]利容千,王建波.植物逆境细胞及生理学[M].武汉大学出版社,2002.12.
    [26]杨晓慧,蒋卫杰,魏珉,等.植物对盐胁迫的反应及其抗盐机理研究进展[J]..山东农业大学学报(自然科学版),2006,37(2):302-305
    [27]杨少辉,季静,王罡,等.盐胁迫对植物影响的研究进展[J]..分子植物育种2006,4(3):139-142.
    [28]王新伟.不同盐浓度对马铃薯试管苗的胁迫效应[J]..马铃薯杂志,1998,12(4):203-20.
    [29]戴伟民,蔡润,潘俊松,等.盐胁迫对番茄幼苗生长发育的影响[J]..上海农业学报,2002,18(1):58-6.
    [30]宋士清,郭士容,尚庆茂,等.外源水杨酸对盐胁迫下黄瓜幼苗的生理效应[J].园艺学报2006,33(1):68-72.
    [31]周贺芳,邹志容,孟长军,等.外源ALA, CaCl2和水杨酸对盐胁迫下甜瓜幼苗一些生理特性的影响[J]..干旱地区农业研究2007,25(4):212-215.
    [32]Strogonov B P. Physiological basis of salt tolerance of plants [J].Israel Progr Sci Transl,1964.
    [33]Munns R, Termaut A.Whole plant responses to salinity[J]. Aust J Plant Physiol,1986,13:143-160.
    [34]沈禹颖,阎顺国,余玲.盐分浓度对碱茅种子发龙、芽的影响[J].草业科学.1991,(3):67-68.
    [35]何长芳,杨国柱,吕峰.盐分浓度对星星草种子萌发的影响[J].青海草业,1995,4(4):33-36.
    [36]李昀,沈禹颖,阎顺国NaCl胁迫下5种牧草种子萌发的比较研究[J].草业科学.1997,14(2):50-53.
    [37]康玉林,徐利群,张春霞,等.不同盐浓度对马铃薯实生苗的影响[J].马铃薯杂志,1996,10(1):17-19.
    [38]戴伟明,蔡润,潘俊松,等.盐胁迫对番茄幼苗生长发育的影响[J].上海农业学报.2002,18(1):58-62.
    [39]陈坚,周木虎.盐胁迫对不同苦瓜品种萌发及幼苗生长的影响[J].湘潭师范学院学报(自然科学版).2002,24(4):44-48.
    [40]梁云媚,李燕,多立安,等.不同盐分胁迫对苜蓿种子萌发的影响[J].草业科学.1998,15(6):21-25.
    [41]程大友,张义,陈丽.氯化钠胁迫下甜菜种子的萌发[J].中国糖料.1996(2):21-23.
    [42]贺长征,胡晋,朱志玉等.混合盐引发对水稻种子在逆境条件下发芽及幼苗生理特性的影响[J].浙江大学学报(农业与生命科学版),2002,28(2):175-178.
    [43]Hsu J L and Sung J M. Antioxidant role of glutathione associated with accelerated aging and hydration of triploid watermelon seeds [J]. Physiologia Plantarum,1997,100:967-974.
    [44]解秀娟,胡晋.沙引发对紫花苜蓿种子盐逆境下发芽及幼苗生理生化变化的影响[J].种子.2003(4):5-6.
    [45]孙小芳,郑青松,刘友良,等NaCI胁迫对棉花种子萌发和幼苗生长的伤害[J].植物资源与环境学报.2000,9(3):22-25.
    [46]陈月艳,孙国荣,李景信,等NaCl胁迫对星星草种子萌发过程中水分吸收及膜透性的影响[J].草业科学.1997,14(2):27-30.
    [47]谢德意,王惠萍,王付欣,等.盐胁迫对棉花种子萌发及幼苗生长的影响[J].种子,2000(3):10-12.
    [48]赵檀方,闫先喜,胡延吉.盐胁迫对大麦种子吸胀萌发及根尖细胞结构的影响[J].大麦科学,1994(4):17-20.
    [49]冯利波,蒋卫杰,亢秀萍,等植物耐盐性机理及基因控制技术研究进展[J].农业工程学报,2005,12(21):5-9.
    [50]杨晓慧,蒋卫杰,魏珉,等.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报,(自然 科学版),2006,37(2):302-305.
    [51]MaslenKova L T, Zanev Y, Popova L P. Adaptation to salinity as monitored by PSII oxygen evolving reactions in barley thylakoids[J]. Plant Physiology,1993,142:629-634.
    [52]史庆华,朱祝军.等渗Ca(NO)3和NaCl胁迫对番茄光合作用的影响[J].植物营养和肥料学报,2004,10(2):188-191.
    [53]王仁雷,华春,刘友良.盐胁迫对水稻光合特性的影响[J].南京农业大学学报,2002,25(4):11-14.
    [54]Munns R. Physiological processes limiting plantgrowth in saline soils:some dogmas and hypotheses[J]. Plant Cell Environ,1993,16:152-241
    [55]Sultana N, Ikeda T, Itoh R. Effect of NaCl salinityon photosynthesis and drymat ter accumulation in developing rice grain [J]. Environ ExpBot,1999,42:211-220.
    [56]张淑红,张恩平,庞金安,等NaCl胁迫对黄瓜幼苗光合特性及水分利用率的影响[J].中国蔬菜,2005(1):11-13.
    [57]华春,王仁雷.盐胁迫对水稻叶片光合效率和叶绿体超显微结构的影响[J].山东农业大学学报(自然科学版),2004,35(1):27-31.
    [58]史庆华,朱祝军,Khalida A 12aghabary,等.等渗Ca(NO3)2和NaCl胁迫对番茄光合作用的影响[J].植物营养与肥料学报,2004,10(2):188-191.
    [59]马焕成,王沙生,蒋湘宁.盐胁迫下胡杨的光合和生长响应[J].西南林学院学报,1998,18(1):33-41.
    [60]郑国琦,马宏玮,许兴.盐胁迫下枸杞盐分与甜菜碱积累及光合作用的关系[J].中国生态农业学报,2003,11(3):51-54.
    [61]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993.
    [62]朱新广,张其德NaCl对光合作用影响的研究进展[J].植物学通报,1999,16(4):332-338.
    [63]Farqfuhar G D,Sharkey T D. Stormatal conductance and photosynthesis [J]. Annu Rev Plant Physiol,1982(33): 317-345.
    [64]刘家栋,翟兴礼,王东平.植物抗盐机理的研究[J].农业与技术,,2001,21(1):26-29.
    [65]江行玉,窦君霞,正秋NaCl对玉米和棉花光合作用与渗透调节能力影响的比较(简报)[J].植物生理学通讯,2001,37(4):303-305.
    [66]吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J].南京林业大学学报(自然科学版),2002,26(3):19-22.
    [67]惠红霞,许兴,李树华.宁夏春小麦抗盐生理研究[J].宁夏农学院学报,2001,22(1):18-20.
    [68]梁海永,李会平,杨敏生,等NaCl胁迫对毛白杨试管小植株叶片离子吸收及荧光诱导动力学参数的影响.河北林果研究,199914 No.13,(9)234-137.
    [69]朱新广,王强,张其德,等.冬小麦光合功能对盐胁迫的响应[J].植物营养与肥料学报.2002,8(2):177-180.
    [70]郑国琦,许兴,徐兆桢等.盐胁迫对枸杞光合作用的气孔与非气孔限制[J].西北农业学报2002,11(3):87-90.
    [71]廖祥儒,朱新产.活性氧代谢和植物抗盐性[J].生命的化学,1996,16(6):19-23.
    [72]Levitt J. Responses of plant to environmental stresses [M]. New York:Academic press,1980.
    [73]裴明真,汤章城.盐胁迫对高粱根质膜离子通道头型的影响[J].植物学报,1995,31:41-47.
    [74]Picchioni G A, Miyamoto S, Storey J B. Rapid testing of salinity effects on pistachio seedling rootstocks[J]. Journal of the American society for horticultural science.1991,116(3):555-559.
    [75]张新春,庄炳昌,李自超.植物耐盐性研究进展[J].玉米科学,2002,19(1):50-56.
    [76]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展明[J].海南大学学报(自然科学版),2003,21(2):177-182.
    [77]Inze D, Montaga M V. Oxidative stress in plants [J].Current Opinion in Biotechnology,1995,(6)153-158.
    [78]姜卫兵,马凯,朱建华.多效唑提高草莓耐盐性的效应[J].江苏农业学报.1992,8(4):13-17.
    [79]廖祥德,贺普超,万怡蔑,等.盐胁迫对葡萄新梢叶片的伤害作用闭.果树科学,1996,13(4):211-21.
    [80]刘友良,汪良驹.植物对盐胁迫的反应和耐盐性.见:余叔文,汤章成主编.植物生理与分子生物学.[M].北京:科学出版社,1998,752-769.
    [81]赵晨阳,郑荣梁.DNA氧化损伤与端粒缩短切[J1.生物化学与生物物理进展,2000,27(4):351-354.
    [82]全先庆,高文.盐生植物活性氧的非酶促清除机[J].安徽农业科学,2003,31(3):499-501.
    [83]郑世英,陈吉美.植物的抗盐生理[J].德州高专学报,2000,16(4):39-40.
    [84]杨月红,孙庆艳,沈浩.植物的盐害和抗盐性[J].生物学教学,2002,27(11):1-2.
    [85]Ahmad S, Wahid A, Rasul E, Wahid A. Comparative morphological and physiological responses of green gram genotypes to salinity applied at different growth stages[J]. Bot Bull Acad Sin,2005,46:135-142.
