用户名: 密码: 验证码:
拉巴豆优良根瘤菌的筛选及接种效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拉巴豆(Dolichos lablab L.)属于豆科蝶形花亚科菜豆族扁豆属,是国内外热带和亚热带广泛分布的优良高产牧草和蔬菜,它们的根瘤菌可同时侵染同族的豇豆。目前,我国有关研究甚少,提高拉巴豆的产量品质是亟待解决的科学和生产问题。论文作者首先自主分离了拉巴豆根瘤菌,研究它们的生物学特性,从中筛选出比较优良的菌株,接种在大面积种植的拉巴豆(润高)上,研究它们在不同土壤、施肥,以及丛枝菌根真菌与根瘤菌双接种条件下,对拉巴豆的生长发育、营养特征,以及产量品质的影响,为拉巴豆的科学种植,提高产量品质奠定了基础。主要研究结果如下:
     1拉巴豆根瘤菌生物学特性及优良菌株筛选
     本项研究从拉巴豆根瘤中分离获得了9株根瘤菌,具有耐盐、耐酸碱、耐高温、耐染料和抗生素等特性。它们可耐0~6%NaCl,在pH4.0~11.0生长。这些菌株适宜生长的环境温度为27~29℃,pH为6.0-8.0,盐浓度为0-0.12%。其中,根瘤菌菌株R1和R2-2的固氮酶活性、生长素分泌量、溶磷能力显著高于其它菌株,可能具有较强的固氮促生效应。此外,R2-3能溶解无机和有机磷,R2-6和R3-2可在pH11.0正常生长,R1、R2-4、R2-6在6%NaCl生长良好,且表现出较好的溶磷和抗盐碱的效应。
     2不同根瘤菌对拉巴豆的接种效应研究
     以高产优质牧草拉巴豆(品种:润高)为材料(下同),分别接种9株根瘤菌,观测宿主植物生长、生理和养分吸收等指标等变化。结果表明,9株根瘤菌都能形成根瘤,影响拉巴豆生长和养分吸收等。其中,根瘤菌R1号和R2-2的促进拉巴豆生长和提高植株养分含量的效果均最好,生物量比不接种者分别提高了71.05%和67.62%,氮、磷、钾、钙、镁含量平均含量依次提高了2.21%、0.28%、1.37%、1.33%、0.16%。此外,9株根瘤菌还不同程度地提高了拉巴豆叶片的硝酸还原酶活性、叶绿素含量和根系活力。
     3拉巴豆根瘤菌对不同土壤的响应
     试验以重庆市典型、具有代表性的灰棕紫泥、红棕紫泥、灰岩黄壤为供试土壤,接种促生根瘤菌R1,研究了拉巴豆的结瘤性能、生长情况、光合速率、营养品质、矿质养分等。结果表明,在微酸性和酸性灰棕紫泥土壤上,拉巴豆的生长、产量和品质最好,显著优于灰岩黄壤和红棕紫泥,其原因可能是拉巴豆起源于热带和亚热带,长期适应了酸性土壤。在微酸性灰棕紫泥(pH6.14)和灰岩黄壤(pH6.45)中,接种根瘤菌能形成根瘤,但在酸性灰棕紫泥(pH4.09)和碱性红棕紫泥(pH7.50)中,形成根瘤极少或不形成根瘤,说明土壤酸碱度过高过低抑制根瘤形成。接种根瘤菌形成根瘤之后,不同程度地改善了拉巴豆氮、磷营养,提高了净光合速率,促进了生长,增加了生物量,改善了品质。拉巴豆生物量,氮、磷吸收量,收后土壤有效氮、磷含量与根瘤重量呈显著正相关,故根瘤重量可反映根瘤活性。此外,在微酸性灰棕紫泥土壤中,拉巴豆的根瘤数量比灰岩黄壤少53.32%,但根瘤体积较大,根瘤重量为灰岩黄壤的1.66倍,接种效应总体上优于灰岩黄壤。所以,在重庆市的拉巴豆栽培过程中,选择微酸性和酸性灰棕紫泥,并接种根瘤菌有益于高产优质。
     4施氮量对拉巴豆生长及结瘤效应的影响
     设置N0、N8、N40、N2004种施氮量(Ni=mg/kg干土)处理,接种根瘤菌,研究了氮肥对拉巴豆的生长、结瘤、养分吸收及根际微生物数量的影响。结果表明,施用氮肥后,根瘤的数量和重重均显著高于空白对照;随着施氮量的增加,根瘤的数量和重量表现出先增后降的趋势,说明拉巴豆结瘤需要有一定的氮素营养,但浓度过高则产生抑制作用。但是,施氮量越大,拉巴豆生物量和氮磷钾吸收量越高,总生物量依次比不施氮肥增加了19.85%(N8)、47.60%(N40)、65.55%(N200)。此外,在高氮施用条件下,拉巴豆根际细菌和自生固氮菌数最多;在低氮条件下,根际真菌和放线菌数最多。拉巴豆结瘤与生长、硝酸还原酶活性、叶绿素含量、根系活力及养分吸收与细菌和自生固氮菌数呈显著正相关。在本试验中的高氮施肥条件下,拉巴豆依然保持较高的结瘤能力,并增加磷和钾吸收,提高生物量,所以拉巴豆需氮量较高,建议在拉巴豆栽培实践中适量施用氮肥很有必要。
     5有机无机肥配施和根瘤菌接种对拉巴豆光合、营养和土壤酶的影响
     科学施肥是植物高产优质重要手段。通过盆栽试验,研究施用化肥、有机肥,有机无机配合施用条件下,接种根瘤菌对拉巴豆结瘤、生长、生理、光合、饲料品质、养分吸收、土壤酶活性及根际微生物数量的影响。结果表明,F05M0.5(50%有机肥+50%无机肥)和F0.75M0.25(25%有机肥+75%无机肥)施肥处理的拉巴豆生长最好,F(纯施化肥)和F025M0.75(75%有机肥+25%无机肥)次之,M(纯施有机肥)较差,CK(不施肥)最差,F0.5M0.5和F0.75M0.25处理比F分别增产19.46%和16.49%。F和CK结瘤数最少,瘤重也最低,但根瘤数和重量随有机肥施用的比例增加而提高。施肥后拉巴豆叶片的硝酸还原酶活性、叶绿素含量及根系活力均高于对照。拉巴豆的光合特性指标均呈典型的“单峰”曲线,峰值在10:30左右,但施用有机肥处理的光合能力显著高于单施化肥与对照处理。拉巴豆的光合能力与生长、生理及根瘤形成四者之间均有显著正相关。此外,施用有机肥显著改善拉巴豆饲用品质,尤以F05M0.5和F0.75M0.25最佳。并且有机肥也显著提高了土壤的过氧化氢酶、蔗糖酶、脲酶的活性,以及根际微生物数量。相关分析表明,拉巴豆根瘤重与地上部生物量、氮、磷、钾吸收量呈显著正相关,相关系数依次为0.6758*、0.7269*、0.9759**、0.9488**(n=36),说明根瘤形成改善了拉巴豆的氮、磷、钾营养,促进了生长,提高了品质。在重庆市的拉巴豆栽培实践中,提倡接种根瘤菌和有机无机肥适量配施。
     6AM真菌对拉巴豆生长及养分吸收的影响
     研究4种丛枝菌根(Arbuscular mycorrhizal, AM)真菌(3株根内球囊霉Glomus intraradices Smith&Schenck,BEG-193、BEG-141、BEG-167,1株幼套球囊霉Glomus etunicatum Becker&Gerdemann,BEG-168)对拉巴豆生长、生理及养分吸收的影响。结果表明:供试AM真菌均可侵染拉巴豆根系,促进拉巴豆生长和营养吸收等。其中,BEG-193和BEG-167的菌根效应最强,侵染率、促进生长和提高植株养分含量的效果均最好,生物量比不接种分别提高了40.19%和40.65%;氮、磷、钾的平均养分吸收量依次比不接种提高了55.48%、86.94%、35.79%。此外,4株丛枝菌根还不同程度地提高了拉巴豆叶片的硝酸还原酶活性、叶绿素含量及根系活力。
     7根瘤菌与AM真菌双接种对拉巴豆生长及结瘤效应的影响
     单接R1或BEG-193,及两者混接的综合效应表明,混接的促生效果最好,优于单接BEG193和R1,不接菌的对照最差。接种后拉巴豆叶片的硝酸还原酶活性、叶绿素含量、根系活力以及生物量均显著高于对照(R1、BEG-193、混接的生物量分别比不接菌增加了21.30%、45.28%、64.65%)。R1、BEG-193、混接处理,氮的积累量分别比不接菌高40.66%、63.17%、96.70%;磷的积累量分别高38.11%、84.40%、142.17%;钾的积累量分别高20.24%、54.16%、69.14%。拉巴豆根际的细菌、真菌、放线菌、自生固氮菌的数量以混接处理的数量最多,单接处理次之,不接菌最少。
Dolichos lablab L. is a legume forage or vegetable, belonging to genus Dolichos, Phaseolus, Papilionoideae of leguminous. It was widely distributed in tropical and subtropical regions because of its high-yield and good feeding quality. In current study we separated rhizobia from D. lablab and screened the excellent strains through biological characteristics of the rhizobia, investigated the influence of rhizobia on growth, development, nutritional characteristics, the yield and quality of D. lablab under the conditions of different soils, fertilization rates, and double inoculation of arbuscular mycorrhizal fungi and rhizobium. The results have laid a foundation for scientific cultivation and improving yield and quality of D. lablab. The main results are as follows:
     1Biological characteristic of the rhizobia from Dolichos lablab and better rhizobia strains selected
