用户名: 密码: 验证码:
不同造林密度杂种落叶松人工林动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究是黑龙江省科技重大攻关项目“优质木结构用材原料林良种选育及定向培育技术研究”的部分研究内容(GA09B202-02)。
     杂种落叶松是黑龙江省林业科学研究所经过30多年研究出的新树种,其生长速度,抗病虫害能力及抗寒性都较长白落叶松有绝对优势,目前黑龙江省正在推广该树种的大面积栽植,这就需要建立一套相应的、比较完善的栽培模式来指导杂种落叶松的经营,而栽培模式中最重要的部分就是造林密度的研究。本研究选取的试验地是我国目前最大的一片杂种落叶松人工林,面积20hm2,林龄为14年。2004年按照四种造林密度(2500株/hm2、3300株/hm2、4400株/hm2、6600株/hm2)设置固定标准地48块,连续观测至今。期间,对不同造林密度下杂种落叶松的生物量,凋落量,凋落物的分解及林地的土壤情况进行了调查,为杂种落叶松人工林造林密度的研究积累了丰富的第一手资料,研究结果具有较强的说服力,可以为杂种落叶松栽培模式的完善提供很好的补充。
     本研究采用方差分析,多重比较,数学模型等方法,对四种造林密度下杂种落叶松的生长规律、生物量及碳储量、凋落物及其分解、林地土壤理化性质和微生物等进行了研究与分析,得到的主要结果有:
     造林密度对杂种落叶松单株生长指标都有显著影响,造林密度越大,其林分的胸径、单木材积和冠幅就越小,综合生长,干形,出材率等指标后,得出3300株/hm2林分的林木生长较好,干形相对较为饱满,出材率最大。
     造林密度对杂种落叶松单株生物量及其分配都有显著影响,3300株/hm2的林分,单株生物量最大为23.65kg,其中树枝与树叶所占比例较大,达到35.43%;4400株/hm2的林分单株生物量最小,只有21.78kg,但干材与树皮所占比例最大,达到69.28%。根据不同的造林密度建立了杂种落叶松单株生物量的回归模型,拟合精度较高,为今后杂种落叶松生物量和碳储量的估算提供更精确的科学依据。
     造林密度影响杂种落叶松凋落物的分解速率,林分密度越大,枯枝落叶的分解周期越长,最长超过17年(2500株/hm2),最短只有13年多一点(6600株/hm2),在改变林内微生境后,2500株/hm2林分的分解周转期最短,只需不到4年的时间。枯枝落叶中各养分元素含量减少较快的是造林密度为3300株/hm2和4400株/hm2的林分,说明这两种造林密度下杂种落叶松枯枝落叶养分元素的归还较快。
     从造林密度对林地土壤中水解氮、有效磷、速效钾、全氮、全磷、钙、镁等养分的含量及微生物数量的影响来看,3300株/hm2和4400株/hm2的林分,土壤结构较好,养分元素充足,较另两种密度更适合微生物的繁衍增殖。
     对以上研究进行综合的评价与分析,得出3300株/hm2和4400株/hm2是杂种落叶松人工林生长、干形及养分循环较好的造林密度。3300株/hm2的造林密度在培育中小径材时不需进行抚育间伐,而4400株/hm2的杂种落叶松在培育中径材或大径材时要进行1-2次的间伐。
     本研究是对杂种落叶松优化经营模式的一个重要补充,为杂种落叶松人工林在黑龙江省的大面积推广提供科学的指导和依据。
This research is part of the "Study on the improved variety and directed breeding technology of the high quality wood construction material forest" of the significant research project of Heilongjiang Province science and technology (GA09B202-02).
     Hybrid larch is a new species for forestry research institute of Heilongjiang province to study after30years, whose growth rate, disease and pest resistance ability and hardiness were more excellent than Larix Olgensis. A corresponding, more perfect cultivation pattern will be established for Hybrid Larch was extended in Heilongjiang province large area at present, and the important part of the pattern is the study on the planting density. The experimental field was established in the biggest area of Hybrid Larch in our country, which is14years old and the area is20hm3.48fixed standards were observed continuously that were setted in four afforestation densities(2500N/hm2,3300N/hm2,4400N/hm2,6600N/hm2) in2004.The first-hand material of the study on afforestation density were accumulated from the data of the biomass, litterfall, litter decomposition and soil conditions of Hybrid Larch in different afforestation density were investigated, so the results has strong persuasion and can provide very good supplement for Larch hybrids cultivation pattern.