    [86]Apel K, Hirt H.Reactive oxygen species:metabolism, oxidative stress, and signal transduction[J]. Annu Rev Plant Biol,2004,55:373-399.
    [87]Wahid A, Parveen M, Gelani S, Basra S M A. Pretreatment of seeds with H2O2 improves salt tolerance of wheat seedling by alleviation of oxidative damage and expression of stress proteins[J]. J Plant Physiol,2007,164: 283-294.
    [88]Noctor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control. Annu[J]. Rev. Plant Physiol Plant Mol Biol,1998,49:249-279.
    [89]Goel A, Sheoran I S.Lipid peroxidation and peroxide-scavenging enzyme in cotton seeds under natural ageing[J]. Biol Plant,2003,46:429-434.
    [90]Mittova V, Tal M, Volokita M, Guy M. Salt stress induces upregulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated speciesfJ]. Physiol Plant,2002,115:393-400.
    [91]Koca H, Bor M, Ozdemir F, Turkan I.The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars[J]. Environmental and Experimental Botany,2007,60:344-351.
    [92]Bor M, Ozdemir F, Turkan I.The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L[J]. Plant Sci,2003,164:77-84.
    [93]刘友良.植物耐盐性研究进展[J].植物生理学通讯,1987,(4):21-22.
    [94]林栖凤,李冠一.植物耐盐性研究进展[J].生物工程进展,2000,20(2:)20-25.
    [95]汪良驹,王业遴,刘友良.无花果耐盐机理研究[J].盐逆境下脯氨酸和可溶性蛋白质的积累[J].南京农业 大学学报,1989,12(4):124-125.
    [96]王宝山,姚敦义.盐胁迫对沙枣愈伤组织膜透性、膜质过氧化SOD活性的影响[J].河北农业大学学报,1993,16(3):20-24.
    [97]陈耀锋,贺普超,廖祥儒,等.同基因型葡萄愈伤组织脯氨酸累积变异系的抗盐性研究[J].农业生物技术学报,1997,5(1):58-63.
    [98]姜卫兵,马凯,朱建华.多效哇提高草荀耐盐性的效应[]J.江苏农业学报,1992,8(4:)13-17.
    [99]戴高兴,彭克勤,皮灿辉.钙对植物耐盐性的影响[J].中国农学通报,2003,19(3):97-101.
    [100]Hare P D, Cress W A. Metabolic implications of stress induced proline accumulation in plants [J]. Plant Growth Regulation,1997,21:792102.
    [101]Downton W J S. Photosynthesis in salt stressed grapevines [J]. Aust J Plnat Physiol,1977,(4):183.
    [102]姜卫兵,马凯,朱建华.多效哇提高草荀耐盐性的效应[J].江苏农业学报,1992,8(4:)13-17.
    [103]张福锁.植物营养生态生理学和遗传学[M].北京:中国科技出版社,1993.
    [104]Strogonov B P. Physiological basis of salt tolerance of plants[J].Israel Progr Sci Transl,1964.
    [105]Sharma, R C. Ionic Composition of Ground Waters in Jind District (Haryana) and Their Suitability for Crop Growth. Annals of Arid Zone Vol 19, No 1/2, p 43-50, March-June,1980.
    [106]朱新广,张其德NaC1对光合作用影响的研究进展[J].植物学通报,1999,16(4):332-338.
    [107]McDonald M B. Seed deterioration:Physiology, repair and assessment. Seed Sci Technol,1999,27:177-237.
    [108]Giannoplitis C N, Ries S K. Superoxide dismutase purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol,1977,59:315-318.
    [109]赵可夫,卢元芳,张宝泽,等.Ca2+对小麦幼苗降低盐害效应的研究[J].植物学报,93,35(1):51-56.
    [110]冯利波,蒋卫杰,亢秀萍等植物耐盐性机理及基因控制技术研究进展[J].农业工程学报,2005,12(21):5-9.
    [111]杨少辉,季静,王罡,等.盐胁迫对植物影响的研究进展[J].分子植物育种,2006,4(3):139-142.
    [112]刘建新,胡浩斌,王鑫.外源NO对盐胁迫下黑麦草幼苗活性氧代谢、多胺含量和光合作用的影响[J].植物研究2009,29(3):313-319。
    [113]Sreenivasulu N, G rinm B, Wobus U, et al. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedings of foxtail millet,Phsiol Plant,2000,109:435-442o
    [114]张宝泽NaC1对小麦地上部分和地下部分的生理效应的研究[J].山东师范大学学报.1996,11:54-56.
    [115]汪宗立.水稻耐盐性的生理研究[J].江苏农业学报,1990,6(2):1-6.
    [116]龚明,丁念诚,贺子义,等.盐胁迫下大麦与小麦膜脂过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11):841-846.
    [117]Castelfranco P A, Beale S I. Chlorophyll biosynthesis:recent advances and areas of current interest. Annu Rev Plant Physiol,1983,34:241-278.
    [118]Bindu R C, Vivekanandan M. Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation. Plant Growth Regul,1998,26:15-18.
    [119]Von Wettstein D. Chlorophyll biosynthesis[J]. Plant Cell,1995,7:1039-1057.
    [120]Kumar A M. Sekective inhibition of HEMA gene expression by photooxidation in Arabidopsis[J]. Thaliana.Phytochem.,1999,51:847-851.
    [121]Hatta Y. New physiological effects of 5-aminolevulinic acid in plants:the increase of photosynthesis, chlorophyll content, and plant growth[J]. Biosco.Biotech.Biochem,1997,61:2025-2028.
    [122]Hatta Y. Improvement of cold resistnce in rice seedlings by 5-amino-levulinic acid [J]. J Pest Sci.,1998,23:29-33.
    [123]Watanabe K. Improving salt tolerance of cotton seedlings with 5-amino-levulinic acid [J].Plant Growth Regul,2000,32:99-103.
    [124]汪良驹,姜卫兵,章镇,等.5-氨基乙酰丙酸的生物合成和生理活性及其在农业中的潜在应用[J].植物生理学通讯,2003,39(3):185-192.
    [125]Hfgen R, Axelsen K B, Kannangara G, et al. A visible marker for antisense mRNA expression in plants: Inhibition of chlorophyll synthesis with a glutamate 1-semialdehyde aminotransferase antisense gene.Proc Natl Acad Sci USA,1994,91:1726-1730.
    [126]Huang D D, Wang W Y. Chlorophyll biosynthesis in Chlamy domonasstarts with the formation of glutamyl-tRNA [J]. J Bio] Chem,1986,261:13451-13455.
    [127]Chen W M, Jahn D O, Neill G P, et al. Purification of the glutamyl-tRNA reductase fromChlamydomonas reinhardtiiinvolved in δ-aminolevulinic acid formation during chlorophyll biosynthesis[J]. J Biol Chem, 1990,265:4058-4063.
    [128]Von Wettstein D, Gough S, Kananagara C G Chlorophyll biosynthesis [J]. Plant Cell,1995,7:1039-1057.
    [129]Beator J, Kloppstech K. The circadian oscillator coordinates the synthesis of apoproteins and their pigments during chloroplast development[J]. Plant Physiol,1993,103:191-196.
    [130]Hansson M. Basic characterization of two barley HemA promoter regions reveals stem-loop structures and suggests a regulatory role in Poaceae tetrapyrrole biosynthesis[J]. Plant Physiol Biochem,2001,39:155-160.
    [131]Masuda T, Takabe K, Ohta H, et al. Enzymatic activities for the synthesis of chlorophyll in pigment-deficient variegated leaves of Euonymus japonicus[J]. Plant Cell Physiol,1996,37:481-487.
    [132]Frustaci JM, Sangwan I, Brian MR. Gasl is a universal tetrapyrrole synthesis gene in soybean and is regulated by a GAGA element[J] J Biol Chem,1995,270:7387-7393.
    [133]Huang L Q, Bonner B A, Casterlfranco P A. Regulation of 5-aminolevulinic acid (ALA) synthesis in developing chloroplasts:Evidence for functional heterogeneity of the ALA pool [J]. Plant Physiol, 1990,92:172-178.
    [134]Masuda T, Ohta H, Shioi Y, et al. Light regulation of 5-aminolevulinic acid-synthesis system inCucumis sativus:light stimulates activity of glutamyl-tRNA reductase during greening [J]. Plant Physiol Biochem, 1996,34:11-16.
    [135]Wang L, Elliott M, Elliott T. Conditional stability of the hemA protein (glutamyl-tRNA reductase) regulated heme biosynthesis in Salmonella typhimurium [J]. J Bacteriol,1999,181:1211-1219.
    [136]Hodgins R R, van Huystee R B. Chilling-induced chlorosis in maize (Zea mays) [J]. Can J Bot, 1985,63:711-715
    [137]Hodgins R R, Quist G. Porphyrin metabolism in chill-stressed seedlings of Scots pine (Pinus sylvestris)[J]. Physiol Plant,1989,77:620-624.
    [138]Hodgins R R, van Huystee R B. Porphyrin metabolism in chill stressed maize (Zea mays L.) [J]. J Plant Physiol,1986,125:325-336.
    [139]Tewari A K, Tripathy B C. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat [J].Plant Physiol,1998,117:851-858.
    [140]Masuda T, Ohta H, Shioi Y, et al. Stimulation of glutamyl-tRNA reductase activity by benzyladenine in greening cucumber cotyledons [J]. Plant Cell Physiol,1995,36:1237-1243.
    [141]Tanaka Y, Tanaka A, Tsuji H. Effects of 5-aminolevulinic acid on the accumulation of chlorophyll b and apoproteins of the light-harvesting chlorophyll a/b-protein complex of photosystem Ⅱ [J]. Plant Cell Physiol, 1993,34:465-472.