     Nine rhizobia strains were separated from nodules of D. lablab. The strains were salt-resistant, acid and alkali-resistant, dye-resistant and antibiotic-resistant. They could tolerate a salt condition of0to6%NaCl, and could live in a condition of pH4to11. However, the most suitable conditions for the rhizobia were:temperature27to29℃, pH6.0to8.0, concentration of NaCl0to0.12%. Among the nine strains, the nitrogenase activity, secretion of growth hormone and dissolving phosphorus of rhizobium bacteria R1and R2-2were significantly higher than those of other strains, indicating that R1and R2-2might have strong nitrogen-fixing effect and growth-promoting effects and could be developed as bio-fertilizer for D. lablab L. R2-3could dissolve inorganic and organic phosphorus, R3-2and R2-6could grow in pH11.0, R1、R2-4、R2-6could grow in6%NaCl, and they had the effects of phosphorus-dissolved and salt tolerance.
     2Inoculation effects of different rhizobia strains
     Nine rhizobia were separately inoculated to D. lablab (Rungao). The results showed that all nine rhizobia could form nodules with D. lablab and had an effect on its growth and nutrient uptake etc. Among the nine strains, nitrogen-fixing and growth-promoting effects of R1and R2-2were the best. Compare to control group (non-inoculated group), the biomass increased71.05%(R1) and67.62%(R2-2) and the average content of nitrogen, phosphorus, potassium, calcium, magnesium increased2.21%,0.28%,1.37%,1.33%,0.16%. The inoculation also improved nitrate reductase activity, chlorophyll content in leaves and root vigour of D. lablab at different degrees.
     3Response of Dolichos lablab's rhizobia to different soils
     The influence of rhizobia inoculation on nodulation, growth, photosynthesis, nutrient quality and absorption by Dolichos lablab as well as soil nutrients were conducted in four typical and representative soils widely distributed in Chongqing, two grey brown purple soils with pH4.06and6.14, a red brown purple soil with pH7.50and a yellow limestone soil with pH6.45. The results showed that the growth, yield and quality of D. lablab in the two grey brown purple soils with pH4.06and6.14were better than those in the yellow limestone soil and alkaline red brown purple soil. Rhizobia inoculation could form nodules in the slight acidic grey brown purple soil(pH6.14) and yellow limestone soil (pH6.45), could form fewer nodules or no nodules in acidic grey brown purple soil (pH4.09) and alkaline red brown purple soil (pH7.50), which indicated that higher or lower pH value was unfavorable for nodule formation. Nodule formation could improve D. lablab's nitrogen and phosphorus nutrition, net photosynthetic rate, promote the growth, increase biomass and quality to some extent. Positive correlations were obtained between biomass, nitrogen and phosphorus absorptions, and the soil nitrogen and phosphorus and nodule weight, indicating the nodule weight might reflect the nodule activity. The nodule number in the slight acidic grey brown purple soil was53.32%lower than that in the yellow limestone soil, while the size was lager and the nodule weight was1.66time to that in the yellow limestone soil, showing better inoculation. The selection of slight acidic and acidic grey brown purple soils and rhizobia inoculation could increase the yield and improve the quality of D. lablab in Chongqing,
     4The influence of nitrogen fertilizer on growth and nodulation effect of Dolichos lablab
     The plants were seeded in pots with four nitrogen levels, No, N8, N40, N200(Ni=mg/kg dry soil). All pots were inoculated with Rl to investigate the influence of nitrogen fertilization on the growth, nodulation, nutrition absorption and rhizosphere microorganisms of D. lablab. The nodule number and weight were significantly higher for nitrogen fertilized plants than the control. The nodule number and weight increased first and then decreased with increasing nitrogen levels. This indicated that nodule formation of D. lablab required a certain amount of nitrogen. However, too much nitrogen supply might have an inhibitory effect. The biomass and NPK (nitrogen, phosphorus, potassium) uptake of D. lablab increased with increasing nitrogen levels. Compared with the control, total biomass for each nitrogen fertilizer level increased19.85%(N8),47.60%(N40) and65.55%(N200), respectively. The number of rhizosphere bacteria and azotobacter were the largest with high nitrogen level. Under low nitrogen level, the number of rhizosphere fungi and actinomycetes were the largest. Nodule weight positively correlated with nitrate reductase activity, chlorophyll content, root vigour, nutrient absorption and the number of rhizosphere bacteria and azotobacter. It was concluded that the growth of D. lablab demand more nitrogen. Under high nitrogen level, it could also maintain high nodule formation ability, improved nutrient absorption and biomass. Therefore, it is necessary to supply appropriate amount of nitrogen in D. lablab's cultivation practice.