     The growth law, biomass and carbon storage, litter and its decomposition, soil physical and chemical properties and microorganisms were studied with variance analysis, multiple comparison, mathematical models and other methods, the main result are:
     The effect of afforestation density on plant growth index of Hybrid Larch were remarkable. The afforestation density bigger, the diameter, singleplant volumn and crown width of Hybrid Larch smaller.3300N/hm2is the best afforestation density for the better growth, stem form relatively full, large yield.
     The effect of afforestation density on the singleplant biomass and stand biomass of Hybrid Larch were significant. The singleplant biomass in3300N/hm2was biggest (23.65kg) and the proportion of branch and leaves were larger(35.43%). The singleplant biomass in4400N/hm2was lowest(21.78kg) and the proportion of trunk and bark were larger(69.28%). The fitting precision of individual biomass regression model in different density which can provide more accurate scientific basis for biomass and carbon storage of Hybrid Larch were higher.
     The decomposition rate of Hybrid Larch litter was effected by afforestation density, the density bigger, the decomposition cycle longer, the longest time was more than17years(2500N/hm2) and the shortest was only a little more than13years (6600N/hm2). The decomposition cycle was only less than4years in2500N/hm2after the microhabitat altered. The content of nutrient elements of litter in3300N/hm2and4400N/hm2decreased faster and it showed that the nutrient elements in these two afforestation densities returned faster.
     3300N/hm2and4400N/hm2were the more suitable afforestation density for better soil structure, nutrient adequacy and microbe propagate according by the effect of the content of hydrolyzable nitrogen, available phosphorus, available potassium, total nitrogen, total phosp N horus, total potassium, calcium, magnesium and the quantity of soil microbes
     3300N/hm2and4400N/hm2were the the better afforestation density for Hybrid Larch on growth, stem form and nutrient cycle from the analysis and evaluation of the above research. Thinning was not needed to cultivate middle diameter timber and small diameter timber in the stand the afforestation density was3300N/hm2, and1or2times thinning in the stand the afforestation density was4400N/hm2to cultivate middle diameter timber and large diameter timber.
     This research was an important supplement for the optimization management of Hybrid Larch, and it can provide scientific guidance and basis for Hybrid Larch to extension in Heilongjiang Province.
引文
[1]张含国,张成林,兰士波等.落叶松杂种优势分析及家系选择[J].南京林业大学学报(自然科学版),2005,29(5):69-72
    [2]赵启凯,张含国,兰士波.杂种落叶松无性系评价[J].林业科技.2003,28(5):68-70
    [3]Eva Fruhwald. Effect of high-temperature drying on properties of Norway spruce and larch[J]. Holz Roh Werkst.2007(65):411-418
    [4]罗旭,王祥岐,张含国等.杂种落叶松的生长表现及遗传增益[J].东北林业大学学报.2005,33(6):8-9
    [5]潘本立,张含国,周显昌.杂种落叶松的增产能力及其生产应用前景[J].林业科技开发,1998,(2):18-20
    [6]孙楠.杂种落叶松纤维用材林优化栽培模式研究[D].东北林业大学,2008.
    [7]韩凤艳,杨丽君,潘本立等.大量生产落叶松优良杂种种子的方法[J].林业科技,2003,28(5):64-67
    [8]于洪芝,姜兴林,杨丽君.在大兴安岭地区推广杂种落叶松的技术措施[J].林业科技,2001,26(3):7-8
    [9]孟宪宇.测树学[M].北京中国林业出版社.1996.
    [10]Clutter J L,Bennett F A.Diameter distribute in old-field Slash Pine plantations[[J].Ga.Foe.Res.Counc.Rep.1965.13.
    [11]Bennett F A, Clutter J L.Multiple-product yield estimates for unthinned slash pine plantation pulp-wood[M].Sawtimber,Cun,U.S.For.Serv.Res.Pap.SE-35,1968.
    [12]Bailey R L,Dell T R.Quantifying diameter distributions with weibull function[J]. For.Sci.1974,20:229
    [13]Hyink D M.,Moser J W.A generalized framework for projections forest yield and stand structure using diameter distribution[J].For.Sci.1983,29(1):85-95.
    [14]寇文正.林木直径分布的研究[J].南京林产工业学院学报,1982(2):51-65.
    [15]孟宪宇.使用weibull分布对人工汕松林直径分布的研究[J].北京林学院学报.1985.7(1):30-40.
    [16]孟宪宇.使用weibull函数对树高和直径分布的研究[J].北京林业大学学报.198810(1):40-47.
    [17]李凤日.兴安落叶松天然林直径分布及产量预测模型的研究[J].东北林业大学学报.1987.15(4):8-15.
    [18]方精云.利用weibull分布函数预测林木的直径分布[J].北京林业大学学报.1987.9(3):261-269.