    [142]Sasaki K, Marquez F J, Nishio N, et al. Promotive effects of 5-aminolevulinic acid on the growth and photosynthesis of Spirulina platensis [J]. JFerm Bioeng,1995,79:453-457.
    [143]Monteiro H P, Abdalla D S P, Augusto O, et al. Free radical generation duringδ-aminolevulinic acid mautoxidation:Induction by hemoglobin and connections with porphyrinpathies [J].Arch Biochem Biophys, 1989,271:206-216.
    [144]Oteiza P I, Bechara E J H.5-aminolevulinic acid induces lipid peroxidation in cardiolipin-rich liposomes [J]. Arch Biochem Biophys,1993,305:282-287.
    [145]Chakraborty N, Tripathy B C. Involvement of singlet oxygen in 5-aminolevulinic acid-induced photodynamic damage of cucumber (Cucumis sativus L.) chloroplasts [J].Plant Physiol,1992,98:7-11.
    [146]Hansson M, Gough S P, Kannangara C G, et al. Analysis of RNA and enzymes of potential importance for regulation of 5-aminolevulinic acid synthesis in the protochlorophyllide accumulating barley mutanttigrina-d12 [J] Plant Physiol Biochem,1997,35:827-836.
    [147]Delledonne M, Xia Y, Dixon R A, Lamb C. Nitric oxide functions as a secondary signal in plant disease resistance[J]. Nature,1998,934:585-588.
    [148]Dumer J, Wendehenne D, Klessig D F. Defense gene induction in tobacco by nitric oxide, cyclic CMP and cyclic ADP-ribose[J]. Proc Natl Acad Sci USA,1998,95:10328-10333.
    [149]Hufton C A, Besford R T, Wellburn R A. Effects of NO (+NO2) pollution on growth, nitrate reducase activities and associated protein contents in glasshouse lettuce grown hydroponically in winter CO2 enrichment[J]. New Phytol,1996,133:495-501
    [150]Vaabdrager A B, Jonge H R. Signalling by cGMP-dependentprotein kinase[J]. Molecular and Cellular Biochemistry,1996,157(1):23-30.
    [151]Chung H T, Pae H O, Choi B M, et al. Nitric oxide as a bioregulator of apoptosis[J]. Biochem Biophys Res Commun,2001,282:1075-1079.
    [152]Guo F Q, Okamoto M, Crawford N M. Identification of a plant nitric oxide synthase gene involved in hormonal signaling[J]. Science,2003,302:100-103.
    [153]Yamasaki H. and Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase:in vitro evidence for the NR-dependent formation of active nitrogen species[J]. FEBS Letters,2000, 468:89-92.
    [154]Ribeiro E A J, Cunha F Q, Tamashiro W M S C, et al. Growth phase-dependent subcellular localization of ni-tric oxide synthase in maize cells [J]. FEBS Letters,1999,445:283-286.
    [155]Rockel P, Strube F, Rockel A, et al. Regulation of nitric oxide (NO) production by plantnitrate reductase in vivo and in vitro[J]. Journal of Experimental Botany,2002,53(366):103-110.
    [156]Chandok M R, Ytterberg A J, Van Wijk K J, et al. The pathogen-inducible nitric oxide synthase (iNOS) in plant is a variant of the P protein of the glycine decarboxylase complex[J]. Cell,2003,113:469-482.
    [157]Larios B, Dela Haba P, et al. A short-term exposure of cucumber plants to rising atmospheric CO2 increases leaf carbohydrate content and enhances nitrate reductase expression and activity[J]. Planta,2001,212(2): 305-312.
    [158]Mackintosh C. Meek S E. Regulation of plant NR activity by reversible phosphorylation,14-3-3 proteins and proteolysis[J]. Cellular and Molecular Life Sciences,2001,58(2):205-214.
    [159]Dean J, Harper J. Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay[J]. Plant Physiol,1986,82:718-723.
    [160]Stohr C, Strube F, Marx G, Ullrich W R, Rockel P. A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite[J]. Planta,2001,22(56):835-841.
    [161]He'rouart D, Baudouin E, Frendo P, et al. Reactive oxygen species, nitric oxide and glutathione:a key role in the establishment of the legume-rhizobiurn symbiosis[J]. Plant Physiol Biochem,2002,40:619-624.
    [162]Bethke P C, Badger M R, Jones R L. Apoplastic synthesis of nitric oxide by plant tissues[J]. Plant Cell,2004, 16:332-341.
    [163]Beligni M V. Fath A. Bethke P C. Lamattina L Jones R L Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers[J]. Plant Physiol,2002,129:1642-1650.
    [164]Lipton S A. Choi Y B. Pan Zh A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds[J]. Nature,1993,364:626-632.
    [165]Uchida A, Jagendorf A T, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Sci,2002,163:515-523.
    [166]Feelisch M, Martin J F. The early role of nitric oxide in evolution[J]. Tree,1995,10:496-499.
    [167]Giba Z, Grubisic D, Todorovic S, et al. Effect of nitric oxide releasing compounds on phytochrome-controlled germination of empress tree seeds[J]. Plant Growth Regulation,1998,26:175-181.
    [168]Caro A, Puntarulo S. Nitric oxide generation by soybean embryonic axes possible effect on mitochondrial function[J]. Free Radic. Res.,1999,31:205-212.
    [169]Beligni M V, Lamattina L. Nitric oxide stimulates seed germination and deetiolation, and inhibits hypocotyls elongation, three light-inducible responses in plants[J]. Planta,2000,210:215-222.
    [170]张华,孙永刚,张帆,等.外源一氧化氮供体对渗透胁迫下小麦种子萌发和水解酶活性的影响[J].植物生理与分子生物学学报,2005,31(3):241-246.
    [171]唐静,韩宇,陈康,等.钙离子参与一氧化氮促进盐胁迫下的玉米种子萌发[J].植物生理学通讯,2007,43(3):421-424.
    [172]Leshem Y Y, Haramaty E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn[J]. Foliage. Journal of Plant Physiology,1996,148: 258-263.
    [173]Gouvea C M C P, Souza J F, Magalhes C A N, et al. NO-releasing substances that induce growth elongation in maize root segments[J]. Plant Growth Regul,1997,21:183-187.
    [174]Pagnussat G C, Lanteri M L, Lamattina L. Nitric oxide and cyclic GMP are messengers in the indole acetic-induced ad-ventitious rooting process[J]. Plant Physiol,2003,132:1241-1248.
    [175]张少颖,任小林,程顺昌,等.外源一氧化氮供体浸种对玉米种子萌发和幼苗生长的影响[J].植物生理学通讯,2004,40(3):309-310.
    [176]闻玉,赵翔,张骁.水分胁迫下一氧化氮对小麦幼苗根系生长和吸收的影响[J].作物学报,2008,34(2):344-348.
    [177]秦毓茜,李延红.一氧化氮在植物中的生理作用[J].安徽农业科学,2006,34(9):1802-1804
    [178]万东石,李红玉,张立新,等.植物体内干旱信号的传递与基因表达[J].西北植物学报,2003,23(1):151-157.
    [179]Leshem Y Y, Wills R, Ku V. Applications of nitric oxide (NO) for postharvest control[M].Acta Hort, ISHS, 2001,553:571-575.
    [180]Mcdonald L J, Murad F. Nitric oxide and cGMP signaling[J]. Adv Pharmacol,1995,34:263-276
    [181]Urao T, Katagiri T, Mizoguchi T, et al. Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana[J]. Mol Gen Genet,1994,244:331-340
    [182]刘贯山,陈珈.钙依赖蛋白激酶(CDPKs)在植物钙信号转导中的作用[J].植物学通报,2003,20(2):160-167.
    [183]王镭,才华,柏锡,等.转OsCDPK.7基因水稻的培育与耐盐性分析[J].遗传,2008,30(8):1051-1055.
    [184]Durner J, Wendehenne D, Klessig D F. Defense gene induction in tobacco by nitric oxide, cyclic CMP and cyclic ADP-ribose[J]. Proc Natl Acad Sci USA,1998,95:10328-10333.
    [185]Saijo Y, Hata S, Kyozuka J, et al. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]. Plant J,2000,23(3):319-327.
    [186]Lino B, Carrillo-Rayas M T, Chagolla A, et al. Purification and characterization of a cal-cium-dependent protein kinas from beetroot plasma membranes[J]. Planta,2006,225(1):255-268.
    [187]张文利,沈文飚,叶茂炳,等.小麦叶片顺乌头酸酶对NO和H2O2的敏感性[J].植物生理与分子生物学学报,2002,28:99-104.
    [188]Naverre D A, Wendehenne D, Durner J, et al. Nitric oxide modulates the activity of tobacco aconitase[J]. Plant Physiol.,2000,122:573-582.
    [189]韩燕,佘小平.环境胁迫下一氧化氮在植物中的作用[J].陕西师范大学学报,2006,23(3):114-118.
    [190]段培,王芳,王宝山.NO供体SNP浸种显著缓解盐胁迫对小麦幼苗的氧化损伤[J].菏泽学院学报,2006,28(5):93-97.
    [191]刘开力,刘志兵,花榕,等.源SNP浸种对盐胁迫下水稻幼苗生长的影响[J].生理学通讯,2004,40(4):419-422.
    [192]刘开力,韩航,徐颖洁,等.外源一氧化氮对盐胁迫下水稻根过氧化的缓解作用[J].中国水稻科学,2005,19(4):333-337.