     5Effects of chemical fertilizer combined with organic manure and rhizobium inoculation on photosynthesis, nutrient absorption and soil enzymes of Dolichos lablab
     Fertilization is one of the most important factors affecting the growth and feeding quality of forage. Chemical fertilizer combined with organic manure (CK, F, F0.75M0.25, F0.5M0.5, F0.25M0.75, M) were used to investigate the influence of fertilizer treatments on nodulation, growth, physiology, photosynthesis, feeding quality, nutrient absorption by D. lablab as well as soil enzyme activity and the quantity of rhizosphere microorganisms. The results showed D. lablab had better growth, yield and quality with F0.5M0.5and F0.75M0.25, followed by F and F0.5M0.5, and M, CK was the worst. Compared with F, the yield of F0.5M0.5and F0.75M0.25increased19.46%and16.49%, respectively. Plants with F and CK formed fewer nodules (19~26No./pot) and lower nodule weight (0.58-1.56g/pot). However, nodule number and nodule weight increased with increased manure proportion. When the proportion of organic fertilizer increased from25%to100%, nodule number increased from54to109nodule/pot, nodule weight from3.13to3.90g/pot. Fertilization could improve the nitrate reductase activity, chlorophyll content in leaves and root vigour. The diurnal variation of photosynthetic indexs under different fertilization were basically the same. There had no obvious lunch break. The diurnal variation of net photosynthetic rate, transpiration rate, stomatal conductance, CO2use efficiency, light use efficiency appeared typical "single peak" and the curve peak was around10:30PM. Different fertilization influenced the photosynthetic capacity of D. Lablab. The net photosynthetic rate, transpiration rate, stomatal conductance, CO2use efficiency, energy use efficiency in F0.5M0.5were the highest, CK and F were lower. The photosynthetic capacity was significantly positively correlated with growth, physiology and nodule formation. Organic fertilizer could improve D. lablab's contents of crude protein, crude fat, crude ash and nitrogen, phosphorus, potassium, and thus improve feeding quality. The ground biomass of F0.5M0.5and F0.75M0.25were the highest, of which the contents of protein, crude fat, crude ash, soluble sugar yield and nitrogen, phosphorus, potassium, calcium, magnesium absorption were also the highest. Compared with pure chemical fertilizer, organic manure could improve the soil enzyme (catalase, invertase, urease) activities. Correlation analysis showed shoot biomass (r2=0.6758), nitrogen (r2=0.7269), phosphorus (r2=0.9759) and potassium (r2=0.9488) absorption were positively correlated with nodule weight. Nodule formation could improve nitrogen, phosphorus and potassium nutrition, promote growth, increase biomass and quality to some extent. In cultivation practice in Chongqing, the selection of chemical fertilizer combined with organic manure and rhizobium inoculation could increase the yield and improve the quality of D. lablab.
     6Influence of AM fungi on Dolichos lablab's growth and nutrient absorption
     Four Arbuscular mycorrhizal fungi (AMF)(three were Glomus intraradices, another was Glomus etunicatum) were inoculated to investigate the influence of AMF on growth, physiology and nutrient absorption of D. lablab. The results showed that four AMF could infect D. lablab and promote it's growth and nutrient absorption. The AMF BEG-193and BEG-167had the strongest mycorrhizal effect with highest mycorrhizal infection rate, growth rate and nutrient content. Compared with control, the biomass of D. lablab increased40.19%(BEG-193) and40.65%(BEG-167), respectively. Averagely, absorption of NPK (nitrogen, phosphorus, potassium) increased55.48%,86.94%and35.79%, respectively. Furthermore, nitrate reductase activity, chlorophyll content in leaves and root vigour of plants inoculated with AMF improved at different degrees.
     7Influence of co-inoculation of rhizobia and AM fungi on Dolichos lablab's growth and nodulation effect
     The growth and nodulation effect of plants inoculated with both R1or BEG-193were better than those with single inoculation. The nitrate reductase activity, chlorophyll content in leaves, root vigour, biomass of double inoculated plants were significantly higher than those of single inoculation and uninoculated control. Compared with control, the biomass of R1、BEG-193and double inoculation increased21.30%,45.28%and64.65%, respectively; nitrogen accumulation increased40.66%,63.17%and96.70%, respectively; phosphorus accumulation increased38.11%,84.40%and142.17%, respectively; potassium accumulation increased20.24%,54.16%and69.14%, respectively. The number of bacteria, fungi, actinomycete and azotobacter in D. lablab's rhizosphere were larger with treatment of double inoculation than single inoculation and control.
引文
[1]Zhang F., Smith D. L. Interorganismal signaling in suboptimun environments:The legume-rhizobia symbiosis[J].Advanced in Agronomy.2002,76:125-161.
    [2]沈世华,荆玉祥.中国生物固氮研究现状和展望[J].科学通报,2003,535-540.
    [3]陈丹明,曾昭海,隋新华,等.紫花苜蓿高效共生根瘤菌的筛选[J].草业科学,2002,19(6):27-31.
    [4]陈文新,李阜棣,闫章才.我国土壤微生物学和生物固氮研究的回顾与展望[J]世界科技研究与发展.2002,24(4):6-12
    [5]陈文新.豆科植物根瘤菌-固氮体系在西部大开发中的作用[J].草地学报.2004,12(1):1-2
    [6]曾昭海.紫花苜蓿高效根瘤菌筛选及田间鉴定方法研究[D].中国农业大学,2003,5.
    [7]中国草原学会.中国草地科学进展[M].北京:中国农业大学出版社,1998.132-135
    [8]陈华癸,樊庆笙.微生物学[M].北京:中国农业出版社,1979,161-62
    [9]师尚礼.苜蓿根瘤菌和根际促生菌的生态分布特征特性研究[D].甘肃农业大学,2005
    [10]宁国赞,刘惠琴,马晓彤.中国豆科牧草根瘤菌大面积应用13年回顾[J].中国草地,1995,(4):56-59.
    [11]葛诚.微生物肥料生产应用基础[M].中国农业科技出版社,2000.
    [12]Bohlool,B.B., Schmidt E.L. Persistence and competition aspects of rhizobium japonicum observed in soil by immunofluorescence microscopy[J]. Soil Sci.Am.Proc,1973,37:561-564.
    [13]陈丹明.紫花苜蓿高效共生根瘤菌的筛选及分子标记[D].中国农业大学,2003,7-9.
    [14]Vincent J M. In Nitrogen Fixation Vol 111, eds[M]. Newton W E and Oreme-Johnson H,University Park Press.USA,1980.
    [15]李友国,周俊初.影响根瘤菌共生固氮效率的主要因素及遗传改造[J].微生物学通报,2002,(6):86-91
    [16]马晓彤,刘惠琴,宁国赞.我国根瘤菌与苜蓿共生固氮优良组合研究进展及前景[A].中国草学会.第二届中国苜蓿大会论文集,2003
    [17]Gibson A H. Genetic variation in the effectiveness of nodulation of Lucerne varieties[J]. ustJ.Agic Res.,1962,13:388-399.
    [18]Gasser H.P., Guy M.O., Sikora,I. Efficiency of Rhizobium meliloti strains and their effects on alfalfa cultivars[J].Plant Sci.1972,52:444-448
    [19]Sharma P.B., Ajit Singh, Rangil Singh. Symbiotic nitrogen fixstion by wenter legumes.IA comparative efficiency between an Indian and an Australian variety of legume, Medicogo sativa [J]. Indian J.Agric.Res.1973,7(3-4):159-163
    [20]Cregan P. E. Soybean genotype restricting nodulation of previously unrestricted serocluster 123[J]. Bradyrhizobia, Crop Sci.,1989,29,207-312.
    [21]Seetin M.W., Barens D.K..Variation among alfalfa genotypes for rate of acetylene reduction[J]. Crop sci.,1977,17:783-787
    [22]Nutman P.S. Varietal differences in the nodulation of subterranean clover.[J] Aust. J. Agri. Res. 1967,18:381-425
    [23]Stacey G. Sanjuan J. Spaink H, et al. Rhizobium lipo-oligosaocharides novel plant growth regulators. In Gressholl P Med.Plant Responses to the Environment[C].CRC press.1993.45-48.
    [24]高丽锋,胡志昂.根瘤菌NOD因子的感知与信号传导[J].中国生物工程杂志,2002,1022(5):65-68.
    [25]黄家风,李克梅,王爱英,等.豆科植物-根瘤菌共生固氮的分子机理[J].石河子大学学报(自然科学版),2002,6(1):74-79
    [26]Geiger O, Ritsema T, Van Brussel A A N, et al. Role of rhizobia LipooLigosaecba rides in root nodule formation on leguminous plants[J]. Plant and Soil.,1994,161:81-89.
    [27]张学贤,张忠明,周俊初,等.紫云英根瘤菌结瘤因子的生物学功能[J].华中农业大学学报,1996,15(1):41-45.
    [28]Armitage J P, Gallagher A, Johnston A W. Comparision of the chemotactic behavior of Rhizobium leguminosarum with and without the nodulation plasmid [J].Mod Microbid,1988,2: 743.