    [19]潘存德.林木直径分布预测动态模型的研究[J].林业科学.1990.26(5):470-473.
    [20]李一清.云南松林分直径结构的动态预测[J].林业科学研究.1992.5(6):633-638.
    [21]李法胜.检查法林分生长预测及择伐模拟研究[J].林业科学.1994.30(6):531-539.
    [22]孟宪宇.利用联立方程测算林分直径分布的初步研究[J].林业资源管理.1995.(6):39-43.
    [23]惠刚盈.林分直径结构模型的研究[J].林业科学研究.1995.8(2):127-131.
    [24]张荷观.林木直径分布的马尔可夫预测[J].新疆农业大学学报.1996.19(2):17-24.
    [25]朱焕宇.马尾松人工同龄纯林直径分布的研究[J].河南职技师院学报.1999.27(2):34-35.
    [26]黄家荣.马尾松人工林直径分布神经网络模型研究[J].北京林业大学学报.2006.28(1):28-31.
    [27]鲍晓红.火炬松人工林直径分布收获模型的研究[J].林业调查规划.2005.30(5):54-56.
    [28]闫东锋.宝天曼自然保护区天然次生林林分直径分布规律研究[J].河南科学.2006.24(3):364-367.
    [29]林开敏,俞新妥,邱尔发等,29年杉小不同造林密度生长进程分析研究[J].福建林学院学报.1996.16(4):293-298.
    [30]刘君然.落叶松人工林不同密度的林分生长量、成熟变化规律[J].内蒙古林业调查设计.1995.1:12-15.
    [31]张连水,陈南州,罗水发等.湿地松人工林生长规律研究[J].林汪科技开发.2002.16(增刊).32-34.
    [32]徐勃,张仕清.同仁地区青杨速生丰产林几种常用造林密度对生长的影响[J].青海大学学报自然科学版.2002.20(2):8-10.
    [33]齐中武.营林密度对杨树材积长量的影响[J].河南林业科技.2003.23(4).
    [34]朱慧,洪伟,吴承祯.闽东柳杉人工林经营密度与生长关系的研究[J].江西农业大学学报.2004.26(1):51-55.
    [35]Reineke, L.H.,1933, Perfecting a stand density index for even-aged forests. Journal of Agricultural Research 46; 627-638
    [36]Chisman, H.H.,& F.X. Schumacher,1940, On the tree area ratio and certain of its applications, Journal of Forestry 38:311-317
    [37]Beekhuis, J.,1966, Prediction of yield and increment in Pinus radiata stands in New Zealand, New Zealand Forest Service, Forest Research Institute Technical Paper No.49.39 pp
    [38]Garcia, O,1984, New class of growth models for even-aged stands:Pinus radiata in Golden Downs Forest, New Zealand Journal of Forestry Science,14(1); 65-88
    [39]Garcia, O,1990, The growth of thinned and pruned stands. IN:James. R.N.,& G.L. Tarlton (Eds.), Proceedings of the IUFRO symposium on "New approaches to spacing and thinning in plantation forestry", Forest Research Institute Bulletin No.151:84-97
    [40]West, G.G., R.L. Knowles, and A.R. Koehler,1982. Model to predict the effects of pruning and early-thinning on the growth of radiata pine, New Zealand Forest Research Institute Bulletin No.5,35 pp
    [41]MacKinney, A.L., F.X. Schumacher,& L.E. Chaiken,1937. Construction of yield tables for nonnormal loblolly pine stands, Journal of Agricultural Research 54;531-545
    [42]Lewis, E.R.,1954, Yield of unthinned Pinus radiata in New Zealand. New Zealand Forest Service, Forest Research Institute, Forest Research Notes 1 (10); 19 pp
    [43]Amidon,E.L.and G.S.Akin,1968,Dynamic programming to determine optimal level of growing stock.For.Sci.14:287-291
    [44]Brodie,J.D.et al.1978,Analysis of economic impacts on thinning and rotation for Douglas-fir,using dynamic programming.For.Sci.24:513-522
    [45]Chen,C.M.et al,1980,Derivation of optimal stand density over time a discrete stage,countinous state dynamic programming solution.For.Sci.26:217-227
    [46]Curtis,R.O.,1970,Stand density measures:an interpretation.For.Sci.16:403-414
    [47]Kao,C.1932 Optimal stocking levels and rotation under risk,For.Sci.28(4):711-719
    [48]曹福亮.林分密度对南方型杨树木材性质的影响[J].南京林业大学学报.1994(2).
    [49]李凤日.林分密度研究评述—关于3/2乘则理论[J].林业科学研究.1995.1:25-32.