    [193]陈明,沈文飚,阮海华,等.一氧化氮对盐胁迫下小麦幼苗根生长和氧化损伤的影响[J].植物生理与分子生物学学报,2004,30(5):569-576.
    [194]樊怀福,郭世荣,杜长霞,等.外源NO对NaCl胁迫下黄瓜幼苗氮化合物和硝酸还原酶活性的影响[J].西北植物学报,2006,26(10):2063-2068.
    [195]樊怀福,郭世荣,张润花,等.外源NO对NaCl胁迫下黄瓜幼苗生长和根系膜脂过氧化作用的影响[J].生态与农村环境学报,2007,23(1):63-68.
    [196]Akio U, Andre T, Takashi H, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Science,2002, (163):515-523.
    [197]Qing H S, Fei Dg, Xiu F W, et al. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress[J]. Plant Physiology and Biochemistry,2007, (45):542-550.
    [198]Magorzata K, Edward A. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus[J]. Plant Physiology and Biochemistry,2003, (41): 1011-1017.
    [199]Coceani F. Carbon monoxide in vasoregulation:The promise and the challenge[J]. Circulation Research, 2000,86:1184-1186.
    [200]Dulak J, Jozkowicz A. Carbon monoxide:a "new" gaseous modulater of gene expression[J]. Acta Biochimica Polonica,2003,50:31.
    [201]Xu J, Xuan W, Huang B K, et al. Carbon monoxide-induced adventitious rooting of hypocotyl cuttings from mung bean seedling[J]. Chinese Science Bulletin,2006,51(6):668.
    [202]Xu S, Sa Z S, Cao Z Y, et al. Carbon monoxide alleviates wheat seed germination inhibition and counteracts lipid peroxidation mediated by salinity[J]. Journal of Integrative Plant Biology,2006,48(10):1168.
    [203]Tenhunen R, Marver H S, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase[J]. Proceedings of the National Academy of Sciences, USA,1968 61,748-755.
    [204]Yoshida T, Kikuchi G. Partial purification and reconstitution of the heme oxygenase system from pig spleen microsomes[J]. Biochemical Journal,1974,75:1187-1191.
    [205]Maines M D, Trakshel G M, Kutty R K.Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible[J]. J Biol Chem,1986,261:411-419.
    [206]McCoubrey W K, Huang T J, Maines M D. Isolation and characterization of a cDNA from rat brain that encodes hemoprotein heme oxygenase-3[J]. Eur J Biochem,1997,247:725-732.
    [207]Muramoto T, Kohchi T, Yokota A, et al. The Arabidopsis photomorphogenic mutant hyl is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase[J]. Plant Cell,1999,11:335-348.
    [208]Liu K L, Xu S, Xuan W, et al. Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa[J]. Plant Sci,2007,172:544-555.
    [209]Cao Z Y, Huang B K, Wang Q Y, et al. Involvement of carbon monoxide produced by heme oxygenase in ABA-induced stomatal closure in Vicia faba and its proposed signal transduction pathway [J]. Chin Sci Bull,2007,52:2365-2373.
    [210]Hung W C, Huang D D, Yeh C M, et al. Reactive oxygen species, calcium and serine/threonine phosphatase are required for copper-induced MAP kinase gene, OsMAPK2 expression in rice[J]. Plant Growth Regul, 2005,45:233-241.
    [211]Han Y, Zhang J, Cheng X Y, et al. Carbon monoxide alleviate cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa L [J]. New Phytol,2008,177:155-166.
    [212]李江,吴黄铭,陈惠萍.外源CO和NO对水稻种子萌发过程中干旱胁迫损伤的缓解效应[J].西北植物学报,2011,31(4):731-738.
    [213]Noriega G O, Balestrasse K B, Batlle A, et al. Heme oxygenase exerts a protective role against oxidative stress in soybean leaves[J]. Biochem Biophys Res Commun,2004,323:1003-1008
    [214]Tiburcio A F, Besford R T, Capell T, et al. Mechanism of polyamine action during senescence responses induced by osmotic stress [J]. Journal of Experimental Botany,1994,45:1789-1800.
    [215]胡晓辉,王素平,曲斌NaCl胁迫下亚精胺对番茄种子萌发及幼苗抗氧化系统的影响[J].应用生态学报,2009,20(2):446-450.
    [216]段九菊,郭世荣,康云艳,等.外源亚精胺对盐胁迫下黄瓜根系多胺含量和抗氧化系统的影响[J].生态与农村环境学报,2007,23(4):11-17.
    [217]刘俊,周一峰,章文华,等.外源多胺对盐胁迫下玉米叶绿体结合态多胺水平和光合作用的影响[J].西北植物学报,2006,26(2):254-258.
    [218]李青云,葛会波,胡淑明NaCl胁迫下外源腐胺和钙对草莓幼苗离子吸收的影响[J].植物营养与肥料,2008,14(3):540-545.
    [219]Khan M A, Ungar I A, Showalter A M. Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum commun [J]. Soil Sci. Plant Anal,2000,31:2763-2774.
    [220]孙小芳,刘友良,陈沁.棉花耐盐性研究进展[J].棉花学报,1998,10(3):118-124.
    [221]Zeid M. Response of bean (Phaseolus vulgaris) to exogenous putrescine treatment under salinity stress [J]. Parkistan Journal of Biological Sciences,2004,7:219-225.
    [222]Munns R. Comparative physiology of salt and water stress [J]. Plant Cell Enviroment,2002,25:239-250.
    [223]刘友良,汪良驹.植物对盐胁迫的反应和耐盐性[M].余叔文,汤章城主编.植物生理和分子生物学.1998,北京:科学出版社,752-769.
    [224]Ashraf M, Harris P J C. Potential biochemical indicators of salinity tolerance in plants [J]. Plant Science,2004, 166:3-16
    [225]Maathuis F J M, Amtmann A. K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ratios[J]. Annals of Botany,1999,84:123-133.
    [226]Shiyab M, Shibli R A, Mohmamad M M. Influence of sodium chloride salt stress on growth and nutrient acquisition of sour orange in vitro [J]. J Plant Nure,2003,26(5):985-996.
    [227]王素平,贾永霞,郭世荣,等.多胺对盐胁迫下黄瓜(cucumis sativus L.)幼苗体内K+、Na+和C1-含量及气管间分布的影响[J].生态学报,2007,27(3):1122-1129.
    [228]Zhao F G, Qin P. Protective effect of exogenous polyamines on root tonoplast functions against salt stress in barley seedling [J]. Plant Growth Regulation,2004,42(2):97-103.
    [229]Roy P, Niyogi K, SenGupta D N, et al. Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars [J]. Plant Science,2005,168:583-59.
    [230]Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Science,2002,7:405-410.
    [231]金春燕,孙锦,郭世荣.外源亚精胺对Ca(NO3)2胁迫下黄瓜幼苗生长和活性氧代谢的影响[J].西北植物学报,2010,30(8):1627-1633.
    [232]Ioannidis N E, Sfichi L, Kotzabasis K. Putrescine stimulates chemiosmotic ATP synthesis [J]. Biochimica et Biophysica Acta,2006,1757:821-828.
    [233]束胜,孙锦,郭世荣,等.外源腐胺对盐胁迫下黄瓜幼苗叶片PS Ⅱ光化学特性和体内离子分布的影响[J].园艺学报,2010,37(7):1065-1072.
    [224]江行玉,赵可夫,窦君段,等Nacl胁迫下外源亚精胺和二环己基胺对滨龚内源多胺含量和抗盐性的影响[J].植物生理学通讯,2001,37(1):6-9.
    [225]李德红,潘瑞炽.水杨酸在植物体内的作用[J].植物生理学通讯,1995,31(2):144-149.
    [226]沈文飚,张荣铣.水杨酸对小麦叶片抗坏血酸过氧化物酶活性的抑制[J].南京农业大学学报,1998,21(3):126-128.
    [227]刘新,李云,张蜀秋.水杨酸对蚕豆幼苗生长及内源细胞分裂素和生长素的影响[J].植物生理学通讯,2000,36(12):512-514.
    [228]陶宗娅,邹琦.水杨酸对小麦活性氧代谢的调节及其与乙烯形成的关系[J].西南农业学报,1999,12(1):3944
    [229]Liang W S, Liang H G Enhancement of ethylene production by salicylic acid during aging of potato tuber salices[J].Acta Phytophysiologica Sinica,1998,24 (1):11-16.
    [230]张士功,高吉寅,宋景芝.水杨酸和阿司匹林对小麦盐害的缓解作用[J].植物生理学报,1999,25(2):159-164.
    [231]杨晓杰,张洪伟.水杨酸对盐胁迫下管花蒲公英的保护作用植物研究[J].植物研究,2006,26:222-224.
    [232]蒋小满,柏新富,赵建萍,等.水杨酸对盐胁迫下三角滨藜种子萌发及幼苗生长的影响[J].中国种业,2007,3:39-40.
    [233]李长军,李淑平,杨瑞红,等.外源水杨酸对草莓耐盐性的影响[J].黑龙江农业科学,2008(6):77-80.
    [234]常云霞,李青芝,杜红阳,等.水杨酸对盐胁迫下小麦幼苗生长抑制的缓解效应[J].安徽农业科学,2009,37(4):1428-1431.
    [235]原永兵,曹宗.水杨酸在植物体内的作用[J].植物学通报,1994,11(3):1-9.
    [236]康国章,段中岗,王正询等.水杨酸提高香蕉幼苗抗冷性初探[J].植物生理学通讯,2003,39(2):122-124.
    [237]黄爱霞,佘小平.水杨酸对黄瓜幼苗抗冷性的影响[J].陕西师范大学学报(自然科学版),2003,31(3):107-109.