    [29]Baner W D, Caetano-Anolles. Chemotaxis induced gene expression and competiliveness in the rhizosphere [J]. Plant soil,1990,129:45.
    [30]Byod A, Siman M. Bacterial chemotaxis[J]. Anna Rev Physiol,1982,44:501.
    [31]Firmin J L, Wilson K E, Rossen L, et al.Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plant[J]. Nature (London),1988,324:90.
    [32]Peters N K, Long S R. Alfalfa root exudates and compounds which promote or inhabit induction of Rhizobium melitoli nodulation genes[J]. Plant physiol,1988,388-396.
    [33]Kapublik Y. Flavone limitations to root nodulation and symbotic nitrogen fixation in alfalfa [J]. Plant physiol,1987,1184-1193.
    [34]Peters N K, Frost J W, Long S R. A plant flavone, luteolin, indues expression of Rhizobium melitoli nodulation genes [J]. Science,1986,233-237.
    [35]张海瑜,张海予,李小红,等.费氏中华根瘤菌042BS结瘤调节基因的克隆及功能[J].检测微生物学报,2002,42(1):33-39.
    [36]Fisher R F, Long S R. Rhizobium-plant signal exchange [J]. Nature,1992,357:655-660.
    [37]Heinz E B, Phillips D A, Streit W R. A biotin-induced, stationary phase, and possible LysR-type regulator in Sinorhizobium meliloti [J]. Mol Plant Microbe Interact,1999,12:803-812.
    [38]胡小加,黄沁洁.根瘤菌侵染不同油菜品种研究初报[J].中国油料作物学报,1998,20(2):79-83.
    [39]周三,周明,张硕,等.盐生野大豆的异黄酮积累及其生态学意义[J].植物生态学报,2007,31(5):930-936.
    [40]Bosworth Andrew H, Mark K.Williams, Kenneth A.Albrecht. Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression [J]. Applied and Environmental Microbiology.1994,60: 3815-3832
    [41]曾昭海,胡跃高.共生固氮在农牧业上的作用及影响因素研究进展[J].中国生态农业学报,2006,10(4):21-24
    [42]Slattery J.F., Pearce D.J., Slattery W. J. Effects of resident Rhizobium communities and soil type on the effective nodulation of pulse legumes.Soil Biology&Biocheistry.2004,36: 1339-1346.
    [43]宁国赞,刘慧琴,马晓彤.豆科根瘤菌及其应用技术[D].郑州:中原农民出版社,1998.
    [44]Cline GR, Kaul K. Inhibitory effects of acidified soil on the soybean/Bradyrizobium symbiosis [J]. Plant Soil.1990,127(2):10746-10753.
    [45]Glenn AR, Dilworth MJ. The life of root nodule bacteria in the acidic underground [J]. FEMS.Microbiol Len.1994,123:6-9.
    [46]Gemell L G, Roughley R J. Field evaluation in acid soils of strains of Rhizobium leguminosarum bv.trifolii selected for their tolerance of sensitivity to acid soil factors in agar medium[J]. Soil Biology and Biochemistry,1993,25 (10):1447-1452.
    [47]Sadowsky M. J., Graham P.H. Soil Biology of the Rhizobiumceae[A]. In:The Rhizobiumceae. H.P.Spaink,A.Kondorosi and P.J.J.Hooykaas,eds.Kluwe[C],The Netherlands.1998,155-172.
    [48]Maccio D, Fabra A., Castro S..Acidity and calcium interaction.affect the growth of Bradyrhizobium sp., and the attachment to peanut roots[J], Soil Biol.Biochem,2002,34,201.
    [49]Brockwell J, Pilka A, Holliday R A. Soil pH is a major determinant of the numbers of naturally occurring Rhizobium meliloti in non-cultivated soils in central New South Wales[J]. Australian J. of Exp. Agric.,1991,31:211-220.
    [50]郭彦军,黄建国.酸性紫色土上紫花苜蓿的结瘤性能与养分吸收[J].植物营养与肥料学报,2006,12(1):97-103.
    [51]Serra J R, Vasquezdia Z H, Drevon J J. Effects of salt stress on nitrogen fixation, oxygendiffusionb and iron distributionin soybean, common bean and alfalfa[J]. J.Plant. Nutr., 1998,21(3):475-488.
    [52]Smith C.W. Soybean crop production evaluation history and technology, Wilcy [J]. New York, 1995,351-357.
    [53]Zhang F., Smith D.L. Genistein accumulation in soybean [Glycine max(L.)Merr.] root systems under suboptimal root zone temperatures [J]. Exp.Bot.1996,47,785-92.
    [54]Rice W A, Olsen P E. Root-temperature effects on competition for nodule occupancy between two Rhizobium meliloti strains [J]. Bio. Fertil. Soils,1988,6:137-140.
    [55]Janice E T, Thies. Influence of the size of indigenous rhizo-bial populations on establishment and symbiotic perform-ance of introduced Rhizobiaon field-grown Legumes [J]. Appl Environ Microbiol.,1991,57(1):19-28.
    [56]Lopez S. L., Garcia T E. Vazouez G. Favelukes and A.R.Lodeiro.Improved soybean root association of N-starved Bradyrhizobium japonicum.[J]. J. Bacteriol,2001,183,7241-7254.
    [57]田艳洪,刘元英,张文钊,等.不同时期施用氮肥对大豆根瘤同氮酶活性及产量的影响[J].东北农业大学学报,2008,39(5):15-19.
    [58]侯立白,陈贺芹.大豆固氮能力对生长及产量影响的研究[J].沈阳农业大学学报,1995,26(1):13-17.
    [59]张武,李宝华,李艳杰,等.施氮对大豆接种根瘤菌的影响[J].黑龙江农业科学,2010(11):38-40
    [60]朱长甫,苗以农,刘学军,等.野生大豆酰脲含量与根瘤固氮活力的关系[J].植物生理学报,1995,21(3):307-312.
    [61]刘莉,周俊初,陈华癸.不同化合态氮浓度对大豆根瘤菌结瘤和固氮作用的影响[J].中国农业科学,1998,31(4):87-89
    [62]高丙利,韩素芬.刺槐根瘤菌结瘤因子的初步研究[J].中南林学院学报,1997,17(2):38-46
    [63]陈华癸,樊庆笙.生物学[M].北京:中国农业出版社,1979,161-62
    [64]姚新春.间歇性干旱对苜蓿-根瘤菌共生固氮及土壤养分影响的研究[D].兰州:甘肃农业大学,2006
    [65]Michael Collins, Duke, S.H. Influence if potassium fertilization rate and form on photosynthesis and N2 fixation of alfalfa [J]. Crop science.1981,21:481-485
    [66]孙大业.细胞信号转导(第三版)[M].北京:科学出版社.2001.
    [67]Frazer L N, Moore D.The role of calcium accumulation and cytoskeletal elements in the perception and response of coprinuscinereus to gravity [J]. COSPAR, Abstracts,1994,280.
    [68]Poovaiah B W. Biochemical and molecular aspects of calcium action [J]. Acta orticulturae, 1993,326:139-147.
    [69]肖家欣,彭抒昂,张红艳.单性结实与自花结实柑橘果实发育中钙钾动态的研究[J].园艺学报,2004,31(1):7-10
    [70]黄旭明,袁炜群,王惠聪,等.抗裂性不同的荔枝品种,果皮发育过程中钙的分布动态研究 [J].园艺学报,2005,32(4):578-583
    [71]周卫,林葆.花生缺钙症状与超微结构特征的研究[J].中国农业科学,1996,29(4):53-57.
    [72]王凤茹.水分胁迫及复水过程中小麦叶片内钙的定位[J].植物生理学,2000,26(4):280-282.