    [50]林星华.巨尾桉二代萌芽更新林分密度调控技术研究[J].林业科学研究.2001.3:283-287.
    [51]童书振,盛炜彤,张建国.杉木林分密度效应研究[J].林业科学研究.2002.1:66-75.
    [52]齐晓明.用动态规划方法确定华北落叶松最优轮伐期及最佳林分密度[J].河北林果研究1992(2).
    [53]陈存及.毛竹林分密度效应的初步研究[J].福建林学院学报.1992(1).
    [54]乌吉斯古楞,陆玉宝,田有亮等.大青山油松人工林生长与林分密度关系的研究[J].内蒙古科技与经济.2006(12).
    [55]蔡坚,潘文,王保华等.林分密度对湿地密度最优控制策略的数学模型[J].东北林业大学学报.2006(2).
    [56]张彩琴,郝敦元,李海平.人工林林分密度最优控制策略的数学模型[J].东北林业大学学报.2006(2).
    [57]杨凯.博士学位论文[M].东北林业大学.2001.
    [58]严若海,关富桢.商品材积变形估测系统的研究[J].南京林业大学学报.1992(3).
    [59]曾伟生,廖志云.1997.削度方程研究[J].林业科学.33(2):127-132.
    [60]李凤日等.兴安落叶松天然林削度方程的研究[J].林业勘察设计.2006.138(2):61-64.
    [61]蒋伊尹,陈雪峰.应用一次性削度/材积预估系统编制材种出材率表初探[J].林业资源管理.1991.(6).
    [62]何美成.我国材种出材率表编制技术规程的研究[J].林业资源管理.2004.2:22-25.
    [63]李梦,李昌胜.长白落叶松人上林林分材种出材率的研究[J].东北林业大学学报.1994.22(4):33-39.
    [64]李建贵等.天山云杉削度方程的研究[J].新疆农业大学学报.2000.23(1):30-34.
    [65]曾伟生.关于材种出材率表的编制方法[J].中南林业调查规划.1995.54:1-6.
    [66]亢新刚.森林资源经营管理[M].中国林业出版社.2001.
    [67]刘健国.金沟岭林场长白落叶松人工林的轮伐期与收获调整[J].林业资源管理.1991(1).41-46.
    [68]董健,赵文华,黄国学等.日本落叶松纸浆林合理轮伐期研究[J].辽宁林业科技.2001(1).11-14.
    [69]江波,袁位高,戚连忠等.杨树人上林合理轮伐期的研究[J].浙江林学院学报.2001(1).26-31.
    [70]陈少雄,周国福,林义辉.尾巨桉纸浆材人工林轮伐期研究[J].林业科学研究2002.15(4):394-398.
    [71]刘强,张鹏.紫椴用材林主伐年龄和轮伐期的确定[J].东北林业大学学报.2003(4).10-11
    [72]孙晓梅,张守攻,侯义梅等.短轮伐期日本落叶松家系生长性状遗传参数的变化[J].林业科学.2004(6).
    [73]孙晶波,李双池,王玉林.关于落叶松人工林短轮伐期经营的思考[J].林业科技情报.2005(2).4- 5.
    [74]蔡常青,邱善辉,蔡善鹏.缩短杉木人工林轮伐期初探[J].江西林业科技.1993(2).27-30.
    [75]张松丹.短周期人工用材林合理采伐年龄综合决策的研究[M].北京林业大学.博士学位论文.2005.
    [76]周新年,郑绍全,林华忠.综合轮伐期研讨[J].林业科学.1995(5).474-479.
    [77]孙玉军,陈霖生.人上林经济轮伐期及初植密度的影响因子分析[J].林业资源管理.1993.34-37.
    [78]钱志能,龚益广,李国新.西江林场杉小的经济轮伐期[J].中南林学院学报.2006.
    [79]项文化,田大伦.不同密度中幼龄湿地松人工林生长过程的经济效益分析[J].中南林学院学报.1998.18(3):71-74.
    [80]王占林,郑椒霞,张有生.高寒地区北京杨速生丰产林栽植密度与经济效益分析[J].林业科技通讯.2000.9:9-10.
    [81]齐新民,丁贵杰.马尾松纸浆材林优化栽培密度经济分析[J].中南林学院学报.2001.21(2):13-17.
    [82]胡崇富,杨志岩,王胜东等.杨树纸浆林经济效益分析及评价[J].辽宁林业科技.2002.3:1-4.
    [83]高振华,张玉强,田林土等.不同造林密度杉木速生丰产林经济效益评估[J].农业系统科学与综合研究.1995.11(4).255-259.