    [238]吕军芬,郁继华.水杨酸对西瓜抗冷性生理指标的影响[J].甘肃农业大学学报,2004,39(1):62-65.
    [239]杜朝昆,李忠光,龚明.水杨酸诱导的玉米幼苗适应高温和低温胁迫的能力与抗氧化酶系统的关系[J].植物生理学通讯,2005,41(1):19-22.
    [240]Lopez D H, Dat J F, Foyer C H. et al. Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2[J]. J Exp Bot,1998,49(321):713-720.
    [241]马德华,庞金安,李淑菊,等.温度逆境锻炼对高温下黄瓜幼苗生理的影响[J].园艺学报,1998,25(4):350-355.
    [242]Dat J F, Foyer C H, Cott I M. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedings[J]. Plant Physiol,1998,118:1455-1461.
    [243]孙艳,樊爱丽,徐伟君.水杨酸和草酸对光氧化胁迫下黄瓜叶片光合机构及叶黄素循环的影响[J].园艺学报,2005,32(6):1034-1038.
    [244]许耀照,曾秀存,郁继华,等.水杨酸对高温胁迫下黄瓜幼苗叶绿素荧光参数的影响[J].西北植物学报,2007,27(2):267-271.
    [245]陈秋明,尹慧,李晓艳,等.高温胁迫下外源水杨酸对百合抗氧化系统的影响[J].中国农业大学学报,2008,13(2):44-48.
    [246]曹翠玲,刘林丽,田强兵.水杨酸对玉米幼苗抗旱性的影响[J].玉米科学,2004,12:103-104.
    [247]吴旭红.水杨酸对杜松幼苗水分胁迫的缓解效应[J].辽宁林业科技,2008,1:16-18.
    [248]Mishra A, Choudhuri M A. Effects of salicylic acid on heavy metal-induced membrane deterioration med iated by lipoxygenase in rice [J].Biologia Plant arum,1999,42:409-415.
    [249]Ashraf M, Iris F, Manfred G, et al. Salicylic Acid Alleviates the Cadmium Toxicity in Barley Seedlings [J]. Plant physiology,2003,132:272-281.
    [250]孙立荣,崔香环,廖立冰,等.外源水杨酸对Cu2+胁迫下小麦幼苗中活性氧和抗氧化酶的影响[J].河南大学学报(自然科学版),2008,38(2):176-159.
    [251]中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1990
    [252]徐锦堂,王立群,徐蓓.黄连研究进展[J].中国医学科学院学报,2004,26(6):704-707
    [253]谭振球.中药栽培及加工技术[M].长沙:湖南科学技术出版社,1998,,88-94
    [254]张丽萍,陈震,马小军,等.不同氮素水平对黄连植株生长及根茎小巢碱含量的影响[J].中国中药杂志,1998,23(7):394-396
    [255]张丽萍,陈震,马小军,等.氮、磷、钾对黄连植株生长、小檗碱含量的影响[J].中国中药杂志,1997,22(1):13-14.
    [256]匡海学.新世纪全国高等中医药规划教材·中药化学[M].北京:中国中医药出版社,2003
    [257]谭榀新,刘湘新,李俊超,等.黄连提取物对耐药金黄色葡萄球菌的耐药抑制机理初探[J].中药材,2011,34(10):1575-1579.
    [258]侯宏,孙胜亮,黄静,等.黄连生物碱抗高脂血症及动脉粥样硬化实验研究[J].时珍国医国药,2011,22(10):2462-2464.
    [259]胡元利,谭晓梅,张文新.黄连总生物碱与盐酸小檗碱对小鼠溃疡性结肠炎治疗作用的比较[J].中药药理与临床,2011,27(5):45-48.
    [260]张春平,何平,胡世俊,等.黄连遗传多样性的ISSR分析[J].中草药,2009,40(10):1630-1634.
    [261]张春平,何平,胡世俊,等.药用三角叶黄连遗传多样性的ISSR分析[J].中国中药杂志,2009,34(24):3176-3179.
    [262]张春平,何平,王瑞波,等.峨眉野连种质资源遗传关系的ISSR分析[J].中国中药杂志,2009,34(2):236-238.
    [263]陈大霞,李隆云,彭锐,等.黄连种质资源遗传多样性的ISSR研究[J].中国中药杂志,2006,31(23):1937-1940.
    [264]陈大霞,李隆云,瞿显友,等.栽培黄连群体遗传关系的SRAP分析[J].中草药,2008,39(10):1552-1556.
    [265]李品明,孙玉芳,杨丙贤,等.低温胁迫对黄连膜脂过氧化作用和抗氧化酶活性的影响[J].中国农学通报,2011,27(15):117-120.
    [266]田桂香,汤绍虎,武敬亮,等.干旱胁迫对黄连生理作用的影响[J].西南师范大学学报(自然科学版),2006,31(2):133-136.
    [267]孙玉芳,王三根,尹丽,等.高温胁迫对黄连生理特性的影响研究[J].植物生理科学,2006,22(4):236-238.
    [1]史庆华,朱祝军.等渗Ca(NO)3和NaCl胁迫对番茄光合作用的影响[J].植物营养和肥料学报,2004,10(2):188-191.
    [2]牛彩霞.盐胁迫对辣椒种子萌发与幼苗生理特性的影响[D].甘肃农业大学,2006.
    [3]王学军.日光温室土壤次生盐渍化分析[J].北方园艺,1998,3(4):12-13.
    [4]宁运旺,张永春.设施十壤次生盐溃化的发生与防治阴.江苏农业科学,2001,4:49.
    [5]程美廷.温室土壤盐分积累、盐害及其防治[J].土壤肥料,1990,(1):1-4.
    [6]李品明,孙玉芳,杨丙贤,等.低温胁迫对黄连膜脂过氧化作用和抗氧化酶活性的影响[J].中国农学通报,2011,27(15):117-120.
    [7]孙玉芳,王三根,尹丽,等.高温胁迫对黄连生理特性的影响研究[J].植物生理科学,2006,22(4):236-238.
    [8]李品明,杨丙贤,孙玉芳,等.高温胁迫对黄连幼苗活性氧代谢及保护酶活性的影响[J].安徽农业科学,2011,39(18):10796-10798
    [9]田桂香,汤绍虎,武敬亮,等.干旱胁迫对黄连生理作用的影响[J].西南师范大学学报(自然科学版),2006,31(2):133-136.
    [10]张春平,何平,韦品祥,等.外源5-氨基乙酰丙酸对盐胁迫下紫苏种子萌发及幼苗抗氧化酶活性的影响[J].中草药,2011,42(6):1194-1200.
    [11]张春平,何平,喻泽莉,等.亚精胺对盐胁迫下紫苏种子萌发和幼苗生理特性的影响[J].中草药,,2011,42(7):1407-1412.
    [12]张春平,何平,杜丹丹,等.外源Ca2+及NO供体硝普钠(SNP)对盐胁迫下紫苏种子萌发及幼苗抗氧化酶活性的影响[J].中国中药杂志,2010,35(23):3114-3119.
    [13]张春平,何平,喻泽莉,等.外源Ca2+、ALA、SA和Spd对盐胁迫下紫苏种子萌发及幼苗生理特性的影响[J].中国中药杂志,2010,35(24):3260-3265.
    [14]张春平,何平,喻泽莉,等.外源NO供体硝普钠(SNP)对盐胁迫下紫苏种子萌发及幼苗抗氧化酶活性的影响[J].中药材,2011,34(5):665-669.
    [15]张春平,何平,刘海英,等.外源CO供体高铁血红蛋白(Hematin)对盐胁迫下决明种子萌发及幼苗生理特性的影响[J].中国中药杂志,2012,37(1):10-18.
    [16]Zhang C P, Li Y C, Yuan F G, et al. Effects of hematin and carbon monoxide on the salinity stress responses of Cassia obtusifolia L. seeds and seedlings[J]. Plant and Soil, DOI:10.1007/sl 1104-012-1194-7.
    [17]张春平,何平,袁凤刚,等.外源5-氨基乙酰丙酸对干旱胁迫下草珊瑚叶绿素荧光特性及能量分配的影响[J].中草药,2012,43(1):164-172.
    [18]张春平,何平,袁凤刚,等.外源5-氨基乙酰丙酸(ALA)对干早胁迫下甘草种子萌发及幼苗生理特性的影响[J].西北植物学报,2011,31(8):1603-1610.
    [1]Hotta Y, Tanaka T,Takaoka H, et al. Promotive effects of 5-aminolevulinic acid on the yield of several crops [J]. Plant Growth Reg,1997,22:109-114.
    [2]张春平,何平,喻泽莉,等.外源Ca2+、ALA、SA和Spd对盐胁迫下紫苏种子萌发及幼苗生理特性的影响[J].中国中药杂志,2010,35(24):3260-3265.
    [3]Wang L J, Jiang W B, Liu H, et al. Promotion of 5-aminolevulinic acid (ALA) on germination of pakchoi (Brassica chinensis) seeds under salt stress [J].Inte Plant Biol,2005,47(9):1084-1091.
    [4]Caro A, Puntarulo S. Nitric oxide generation by soybean embryonic axes:possible effect on mitochondrial function[J]. Free Rad Res,1999,31:205-212.
    [5]Beligni M V, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation,three light-inducible responses in plants[J]. Planta,2000,210:215-221.
    [6]李娟,申东虎,张少颖.植物一氧化氮的生理研究进展[J].陕西农业科学2005,(5):75-77.