    [73]宰学明,钦佩,吴国荣,等.高温胁迫对花生幼苗光合速率、叶绿素含量、叶绿体Ca-(2+)-ATPase, Mg-(2+)-ATPase及Ca-(2+)分布的影响[J].植物研究,2007,27(4):416-420.
    [74]Whitehead L F, Tyerman S D, et al.Transport of Fixed Nitrogen across Symbiotic Membranes of Legume Nodules[J]. Symbiosis,1995,19:141-154.
    [75]Andreev I M, Dubrovo P N. Calcium Stores in Symbiosomes from Yellow Lupin Root Nodules [J]. J.Plant Physiol.,1999,155:35-363.
    [76]Luis Bolanos, Abdelaziz El-Hamdaoui, Ildefonso Bonilla. Recovery of development and functionality of nodules and plant growth in salt-stressed Pisum sativum-Rhizobium leguminosarum symbiosis by boron and calcium [J]. Journal of Plant Physiology.2003,160(12): 1493-1497.
    [77]Munns D N. Nodulation of Medicago sativain solution culture:Acid-sensitive steps [J]. Plant and Soil,1968,28:129-146
    [78]Hubert H Felle, Eva Kondorosi, Adm Kondorosi, et al. Nod factors modulate the concentration of cytosolid free calcium differently in growing and non-growing root hairs of Medicago Sativa L[J].Planta,1999,209:207-212.
    [79]Andreev I M, Dubrovo P N Calcium Stores in Symbiosomes from Yellow Lupin Root Nodules [J]. J.Plant Physiol.,1999,155:35-363.
    [80]Andreev I M, Dubrovo P N, Krylova V V, et al.Calcium uptake by ymbiosomes and the peribacteroid membrane vesicles isolated from yellow lupine root nodules [J]. J.Plant Physiol., 1998,153:610-614.
    [81]Andreev I M, Andreeva, I N, Dubrovo P N, et al. Calcium status of yellow lupin symbiosomes as a potential regulator of their nitrogenase activity:The Role of the Peribacteroid Membrane[J]. Russian Journal of Plant Physiology,2001,48 (3):308-317.
    [82]张琴,张磊,魏世清,李艳宾,张超.等.钙离子对紫花苜蓿及苜蓿根瘤菌耐酸能力的影响[J].应用生态学报.2007,18(6):1231-1236.
    [83]Reeve W G, Tiwari R P, Dilworth M J, et al. Calcium affects the growth and Survival of Rhizobium meliloti [J]. Soil Biology & Biochemistry,1993,25:581-586
    [84]Hamdaoui E, Redondo-Nieto M, Torralba B., et al. Influence of boron and calcium on the tolerance to salinity of nitrogen-fixing pea plants[J].Plant and Soil,2003,251:93-103.
    [85]Craig L.A., Wiebold W.J., Mclntosh M.S. Nitrogen fixation rates of alfalfa and red clover grown in mixture with grasses[J].Agron.J.1981,73:996-998
    [86]Rice W.A..Performance of Rhizobium meliloti strains selected for low-PH tolerance.Can.J.Palnt Sci,1982,62:941-948
    [87]Dudeja S S. Persistence of Dradyrhizobium sp.(ca-janus) in a sandy loam[J].Soil Boil Biochem., 1989,21(5):709-713.
    [88]钟文文,张小平,Kristina Lindstrom高效苜蓿根瘤菌的筛选[J].西北农业学报.2006,15(3):69-741
    [89]Spanik H P, Rob J H Okker, Carel A Wijffelman, et al. Regulation of Plant morpHogenesis by lipo-chitin oligosaccharides[J]. Critical Reviews in Plant Science,1996,15(586):559-582
    [90]李新民,谷思玉,窦新田,等.不同土壤大豆接种根瘤菌剂反应的研究[J].黑龙江农业科学,1998,4:1-4.
    [91]Robleto E.A., Scupham A.J., Triplett E.W. Trifolitoxin production in Rhizobium etli strain CE3 increase competitiveness for rhizosphere growth and root nodulation of Phaseolus vulgaris in soil [J]. Mol.Plant Microbe Interact.1997,10,228-233.
    [92]Robleto E.A., Kmiecik K., Oplinger E.S., et al. Trifolitoxin Production increases nodulation competitiveness of Rhizobium etli CE3 under agricultural conditions [J]. Appl.Environ.Micro. 1998,65,2833-2840.
    [93]Douka C.E., Doskaris J., Protopapadaki L., et al. Relationship between biological nitrogen fixation and berbicide degradation [A]. In:Proceedings of the international nitrogen fixation conference[C].1995,679.
    [94]Unkovich M.J., Pate J.S., Sandford P. Nitrogen fixation by annual legumes in Australian Mediteranean agriculture[J]. Australian Journal of Agricultural Research,1997,48:267-93.
    [95]Blakeslee J J, Peer W A, Murphy A S. Auxin transport. Current Opinion in Plant Biology[J]. Cell Signalling and Gene Regulation,2005,8:494-500.
    [96]Cooper J B, Long S R. Morphogenetis complementation of Rhizobium meliloti nodulation mutants by trans-zeatin secretion [J]. Plant Cell,1994,6:215-225.
    [97]王华.沙冬青与根瘤菌和丛枝菌根真菌(AMF)共生关系影响因素的研究[D].北京林业大学,2008,6
    [98]Vardhini V B, Rao S S. Effect of brassinosteroids on nodulation and nitrogenase activity in Groundnut (Arachis hypogaea L.)[J]. Plant Growth Regulation,1999,28:165-167.
    [99]张明才,何钟佩,田晓莉,等.植物生长调节剂BR和SHK-6对大豆生物产量和根瘤固氮活性的激素调控研究[J].大豆科学,2004,23(2):96-100.
    [100]Mahler R L, Wollum A G. Seasonal variation of Rhizobium meliloti in alfalfa hay and cultivatedfields in North Carolina[J]. Agronomy Journal,1982,74(3),428-431.
    [101]韩华君,张磊,张琴,谢德体.土壤中根瘤菌定殖研究进展[J].土壤,2008,40(2):74-180
    [102]姚拓.促进植物生长菌的研究进展[J].草原与草坪,2002,99(4):3-5
    [103]缪礼鸿,周俊初.根瘤菌竞争性研究进展[J].华中农业大学学报,2003,22(1):84-89
    [104]Streit W, Kosch K, Werner D. Nodulation competitiveness of Rhizobium leguminosarum byphaseoli and Rhixobium tropici strains measured by glucuronidase (GUS) gene fusions[J]. Biol and Fert soils.,1992,14:140-144.
    [105]宁国赞,刘惠琴,马晓形.中国豆科牧草根瘤菌资源的采集保藏及利用[J].草地学报,1999,7(2):165-172
    [106]冯瑞章,周万海,龙瑞军,等.江河源区不同建植期人工草地土壤养分及微生物量磷和磷酸酶活性研究[J].草业学报,2006,15(6):1-6
    [107]曾定.固氮生物学[M].厦门:厦门大学出版社,1987
    [108]鲁鸿佩.根瘤菌对紫花苜蓿产草量的影响试验研究[J].草原与草坪,2007,121(2):56-59
    [109]王铮,李俊年,等.根瘤菌接种对紫花苜蓿生产性能的影响中国草食动物[J].2008,28(4):54-55
    [110]陈朝勋,席琳乔,姚拓,等.生物固氮测定方法研究进展[J].草原与草坪,2005(2):24-26.
    [111]陈利云,张丽静,周志宇.耐盐根瘤菌对紫花苜蓿接种效果的研究[J].草业学报,2008,17(5):43-47
    [112]石杰,张磊.接种耐酸根瘤菌和施钙对酸性土上紫花苜蓿生长的影响[J].植物营养与肥料学报,2008,14(3):602-07
    [113]陶令霞.花生施用根瘤菌剂的效果试验[J].安徽农学通报,2008,14(15):116-117.