    [7]Dulak J, Jozkowicz A. Carbon monoxide:a "new" gaseous modulater of gene expression [J]. Acta Biochimica Polonica,2003,50:31.
    [8]Longom M, Jain V, Vedernikov Y P, et al. Effect of nitric oxidean and carbon monoxide on uterine contractility during human and rat pregnancy [J]. American Journal of Obstetrics and Gynecology,1999,181:981.
    [9]Xu S, Sa Z S, Cao Z Y, et al. Carbon monoxide alleviates wheat seed germination inhibition and counteracts lipid peroxidation mediated by salinity[J].. Journal of Integrative Plant Biology,2006,48(10):1168.
    [10]Zeid M. Response of bean (Phaseolus vulgaris) to exogenous putrescine treatment under salinity stress [J]. Parkistan Journal of Biological Sciences,2004,7:219-225.
    [11]胡晓辉,王素平,曲斌NaC1胁迫下亚精胺对番茄种子萌发及幼苗抗氧化系统的影响[J].应用生态学报,2009,20(2):446-450.
    [12]孙小芳,刘友良,陈沁.棉花耐盐性研究进展[J].棉花学报,1998,10(3):118-124
    [13]张春平,何平,袁凤刚,等.药用峨眉野连种子形态及萌发条件的研究[J].中草药,2009,40(11):1799-1802.
    [14]张华,孙永刚,张帆,等.外源一氧化氮供体对渗透胁迫下小麦种子萌发和水解酶活性的影响.[J]植物生理与分子生物学学报,2005,31(3):241-246.
    [15]Delledonne M, Kzeierj K, Marocco A, et al. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response[J]. Proc.National Academy of sciences KUSA,2001,98(13):454-459.
    [16]Hang H, Shen W B, Xu L L. Effect of nitric oxide on the germination of wheat seed and its reactive oxygen species metabolisms under osmotic stress[J]. Acta Botanica Sinica,2003,45:901-905.
    [17]Zhao Z, Chen G, Zhang C.Interaction between reactive oxygen species and nitric oxide drought induced Abscisic acide synthesis in root tips of wheatseedlings[J]. Plant Physiol,2001,28:1055-1061.
    [18]Zhao M C, Tian I Ying, Zhang W H. Nitric Oxide synthese-dependent Nitric Oxide production is associated with salt tolerance in Arabidopsis1[J]. Plant Physiology,2007,144:206-217.
    [19]Caro A, Puntarulo S. Nitric oxide generation by soybean embryonic axes:possible effect on mitochondrial function [J]. Free Rad Res,1999,31:205-212.
    [20]Beligni M V, Lamattina L. Nitric oxide stimulates seed germination and deetiolation, and inhibits hypocotyl elongation,three light-inducible responses in plants [J]..Planta,2000,210:215-221.
    [21]Kopyra M, Gwozdz E A. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus [J]. Plant Physiol Biochem,2003,41:1011-1017.
    [22]周永斌,殷有,苏宝玲,等.外源一氧化氮供体对几种植物种子的萌发和幼苗生长的影响[J].植物生理学通讯,2005,41(3):316-318.
    [23]Beligni M V, Lamattina L. Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants[J]. Nitric Oxide,1999,3:199-208.
    [24]Leshem Y Y. Nitric oxide in biological systems. [J]Plant Growth Regul,1996,18:155-159.
    [25]Beligni M V, Lamattna L. Nitric oxide stimulates seed germination and deetiolation and inhibit shy pocotylelongation three light inducibleresponse in plants[J]. Planta,2000,210:215-221.
    [1]Seeman J D, Critchley C. Effect of salt stress on the g rowth, ion content, stomstal behavior and photosynthetic cajpacity of a sa lt-sentive species, phaseolus vulgaris L. Plant,1985,164:151-162.
    [2]Yeo A R, Caporn S J M, Flowers T J. The effect of salinity on photosynthesis in rice (Oryzas ativa L.):gas exchange by individual leaves in relation to their salt content. J. Exp. Bot 1985,36:1240-1248.
    [3]Downton W J S. Growth and osmotic relations of the mangrove, Avicennia marina, as influenced by salinity. Australian Journal of Plant Physiology,1982,9:519-528.
    [4]Greenway H and Munns R. Mechanisms of salt tolerance in no halophytes [J]. Annu.Plan.1980,(31):149-190.
    [5]Munns R, Termaat A. Whole plant responses to salinity.Australian Journal of Plant Physiology,1986, 13:143-160.
    [6]Ziska J H, Seemann J R, DeJong T M. Salinity induced limitations on photosyn-thesis in Primus salicina, adeciduous tree species. Plant Physiology,1990,93:864-870.
    [7]Brugnoli E, Bjrkman O. Growth of cotton under continuous salinity stress:influence on allocation patern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta,1992, 187:335-345.
    [8]Krieg DR, Hutmacher R B. Photosynthetic rate control in sorghum:stomatal and non-stomatal factors. Crop Science,1986,26:112-117.
    [9]Jacob J, Lawlor D W. Stomatal and mesophyll limitations of photosynthesis in photosynthesis in phosphate deficient sunflower, maize and wheat plants. Journal of Experimental Botany,1991,241:1001-1011.
    [10]Rao G G and Rao G R. Pigment composition & chlorophyllase activity in pigment pea(Cajanusi ndicus Spreng) & Gingelley(Seamum indicum L.) under NaCl salinity.Indian J. Exp. Biol.1981,19:768-770.
    [11]Strogonov B P. New trends in the study of salt tolerance (Israel Program Sci Transl Jerusalem),1974.
    [12]Carter D R and Cheeseman J M. The effect of external NaCI on thylakoid stacking in lettuce plants. Plant Cell Environ.,1993,16:215-223.
    [13]Bethke P C and Malcolm C D. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during jprogressive exposure to NaCl salinity. Plant physil.,1992,99,219-226.
    [14]Downton W J S and Millhouse J. Chlorophyll fluorescence and water relations of salt-stressed plants. Plant Sci. Lett,1985,37:205-212.
    [15]Downton W J S, Grant W J, Robinson S P. Photosynthesis and stomatal respontses of spinach leaves to salts tress. Plant Physil.,1985,77:85-88.
    [16]李鹏民,高辉远,Reto J S快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报,2005,31(6):559.
    [17]林世青,许春辉,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的作用[J]. 植物学通报,1992,9(1):1.
    [18]周洁,张霁,郭兰萍,等.稀土元素镧对黄花蒿光合作用及青蒿素积累的影响[J].中草药,2010,41(8):1371.
    [19]王艳茹,郭巧生,靳淼.光强对药用白菊花生长发育及光合特性的影响[J].中国中药杂志,2009,34(13):1632.
    [20]Jaume F,Josefina B,Jose M.Effects of drought on photosynthesis in grapevines under field conditions:an evaluation of stomatal and mesophyll limitations[J].Functional Plant Biology,2002,29(4):461.
    [21]Colom M R,Vazzana C. Photosynthesis and PS Ⅱ functionality of drought-resistant and drought-sensitive weeping lovegrass plants[J].Environmental and Experimental Botany,2003,49(2):135.
    [22]赖齐贤,包志毅,朱祝军,等.干旱胁迫对转基因(PSAG12-ipt)非洲菊光合作用的影响[J].园艺学报,2007,34(1):157.
    [23]卢从明,张其德,匡廷云.水分胁迫对小麦叶绿素a荧光诱导动力学的影响[J].生物物理学报,1993,,9(3):453-457.
    [24]刘家尧,衣艳君,张承德.活体叶绿素荧光诱导动力学及其在植物抗盐生理研究中的应用[J].曲阜师范大学学报,1997,23(4):80-83.
    [25]Bongi G, Loreto F.Gas-exchange properties of salt-stressed olive (Oleo europeaL.) leaves. Plant Physiology 1989,90:1408-1416.
    [26]高俊凤,孙群.植物生理学实验指导[M].西安:陕西科学技术出版社,1986.
    [27]Demmig-Adams B,Adams W W Ⅲ,Barker D H.Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J].Physiol Plant,1996(2),98:253.
    [28]哀建国,金松恒.干旱胁迫对浙江雪胆光合特性的影响[J].中草药,2009,39(7):1074-1078.
    [29]惠红霞,许兴,李前荣.外源甜菜碱对盐胁迫下枸杞光合功能的改善[J].西北植物学报,2003,23(12):2137-2142.
    [30]Powle S B. Photoinhibition of photosynthesis induced by visible light[J].Rev Plant Physiol,1984,35:15-44.
    [31]Ara E M, Virgin I, Andersson B. Photoinhibition and DI protein degradation in peasacclimated to different growth irradiance[J]. Plant Physiol,1993,103:835-843.
    [32]Everard J D, Gucc R, Kann S C, et al. Gas exchange and carbon partitioning in the leaves of celery (Aptium GraveolensL.) at various level of root zone salinity [J]. Plant Physiol,1994,106:281-292.
    [33]Demmig B, Bjorkman O. Comparison of effect of excessive light on chlorophyll fluorescence (77k) and photon yield of O2 evolution in leaves of plant [J].Planta,1987,171:171-184.
    [34]Willekens H, Vancamp W, Lnze D, et al. Ozone, sulfurdioxide, and ozone ultraviolet-B have similar effect on mRNA accumulation of antioxidant genes inNicotiana plumbaginifoliaL. [J]. Plant Physiol,1994,106: 1007-1014.
    [35]Van Kooten O,Snel J F H.The use of chlorophyll fluorescence nomenclature in plant stress physiology [J]. Photosyn Res,1990,25(3):147-150.