    [114]刘灵芝,陈玉玲,陈志刚,等.北方地区大豆根瘤菌的生物学特性[J].土壤通报,2007,38(1):141-44
    [115]徐传瑞,章建国,周俊初.大豆根瘤菌的分离与筛选[J].华中农业大学学报,2004,23(6):635-638.
    [116]孙贵荒,刘晓丽,董丽杰.高产大豆干物质积累与产量关系的研究[J].大豆科学,2002,21(3):199-203.
    [117]徐俊兵.扬州市土壤有机质和速效磷钾的分布研究[J].土壤,2004,36(1):99-103.
    [118]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001,(3):7-11
    [119]林启美,赵小蓉,孙焱鑫,等.四种不同生态环境中解磷细菌的数量及种群分布[J].土壤与环境,2000,9(1):34-37.
    [120]吴鹏飞,张冬明,郝丽虹,漆智平.解磷微生物研究现状及展望[J].中国农业科技导报,2008,10(3):40-46
    [121]祁娟,师尚礼.不同品种紫花苜蓿种子内生根瘤菌溶磷和分泌生长素能力[J].草原与草坪,2006,5:18-25
    [122]师尚礼,曹致中,刘建荣.苜蓿根瘤菌溶磷和分泌植物生长素能力研究[J].草业学报.2007,16(1):105-111.
    [123]马其东,刘自学,洪绂曾,等.不同根系发育能力的苜蓿品种接种根瘤菌的效果[J].草业学报,1999,8(4):46-52
    [124]李阜棣.土壤微生物学[D].北京:中国农业出版社,1996,10.
    [125]Okeny. Root associative azosprillum species can stimulate plants [J]. ASM news,1997,63(7): 366-3702.
    [126]Eric Glickmann, Yves Dessaux. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[M].Applied And Environmental Microbiology,1995,2:793-796.
    [127]沈德龙,冯永君,宋未.成团肠杆菌的生物功能多样性及其分类最新进展[J].微生物学杂志2002,22(1):40-42.
    [128]徐幼平,臧荣春,陈卫良,等.阴沟肠杆菌B8发酵液对植物的促生作用和IAA分析[J].浙江大学学报(农业与生命科学版),2001,27(3):282-283.
    [129]谢达平,雷女孝,彭道林.微生物菌肥的作用机理研究[J].常德师范学院学报(自科学版),2002,14(1):48-50.
    [130]Thakuria D, Talukdar N C, Goswami C. Characterization and screening of bacteria fromrhizosphere of rice grown in acidicsoils of Assam[J]. Current Science,2004,86(7): 978-985.
    [131]葛诚.微生物肥料的生产应用及其发展[M].北京:中国农业科技出版社,1996,6-50.
    [132]曹燕珍,胡正嘉,黄诚金,等.快生型大豆根瘤菌的研究——Ⅰ.快生型大豆根瘤菌的分离及其生理生化性状[J].华中农业大学学报,1986,5(2):149-156.
    [133]樊利勤,吴庆标,黄宝灵,等.卷荚相思根瘤菌的生物学特性[J].生态科学,2007,26(2):107-109
    [134]杨江科,周琴,周俊初.pH对土壤中土著快、慢生大豆根瘤菌结瘤的影响[J].应用生态学报[J].2001,12(4):639-640
    [135]何庆元,玉永雄,胡艳.不同苜蓿根瘤菌结瘤固氮能力变异的研究[J].中国草地学报.2006,(4):79-83
    [136]闵航,吴雪昌.微生物学[D].杭州:浙江大学出版社.2005,2.
    [137]曾希柏.红壤酸化及其防治[J].土壤通报,2000,31(3):111-113.
    [138]李庆逵.中国红壤[M].北京:科学出版社,1983,74-193.
    [139]张学军,张磊.苜蓿中华根瘤菌(Sinorhizobium meliloti)的耐酸性研究[J].西南大学学报(自然科学版),2008,30(1):91-97
    [140]Barber L. Survival and plant nodulation at low pH by resistant Rhizobium meliloti strains [J]. Am.Soc.Microbio,1978,167
    [141]Summer M E, Shahandeh H, Bouton J, et al. Amelioration of an acid soil profile through deepliming and surface application of gypsum [J]. Soil Science Society of America Journal. 1986,50:1254-1258.
    [142]万晓红,韦革宏,杨亚珍,朱毓华.紫花苜蓿品种根瘤菌表型多样性研究[J].草地学报,2004,12(4):48-49
    [143]张琴,龙娟,张磊,李艳宾,魏世清.不同pH值下接种根瘤菌对紫花苜蓿产量和品质的影响[J].草业学报,2006,15(5):59-62
    [144]师尚礼,刘建荣.甘肃寒旱区苜蓿根瘤菌抗逆性评价[J].草地学报.2007,(2):1-6.
    [145]韩素芬.我国豆科树种结瘤情况的补充资料[J].南京林业大学学报,1995,19(4):89-91
    [146]陈文新.土壤中影响根瘤菌存活的因素[J].土壤学进展,1986,3(5):17-20.
    [147]关桂兰,郭沛新,王卫卫,等.新疆干旱地区根瘤菌资源研究:Ⅱ:根瘤菌抗逆性及生理生化反应特性[J].微生物学报,1992,32(5):346-352.
    [148]吴健,杨苏声,李季伦.苜蓿根瘤菌的耐盐性研究[J].微生物学报,1993,33(4):260-267.
    [149]陈文新.新疆地区豆科根瘤菌特性的分析[J].土壤肥料,1984,3(3):4-7.
    [150]黄玲,石玉瑚,吴祖银.新疆部分豆科植物根痈菌的某些耐性试验[J].微生物学通报,1990,17(3):130-133.
    [151]陈利云,张海林,周志宇.根瘤菌的RAPD分子标记技术检测和耐盐碱筛选[J].干旱地区农业研究,2010,28(6):212-216
    [152]Abdel Gadir A H, Martin Alexander. Procedures to enhance heat resistance of Rhizobium [J]. Plant and Soil,1997,188:93-100.
    [153]Serral R, Vasquze D H, Dervon J J. Effects of salt on nitrogen fixation, oxygen diffusion, and ion distribution in soybean, common bean and alfalfa[J]. Plant Nutr,1998,21(1):475-488.
    [154]康金花,关桂兰,沈艳芳.苜蓿根瘤菌耐盐碱性试验[J].干旱区研究,1996.(3):13-15
    [155]郭丹丹.柠条锦鸡儿根瘤菌多样性及系统发育研究[D].扬州:扬州大学,2007
    [156]祁娟.苜蓿种子内生根瘤菌抗逆能力评价与筛选[J].草地学报.2006,15(2):138-141
    [157]常玮,王炜,屈新兰.苜蓿根瘤菌菌剂的研究[J].新疆农业科学,2004,41(2):102-104,122
    [158]弓明钦,陈应龙,仲崇禄.菌根研究及应用[M].北京:中国林业出版社:1997.
    [159]毕银丽,陈铸,曹楠,等.丛枝菌根对矿区塌陷地环境修复的生态效应[J].中国科技论文在线,2010,5(11):850-854.
    [160]Ahn T K, Lee M W, Ka K H. Vesicular-arbuscular mycorrhizal spores found from the soils of the leguminous plants in Korea[J]. Korean Mycol,1992,20:95-108.
    [161]Harley J L, Smith S E. Mycorrhizal Symbiosis.[M]. London:Academic Press.1983.
    [162]Walter M H.Tripertite symbiotic association in nitrogyn-fixing plants of Mount Chang bai Nature Reserve in Northeast China[D]. Doctor Dissertation.Shen yang:Institute of Applied Ecology, Academia Sinica,1993.
    [163]盛敏,唐明,迪丽努尔等.西北盐碱土主要植物丛枝菌根研究[J].西北农林科技大学学报,2007,35(2):74-78.