    [36]Xu C C, Zhang J H. Effect of drought on chlorophyll fluorescence and xanthophyll cycle components in winter wheat leaves with different ages[J]. Acta Phytophysiologica Sinica,1999,25:29-37.
    [37]宋丽丽,郭延平,徐凯,等.温州蜜柑叶片光合作用光抑制的保护机理[J].应用生态学报,2003,14(1):47-50.
    [38]Belkhodja R, Morales F. Abadia A, et al. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordenm vulgare L.)[J]. Plant Physiol,1994,104(2):667-673.
    [39]Zhang S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J].Chinese Bulletin of Botany,1999,16(4):444-448.
    [40]Carrasco R M,Rodriguez J S,Perez P.Changes in chlorophyll fluorescence during the course of photoperiod and in response to drought in Casuarina equisetifolia Forst and Forst[J]. Photosynthetica,2002,40 (3):363-368.
    [41]刘振亚,刘贞琦.作物光合作用的遗传及其在育种中的应用研究进展[A].作物育种研究与进展(第1集)[C].北京:农业出版社,1993.168-183.
    [42]朱新广,张其德NaCl对光合作用影响的研究进[J].植物学通报,1999,16(4):332-338.
    [43]刁丰秋,章文华,刘友良.盐胁迫对大麦叶片类囊体膜脂组成和功能的影响[J].植物生理学报,1997,23(2):105-110.
    [44]刘加尧,衣艳君,张其德.盐胁迫对不同抗盐性小麦叶片荧光诱导动力学的影响[J].植物学报,1998,15(2):46-49.
    [45]Sakaki T, Kondo N, Sugahara K. Breakdown of photosynthetic pigment and lipids in spinach leaves with ozone fumigation; Role of active oxygen [J]. Physiol Plant,1983,59:28-34.
    [46]Hotta Y,Tanaka T,Takaoka H,et al.Promotive effects of 5-aminolevulinic acid on the yield of several crops[J].Plant Growth Reg,1997,22(2):109-114.
    [47]Havaux M,Strasser R J,Greppin H.Atheoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical land non photochemical event[J].Photosynthesis Research,1991,27(1):41-55.
    [48]汪月霞,孙国荣,王建波,等NaCl胁迫下星星草幼苗MDA含量与膜透性及叶绿素荧光参数之间的关系[J].生态学报,2006,26(1):122-129.
    [49]Quick W P, Chaves M M, Wendler R, et al. The effect of water stress on photosynthetic carbon metabolism in fourspecies grown under field conditions [J]. Plant Cell Enviro,1992,15:25-35.
    [50]Lal A M, Ku S B, Edwards G E. Analysis of inhibition of photosynthesis due to water stress in the C3 species Hordeum vulgare and Vicia faba:electron transport, CO2fixation and carboxylation capacity [J].Photosynth Res,1996,49:57-69.
    [51]Ohtsuka T, ItoH, Tanaka A.Conversion of Chlorophyll b to Chlorophyl la and the assembly of Chlorophyll with Apoproteins by Isolated Chlorop lasts[J]. Plant Physiology,1997,113(1):137-147.
    [52]何军,许兴,李树华,等.叶绿素荧光的影响[J].西北植物学报,2004,24(9):1594-1598.
    [53]童方平,方伟,马履一,等.水分胁迫下湿地松优良半同胞家系光合色素的响应[J].中国农学通报,2006,22(11):97-102.
    [54]李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响[J].西北植物学报,2006,26:266-275.
    [55]张亚黎,罗宏海,张旺锋,等.土壤水分亏缺对陆地棉花铃期叶片光化学活性和激发能耗散的影响[J].植物生态学报,2008,32(3):682-659.
    [56]Mathews-Roth M M. Carotenoids and Photoprotection[J]. Photoehem Photobiol,1997,655:148-151.
    [57]宋丽萍,蔡体久,喻晓丽.水分胁迫对刺五加幼苗光合生理特性的影响[J].中国水土保持科学,2007,5(2):91-95.
    [58]常红军,秦毓茜.干旱和盐胁迫对草地早熟禾草坪质量及其叶绿素荧光参数的影响[J].西北植物学报,2008,28(9):1850-1555.
    [59]徐兴友,王子华,龙茹,等.干旱对6种野生花卉光合色素含量与气体交换的影响[J].经济林研究,2008,26(4):1-6.
    [60]刘振亚,刘贞琦.作物光合作用的遗传及其在育种中的应用研究进展协[A].作物育种研究与进展(第1集)[C].北京:北京农业出版社,993,168-183.
    [61]李艳秋,夏新莉,尹伟伦.水分胁迫对4种草坪草光合色素及叶绿素荧光参数的影响[J].河南农业科学,2007,(1):69-76
    [62]Kyparissis A, Manetas Y. Seasonal leaf dimorphism in a semi-deciduous Mediterranean shrub: ecophysiological comparisons between winter and summer leaves[J]. Acta Oecologiea,1993,14(1):23-32.
    [1]Gossett Millhollon E P, Lucas M C. Changes in antioxidant levels in response to NaCl treatment in salt-tolerant and salt-sensitive cultivars of cotton, Gossypium hirsutum. Crop Science,1994,34:706-714.
    [2]李广酶,唐顺连,商振清,等.水分胁迫对玉米幼苗膜脂过氧化及保护酶的影响[J].河北农业大学学报,1992,12(1):60.
    [3]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,2002,22(4)503.
    [4]张春平,何平,喻泽莉,等.外源Ca2+、ALA、SA和Spd对盐胁迫下紫苏种子萌发及幼苗生理特性的影响[J].中国中药杂志,2010,35(24):3260.
    [5]Noctor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control. Annu. Rev. Plant Physiol Plant Mol Biol,1998,49:249-279.
    [6]Koca H, Bor M, Ozdemir F, Tiirkan I. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany,2007,60:344-351.
    [7]Bor M, Ozdemir F, Tiirkan I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci,2003,164:77-84.
    [8]刘友良.植物耐盐性研究进展,植物生理学通讯,1987,(4):21-22.
    [9]Lee D H, Lee C B. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber:in gel enzyme activity assays. Plant Sci,2000,159:75-85.
    [10]张志良,瞿伟菁,李小方.植物生理学实验指导[M].北京:高等教育出版社,2009,223-224.
    [11]Surrey K. SPeetrophotometric method for determination of lipoxidase activity. Plant Physiol.1963,39:65-70.
    [12]刘宁,高玉葆,贾彩霞,等.渗透胁迫下多花黑麦草叶内过氧化物酶活性和脯氨酸含量以及质膜相对透性的变化[J].植物生理学通讯,2000,36(1):11·
    [13]Velikova V,Yordanov I,Edreva A. Oxidative stress and some antioxidant systems in acid rain2-treated bean plants protective role of exogenous polyamines [J].Plant Science,2000,151(2):59-66.
    [14]张年辉,韦振泉,何军贤,等.小麦幼苗叶片抗氰呼吸对轻度水分胁迫的响应[J].西北植物学报,2001,21(1):21-25.
    [15]Andre E, Hou K W. The presence of a lipid oxidase in soybean, Glycine soya. Lieb C R Acid Sci (Paris). 1932,194:645-647.
    [16]Zinunerman D C, Vick G A. Lipoxygenase in ehlorella pyrenoidosa. Lipids.1978,8:264-266.
    [17]Hamberg M. Isolation and structure of lipoxygenase from saprolegnia parasitica. Biochem Bio Phys Acta.1986, 876:688-692.
    [18]Beneytout J L. Properties of a lipoxygenase in green algae (oscillatoria sp). PlantPhysiol.1989,91:367-372.
    [19]Vick B A, Zimlnerman D C. Oxidative systems for modification of fatty acids:the lipoxygenase pathway. The Biochemistry of Plants.1987,9:53.
    [22]Gamder H V. 认Biological roles and biochemistry of the lipoxygenase pathway. Hort Science.1995,30: 197-205.
    [21].Bell E, Mullet J E. Lipoxygenase gene expression is modulated in plants by water deficit, wounding and methyl jasmonate. Mol Gen Genel.1991,230:456-62.
    [22]Liu W N, David F H, Patrica J. Expression of desiccation induced and lipoxygenase genes during the transition from the maturation to the germination phases in soybean somatic embryos. Planta.1994,194:69-74.
    [1]McDonald M B. Seed deterioration:Physiology, repair and assessment. Seed Sci Technol,1999,27:177-237
    [2]Gossett Millhollon E P, Lucas M C. Changes in antioxidant levels in response to NaCl treatment in salt-tolerant and salt-sensitive cultivars of cotton, Gossypium hirsutum. Crop Science.1994,34:706-714.
    [3]Noctor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control. Annu. Rev. Plant Physiol Plant Mol Biol 1998,49:249-279
    [4]Goel A, Sheoran I S. Lipid peroxidation and peroxide-scavenging enzyme in cotton seeds under natural ageing. Biol Plant 2003,46:429-434
    [5]王娟,李德全,谷令坤.不同抗旱性玉米幼苗根系抗氧化系对水分胁迫的反应[J].西北植物学报,2002,22(2):285.
    [6]刘建新,胡浩斌,王鑫.外源NO对盐胁迫下黑麦草幼苗活性氧代谢、多胺含量和光合作用的影响[J].植物研究,2009,29(3):313-319
    [7]Sreenivasulu N, G rinm B, Wobus U, et al. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedings of foxtail millet[J]. Phsiol Plant,1999,109:435-442.
    [8]赵可夫,卢元芳,张宝泽,等.Ca2+对小麦幼苗降低盐害效应的研究.植物学报,93,35(1):51-56.
    [9]张宝泽NaCl对小麦地上部分和地下部分的生理效应的研究[J1.山东师范大学学报.1996,11:54-56.
    [10]龚明,丁念诚,贺子义,等.盐胁迫下大麦与小麦膜脂过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11):841-846.
    [11]Xu P L, Guo Y K, Bai J G, et al. Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol Plant,2008,132:467-478
    [12]郝再彬,苍晶,徐仲.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社,2004,115-116.
    [13]Bergmeyer N. Methoden der Enzymatischen, Analyse, vol.1. Akademie Verlag, Berlin,1970, pp.636-647
    [14]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbatespecific peroxidase in spinach chloroplasts. Plant Cell Physiol 1981,22:867-880
    [15]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplast:a proposed role in ascorbic acid metabolism. Planta 1976,133,21-25.
    [16]Cheeseman J M. Mechanism of salinity tolerance in plants. Plant Physiol,1988,87:547-50.
    [17]王素平,李娟,郭世荣,等NaCl胁迫对黄瓜幼苗植株生长和光合特性的影响[J].西北植物学报,2006,26(3):455-461.
    [18]魏国强,朱祝军,方学智,等NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响[J].中国农业科学,2004,37(11):1754-1759.
    [19]邹燕,王瑞雪,沈亮余,等.渗透胁迫下外源茉莉酸甲酯对油菜种子生理特性的影响[J1.西北植物学报,2011,31(3):3564-568.
    [20]汪良驹,刘友良,马凯,等.无花果细胞系耐盐性与抗氧化酶活性的变化[J].园艺学报,1999,26(6):351-355.
    [21]翟凤林,曹鸣庆.植物的耐盐性及其改良.北京:农业出版社,1989.381.
    [22]Stewert R C, Bewley J D. Lipid peroxidation associated with accelerated aging of soybean axes[J]. Plant Physiol,1980,65:245-248.
    [23]Chance B, Maenly A C. Assay of catalase and Peroxidase Colcrw ick SP, Kapalan No methods of enzymology, Vol Ⅱ. New York:Academ ic Press,1955.764.
    [24]张士功,高吉寅,宋景芝.硝酸钙对小麦幼苗生长过程中盐害的缓冲作用[J].麦类作物,1998,18(5):60-641.
    [25]孟学平,杨恒山,孙立杰,等.盐胁迫对冬小麦叶过氧化物酶同功酶的影响[J].吉林农业大学学报,2002,24(1):25-271.
    [26]Nishihara E, Kondo K, Parvez M M. Role of 5-aminolevulinic acid(ALA) on active oxygen-scavenging system in NaCl-treated spinach(Spinacia oleracea)[J]. J Plant Physiol.2003,160:1085-1091.
    [27]刘卫琴,康琅,汪良驹.ALA对草莓光合作用的影响及其与抗氧化酶的关系[J].西北植物学报2006,26(1):57-62.
    [28]Wang L J, Jiang W B, Liu H, et al. Promotion of 5-aminolevulinic acid (ALA) on germination of pakchoi (Brassica chinensis) seeds under salt stress [J]. Inte Plant Biol,2005,47(9):1084-1086.
    [29]Thomas J, Weinstein J D. Measurement of heme efflux and heme content in isolated developing chloroplasts [J]. Plant Physiol,1990,94:1414-1423.
    [30]Van Huyestee R B. Porphyrin and peroxidase synthesis in cultured peanut cells [J]. Can J Bot,1977,55: 1340-1344.
    [31]Thomas L P, Kraut J. The stereochemistry of peroxidase catalysis [J]. J Biol Chem,1980,255:8199-8205.
    [32]Kuzniak E, Sklodowska M. The effect of Botrytis cinerea infection on ascorbate-glutathione cycle in tomato leaves. Plant Seience,1999,148:69-96.
    [33]Rennenberg H. Glutathione metabolism and possible biological roles in higher plants. Phytoehemistry, 1982,21:2771-2781.
    [1]Robert V. Metabolic Engineering of Plant Secondary Metabolis[J]. Kluwer academic Publishers,2000, 289:295-297
    [2]司徒琳莉,袁长友.次生代谢产物:代谢途径、分类、作用及其生产[J].牡丹江师范学院学报(自然科学版),2001,3:11-15
    [3]陈晓亚,刘培.植物次生代谢的分子生物学及基因工程.生命科学,1996,8(2):8-11.
    [4]黄璐琦,郭兰萍.环境胁迫下次级代谢产物的积累及道地药材的形成[J].中国中药杂志,2007,32(4):277-280.
    [5]唐晓敏,王文全,杨全,等NaCl处理对甘草生长、生理指标及药效成分含量的影响[J].吉林农业大学学报,2008,30(2):172-175.
    [6]杨秀红,李健民,董学会,等.外源甘草酸对NaCl胁迫条件下甘草幼苗生长、根部甘草酸含量以及几种与盐胁迫相关生理指标的影响[J].植物生理学通讯,2006,42(3):441-444.
    [7]赵则海,杨逢建,曹建国,等.野生与栽培乌拉尔甘草不同部位甘草酸含量分析[J].植物研究,25(4):444-448.
    [8]管兰芳,徐茂军.盐胁迫对飞廉悬浮细胞的生长及黄酮类物质合成的影响[J].安徽农业科学,2009,37(28):13597-13599.
    [9]孟朝妮,刘成,贺军民,等.增强UV-B辐射、NaCI胁迫及其复合处理对小麦幼苗光合作用及黄酮代谢的影响[J].光子学报,2005,34(12):9680-9683.
    [10]陈光登,黎云祥,张浩,等.盐胁迫对两种淫羊蕾属植物生长及各器官总黄酮含量的影响[J].西北植物学报,2008,28(10):2047-2054.
    [11]张志良,瞿伟菁,李小方.植物生理学实验指导[M].北京:高等教育出版社,2009,103-104.
    [12]张志良,瞿伟菁,李小方.植物生理学实验指导[M].北京:高等教育出版社,2009,208-209.
    [13]张志良,瞿伟菁,李小方.植物生理学实验指导[M].北京:高等教育出版社,2009,125-126.
    [14]庄向平,虞杏英,杨更生,等.银杏叶中黄酮含量的测定和提取方法[J].中草药,1992,23(3):122-124.
    [15]杨涓,许兴.盐胁迫下植物有机渗透调节物质积累的研究进展[J].宁夏农学院学报2003,24(4):86-91.
    [16]孙方行,孙明高,夏阳,等NaCl处理对海棠渗透调节的影响[P].西北林学院学报2005,20(3):62-64.
    [17]胡淑明.多胺对草莓耐盐性的影响[D].河北农业大学,2005.
    [18]陈淑芳,朱月林,刘友良,等NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响[J].园艺学报,2005,32(4):609-61
    [19]赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展[J].植物学通报,1999,16(5):540-546.
    [20]徐锴.外源GA和SA对NaCl胁迫下草莓生理生化特性的影响[D].2006.
    [21]於丙军,章文华NaCl对大麦幼苗根系蛋白质和游离氨基酸含量的影响[J].西北植物学报,1997,17(4):439-442.
    [22]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993,9-10
    [23]孙方行,孙明高,夏阳,等NaCl处理对海棠渗透调节的影响[P1西北林学院学报,2005,20(3):62-64.
    [24]陈淑芳,朱月林,刘友良,等NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响[J].园艺学报,2005,32(4):609-61.
    [25]魏爱丽,杨臣,陈云昭,等.盐胁迫下大豆小真叶愈伤组织可溶性蛋自含量变化的研究[J].山西农业大学学报,1997,17(4):318-321.
    [26]He L X, Nada K, Kasukabe Y, et al. Enhanced susceptibility of photosynthesis to low-temperature photoinhibiton due to interruption of chill-induced increase ofS-adenosylmethionine decarboxylase activity in leaves ofspinach (Spinacia oleracea L.)[J]. Plant Cell Physio,2002,43:196-206.
    [27]Chattopadhayay M K, Tiwari B S, Chattopadhyay G, et al. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants[J]. Physiol Plant,2002,116:192-199.
    [28]刘俊,周一峰,章文华,等.外源多胺对盐胁迫下玉米叶绿体结合态多胺水平和光合作用的影响[J].西北植物学报,2006,26(2):254-258.
    [29]孙诚,刘友良,章文华.多胺浸种改善盐胁迫大麦根系液泡膜功能的机理[J].植物学报,2002,44(10):1167-1172.
    [30]Shen W Y, Nada K, Tachibana S. Involvement of polyamines in the chilling tolerance of cucumber cultivars[J]. Plant Physiology,2000,124:431-439.
    [31]Chattopadhayay M K, Tiwari B S, Chattopadhyay G, et al.Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants [J]. Physiologia Plantarum,2002,116:192-199.
    [32]Kasukabe Y, He L X, Nada K, et al.Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and upregulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana [J]. Plant Cell Physiology,2004,45:712-722.
    [33]Duan J J, Li J, Guo S R, et al. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance[J]. Journal of plant physiology,2008,165: 1620-1635.
    [34]王学,施国新,马广岳,等.外源亚精胺对荇菜抗Hg2+胁迫能力的影响[J].植物生理与分子生物学学报,2004,30(1):69-74.
    [35]Zobayed S M, Afreen F, Kozai T. Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John's wort[J]. Plant Physiol Biochem,2005,43(10):977-984.
    [36]Ashiley M K, Grant M, Grabov A. Plant responses to potassium deficiencies:a role for potassiumtransport proteins[J]. Exp Bot,2006,57(2):425-436.
    [37]Durher J, Wendehenne D, Klessig D F. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose[J]. Proc Natl Acad Sci USA,1998,95(17):10328-10333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700