    [164]Chiou T J, Aung K, Lin S I, Wu C C, et al. Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. The Plant Cell,2006,8:412-421.
    [165]Shanna A K, Srivastava P C.Effects of VAM mad Zinc application on dry matter and zinc uptake of greengram (Influence of soil moisture regime on VA mycorrhiza L.(Wilczek)[J]. Biol. Fertil Soil,1991,11:52-56.
    [166]Shockley F W, Mc Graw R L, Garrett H E.Growth and nutrient concentration of two native forage legumes inoculated with Rhizobium and Mycorrhiza in Missouri, USA[J]. Agro for.Syst.,2004,60:137-142.
    [167]Gordon, Weeks R, Tong Y, Davies T G E, Leggewie G. Restricted spatial expression of a high-affinity phosphate transporter in potato roots [J]. Journal of Cell Science,2003,116: 3135-3144.
    [168]李淑敏,李隆,张福锁.蚕豆/玉米间作接种AM真菌与根瘤菌对其吸磷量的影响[J].中国生态农业学报.,2005,13(3):136-139.
    [169]李淑敏,李隆,张福锁.丛枝菌根真菌和根瘤菌对蚕豆吸收磷和氮的促进作用[J].中国农业大学学报,2004,9(1):11-15.
    [170]李淑敏,孟令波,张晶.丛枝菌根真菌和根瘤菌对蚕豆吸收有机磷的促进作用[J].北方园艺,2004,4:54-55.
    [171]郑伟文,宋亚娜.VA菌根真菌和根瘤菌对翼豆生长,固氮的影响[J].福建农业学报,2000,15(2):50-55.
    [172]余波,李志芳.菌根真菌和根瘤菌对四季豆生长影响的效应初探[J].天津农业科学.2003,9(4):21-24.
    [173]Fitter A H, Garbaye J. Interaction between mycorrhizal fungi and other soil organisms[J]. Plant and Soil,1994,159:123-132.
    [174]李晓林,曹一平.VA菌根菌丝对三叶草固氮的影响[J].北京农业大学学报,1992,18(3):299-302.
    [175]Reddell R, Yang Yun, Shipton W A. Cluster roots and mycorrhizae in Casurina cunning hamiana:their occurrence and formation in relation to phosphorous supply [J]. Aust Bot,1997,45(1):41-51
    [176]赵丹丹,李涛,赵之伟.丛枝菌根真菌-豆科植物-根瘤菌共生体系的研究进展[J].生态学 杂志,2006,25(3):327-333.
    [177]Caldeira M V W, Silva E M R, Da Franco A A, et al.The growth of arboreal legumes in response to inoculation with arbuscular mycorrhizal fungi[J]. Ciencia Florestal,1997,7(1): 1-10.
    [178]Xavier L J C, Germida J J. Response of lentil underc onnditrolled cotions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy[J]. Soil Biol. Biochem.,2002,34.
    [179]Xavier L J C,G ermidaJ J.Se lectivei nteractionsb etweena rbuscularmycorrhizal fungi and Rhizobium leguminosarum bv.viceaee nhancep eay ielda ndn utrition[J]. Biol.Fert.Soils, 2003,37.
    [180]中国科学院植物研究所.中国高等植物图鉴(第二册).北京:科学出版社,1980,7.
    [181]侯宽昭.中国种子植物科属词典(修订版)[M].北京:科学出版社,1982,10.
    [182]任继周.草业大辞典[M].北京:中国农业出版社,2008,47-48.
    [183]何康,王发武.中国农业百科全书(畜牧业卷上)[M].北京:农业出版社,1996,5:30
    [184]袁娟,武天龙.扁豆RAPD体系优化的探讨[J].种子,2006,25(8):72-74.
    [185]刘玉章,董天昌,孙伟.白扁豆栽培技术[J].特种经济动植物,2005,11:27-28
    [186]刘岩,赵佰善,赵丽敏.扁豆引种试验[J].北方园艺2003(2):50-51.
    [187]谢小燕,谢超,李锦,等.具有维持造血干/祖细胞能力的新型豆类凝集素的分离、纯化及功能鉴定[J].生物化学与生物物理进展,2004,31(2):134-140.
    [188]陈默君,贾慎修.中国饲用植物[M].北京:中国农业出版社,2002:546-548
    [189]林洁荣,苏水金,刘建昌,等.南亚热带优良豆科牧草紫花扁豆的研究[J].1996,2:52-55.
    [190]石永,王运琦,高新中,等.雁门关地区一年生牧草与饲料作物混播产量和品质研究[J].草业科学,2009,26(9):119-123.
    [191]祖艳侠,郭军,顾根宝,等.豆类品种资源的搜集和整理[J].种子,2004,23(1):41-42.
    [192]Koei Hamana, Masaru Niitsu, Keijiro Samejima, Shigeru Matsuzaki. Aminopropylaminoalcohols in the seeds of Dolichos lablab[J]. Phytochemistry,1992,31(8): 893-894
    [193]L. R. Ndlovu, L. M. Sibanda. Potential of Dolichos lablab (Lablab purpureus) and Acacia tortilis pods in smallholder goat kid feeding systems in semi-arid areas of Southern Africa [J]. Small Ruminant Research,1996,21(7):273-276.
    [194]J. Kanania, S.D. Lukefahr, R.L. Stankoa. Evaluation of tropical forage legumes (Medicago saliva, Dolichos lablab, Leucaena leucocephala and Desmanthus bicornutus) for growing goats [J]. Small Ruminant Research,2006,65(9):1-7.
    [195]N. E. T. Makembe, L. R. Ndlovu. Dolichos lablab (Lab lab purpureus cv.'Rongai') as supplementary feed to maize stover for indigenous female goats in Zimbabwe[J]. Small Ruminant Research,1996 21(6):31-36.
    [196]RE. Luck. Dolichos lablab, a valuable grazing crop[J]. Queensland Agric.1965,91(1): 308-309.
    [197]彭丽娟.拉巴豆不同生长时期的产量与营养价值评定[J].现代农业科学,2009,16(4):31-32.
    [198]常月立.中国南方地区花生、扁豆根瘤菌的多相分类[D].北京:中国农业大学硕士学位论文,2010.
    [199]Yue L C, Jing Y W, En T W, et al.Bradyrhizobium lablabi sp. nov., isolated from effective nodules of and Arachis hypogaea.[J]. Int J Syst Evol Microbiol,.2011,61:2496-2502.
    [200]陈默君,贾慎修.中国饲用植物[M].北京:中国农业出版社,2002,546-548
    [201]M. Naeem, M. Masroor,A. Khan, et al. Phosphorus ameliorates crop productivity, photosynthetic efficiency, nitrogen-fixation, activities of the enzymes and content of nutraceuticals of Lablab purpureus L. [J].Scientia Horticulturae.2010,126:205-214.
    [202]M. G. Zaroug, D. N. Munns. Nodulation and growth of lablab purpureus(Dolichos lablab) in relation to rhizobium strain, liming and phosphorus [J]. Plant and Soil,1979,53:329-339.
    [203]东秀珠,蔡妙英,等.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    [204]李振高,骆永明,滕应.土壤与环境微生物研究法[M].北京:科学出版社,2008,171-182.
    [205]朱瑞芳.寒区红豆草(Onobrychis viciaefolia Scop)根瘤菌筛选及其生物学特性研究[D].甘肃农业大学,2009,6
    [206]姚拓,张德罡,胡自治.苜蓿根瘤菌溶磷和分泌植物生长素能力研究[J].草业学报,2004,13(2):106-111
    [207]杨剑虹,王成林,代亨林.土壤农化分析与环境监测[M].中国大地出版社,2008,182-184,282-290.
    [208]萧浪涛,王三根.植物生理学实验技术[M].北京:中国农业出版社,2005.
    [209]郝再彬,苍晶,徐仲.植物生理实验技术[M].哈尔滨:哈尔滨出版社,2002.。
    [210]李宗梅,李秀珍,常禹,等.不同土壤因子对中药牛蒡子品质的影响[J].土壤通报,2011,42(1):106-111.
    [211]韩永芬,孟军江,左相兵,等.不同土壤不同种植方式普那菊苣的产量分析[J].草业科学,2009,26(11):102-105.
    [212]黄艳霞,董荣书,白昌军,等.柱花草根瘤菌的耐酸性与耐盐性[J].热带作物学报,2010,31(6):914-919.
    [213]缪福俊,熊智,李素停,等.会泽铅锌尾矿区豆科植物根瘤菌耐铅锌性及其生理生化特征研究[J].农业环境科学学报,2010,29(10):1943-1947.
    [214]张丽英.饲料分析及饲料质量检测技术[M].北京:中国农业大学出版社,2009,62-79.
    [215]向东山,郑小江,刘晓鹏,等.鄂西地区主要牧草营养品质的分析与评价[J].湖北农业科学,2008,47(4):452-453.
    [216]Lopez Garcia S.L., T.E.Vazouez, G.Favelukes, A.R.Lodeiro. Improved soybean root association of N-starved Bradyrhizobium japonicum [J]. J. Bacteriol,2001,183,7241-7254.
    [217]马春梅,唐远征,龚振平,等.不同施氮量对大豆吸收化肥氮效率的影响[J].大豆科学,2005,24(1):34-37.
    [218]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    [219]Vincent J. A manual for the practical study of root-nodule bacteria[M]. International Biological Programme, Londres,1970,164.
    [220]杨子文,沈禹颖,谢田玲,等.外源供氮水平对大豆生物固氮效率的影响[J].西北植物学报,2009,29(3):574-579.
    [221]罗佳,蒋小芳,孟琳,等.不同堆肥原料的有机无机复合肥对油菜生长及土壤供氮特性的影响[J].土壤学报,2010,47(1):97-106
    [222]赵明,蔡葵,王文娇,等.有机无机肥配施对番茄产量和品质的影响[J].山东农业科学,2009,12:90-93.
    [223]尤彩霞,陈清,任华中,等.不同有机肥及有机无机配施对目光温室黄瓜土壤酶活性的影响[J].土壤学报,2006,43(3):521-523
    [224]McConnell D D, Shiralipour A, Smith W H. Compost application improves soil properties[J]. Biocycle,1993,34:61-63
    [225]Wong J WC, Li G X, Wong M H. The growth of Brassica chinensis in heavy metal-contaminated sewage sludge compost from Hung Kong[J]. Bioresour Technol,1996.58: 309-313
    [226]赵昕,宋瑞清,阎秀峰.接种AM真菌对喜树幼苗生长及光合特性的影响[J].植物生态学报,2009,33(4):783-790
    [227]Berry J A, Downton W J S. Environmental regulation of photosynthesis//Photosynthesis: Development, carbon metabolism and plant productivity, vol Ⅱ [M]. NewYork:Academic Press,1982:263-343.
    [228]Fischer R A, Turner N C. Plant productivity in the arid and semiarid zones [J]. Annual Review of Plant Physiology,1978,29:227-317.
    [229]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986
    [230]张治安,杨福,陈展宇,等.菰叶片净光合速率日变化及其与环境因子的相互关系[J].中国农业科学,2006,39(3):502-509.
    [231]周玉梅,韩士杰,胡艳玲,等.高浓度CO2对红松(Pinus koraiensis)针叶光合生理参数的 影响.生态学报,2008,28(1):423-429.
    [233]薛小平,张深,李海涛,等.磷对外生菌根真菌松乳菇和双色蜡蘑草酸、氢离子和磷酸酶分泌的影响[J].菌物学报,2008,27(2):193-200.
    [234]Yuan L, Fang D H, Huang J G. Biomobilization of potassium from soils and clay minerals by ectomycorrhizas[J]. Pedosphere,2000,10(4):339-346
    [235]陈恩凤.土壤酶与土壤肥力研究[M].北京:科学出版社,1979:54-61
    [236]李娟,赵秉强,李秀英,等.长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响[J].中国农业科学,2008,41(1):144-152.
    [237]贾伟,周怀平,解文艳,等.长期有机无机肥配施对褐土微生物生物量碳、氮及酶活性的影响[J].植物营养与肥料学报,2008,14(4):700-705.
    [238]蒋小芳,罗佳,黄启为,等.不同原料堆肥的有机无机复混肥对辣椒产量和土壤生物性状的影响[J].植物营养与肥料学报,2008,14(4):766-773.
    [239]刘润进,李晓林.丛枝菌根及其应用[M].北京:科学出版社,2000:22-33.
    [240]江龙,李竹玫,黄建国,等.AM真菌对烟苗生长及某些生理指标的影响[J].植物营养与肥料学报,2008,14(1):156-161.
    [241]Lukiwati D R, Hardjosoewignjo S.. Mineral content improvement of some tropical legumes with Glomus sp. Fungi inoculation and rock phosphate fertilization[C]. In Program and Abstract of internation Workshop on Mycorrhiza.Guangzhou, P.R.China.1998,6:60.
    [242]张功,旺庆,峥嵘,等.不同VA菌根真菌对马铃薯生长的影响.华北农学报,2001,16(4):115-118.
    [243]杨晓红,李道高,TAKAAII杂草发酵物对枳生长和VA菌根形成的影响[J].园艺学报,2001,28(4):336-338.
    [244]Stephen H B, Tim C, Iver J. Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition [J]. Journal of Experimental Botany,2002, 53(374):1593-1601.
    [245]Biermann B, Linderman RG.Quantifying vercular-arbuscular mycorrhizas:a proposed method towards standardization [J]. New Phytol,1981,87:63-67
    [246]刘润进,李敏,石兆勇.AM真菌对花生与甘薯产量的影响[J].中国生态农业学报,2003,11(1):36-37.
    [247]Smith S E, Read D J. Mycorrhizal symbiosis[M]. London:Academic Press,1997.
    [248]贺学礼,李斌.VA菌根真菌与植物间相互选择性研究[J].西北植物学报,1999,19(3):471-475.
    [249]Crush J R. Plant growth responses to vesicular-arbuscular mycorrhizae Ⅶ:Growth and nodulation of some herbage legumes [J]. New Phytol,1974,73:745.
    [250]Bacyaraj D J. Biological interaction with VA mycorchizal fungi [M]. Boca Raton Florida: CRC Press,1984:131-153.
    [251]程桂菘.根瘤菌和内生菌根混合接种对三叶草增产的效应[J].土壤,1986,3:132-136
    [252]Xie Z P, Staehelin C, Vierheilig H, et al. Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybean[J]. Plant Physiology,1995,108: 1519-1525.
    [253]Hayman D S. Mycorrihiza and crop production[J]. Nature,1980,287:487-488.
    [254]Asimi S.V. Gianinazzi-Pearson, S.Ginainazzi. Influnce of increasing soil phosphorus levels on interaction between vasicular-arbuscular mycorrhizae and Rhizobium in soybeans [J]. Can.J.Bot,1980,58:2200-2205
    [255]Robnos A D, Abbott L K. Managing symbiotic associations between plants and microorganisms[C]. In J.L.Wheeler, C J Pearsonm G.E.Robards (eds). Temperate Pastures. CSIRO, Australia,1987,191-203.
    [256]Lee K. E, C.E.Pankhurst. Soil organism and sustainable productivity [J].Aust.J.Soil Res.1992, 30:855-892.
    [257]佟丽娜,李淑敏,孟令波.双接种对大豆利用不同有机磷源的影响[J].东北农业大学学报,2009,40(10):37-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700