    [84]张建忠,李锦清,徐永勤等.杉小不同密度造林的经济效益分析[J].浙江林业科技.1997.17(5):36-38.
    [85]蔡天贵.杉小不同指数级、不同造林密度的经济效益分析[J].福建林业科技.1997.24(2):28-31.
    [86]高雅贤,许汉渊,李洪文等.长白落叶松栽培经济效益分析[J].林业科学.1995.20(5):16-19
    [87]代保清,金亚荣,马栋.辽西丰育区生态林业的总体规划及经济效益的模糊评价[J].辽宁林业科技.1996.4:31-34.
    [88]高振华,张玉强,田林上等.不同造林密度杉小速生丰产林经济效益主成分分析及政策优化[J].南京林业大学报.1996.20(3).77-82.
    [89]徐道旺.毛环竹笋用林丰产结构的研究[J].竹子研究汇刊.2004.
    [90]薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288
    [91]张会儒,唐守正,王奉瑜.与材积兼容的生物量模型的建立及其估计方法研究[J].林业科学研究,1999,12(1):53-59
    [92]肯辉.一种与材积相容的牛物量模型[J].北京林业大学学报,1999,21(5):32-36
    [93]胥辉.一种生物量模型构建的新方法[J].西北农林科技大学学报(自然科学版),2001,29(3):35-40
    [94]Bond-Lamberty,Wang,Gower.Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba [J]. Canadian Journal of Forest Reserch,2002,32(8):1441-1450
    [95]程云霄.李忠效.兴安落叶松三个主要林型森林生物量的初步研究[J].内蒙古林业调查设计,1989,(4):29-39
    [96]陈遐林,马钦彦,康峰峰等.山西太岳山典型灌木林生物量及生产力研究[J].林业科学研究,2002,15(3):304-309
    [97]李武斌,包维楷,何丙辉等.岷江上游大沟流域油松人工幼林生物量组成及其影响因素[J].山地学 报,2007,25(2):236-244
    [98]Browns,Lugo.Biomass of tropical forests:A new estimate based on forest volumes[J]. Science,1984,223:1290-1293
    [99]方精云,刘国华,徐嵩龄。中国陆地生态系统碳库[M].现代生态学的热点问题研究(上册)北京:中国科学技术出版社,1996:251-277
    [100]Isacv,Korovin,Zamolod, et al. Carbon stock and deposition in pHytomass of the Russian forests. Water Air Soil Poll.1995,247-256
    [101]李意德.我国热带天然林植被C贮存量的估算[J].林业科学研究,1998,(2):156-162
    [102]Jiang,Zhou.Carbon balance of larix gmelini forest and impacts of management pratices[J]植物生态学报,2002,26(3):317-322
    [103]王玉辉,周广胜,蒋延玲,杨正宇.基于森林资源清查资料的落叶松林生物量和净生长量估算模式[J].植物生态学报,2001,28(4):420-425
    [104]邢艳秋.基于RS和GIS东北天然林区域森林生物量及碳贮量估测研究[D].哈尔滨:东北林业大学,2005
    [105]赵敏,周广胜.¨国森林生态系统的植物碳储量及其影响因子分析[J].地理科学,2004,24(1):50-54
    [106]Hame, Salli, Andersson et al I. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon[J].Nature,2000,403:301-304
    [107]Lefsky,Harding,Cohen,et al. Surface lidar remote sensing in Coarse and Fine Fractions of Pacific Northwest Old-Growth Forest Soils[J]. Soil Science Sosiety of America Journal,2004,68(6):2023-2030
    [108]郭志华,彭少麟,工伯荪.利用TM数据提取粤西地区森林生物量[J].生态学报,2002,22(11):1833-1839
    [109]国庆喜,张锋.基于遥感信息估测森林的生物量[J].东北林业大学学报,2003,31(2):13-16
    [110]高志强,刘纪远,曹明奎.土地利用和气候变化对农牧过渡区生态系统生产力和碳循环的影响[J].中国科学D辑地球科学,2004,34(10):946-957
    [111]魏安世,林寿明,李志洪.基J:TM数据的森林植物碳储量的估测方法研究[J].中南林业调查规划,2006,25(4):44-47
    [112]唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学,2000,36(专刊1):19-27
    [113]赵上洞,汪业勖,于振良等.中国森林生态系统碳循环研究[J].中国生态学会通讯,2000(特刊):50-52
    [114]Fang J Y, Piao S L, Zhao S Q.The carbon sink:The role of the middle and high latitudes terrestrial ecosystems in the northern hemispHere[J]. Acta PHytoecologica Sinica,2001,25(5):594-602.
    [115]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学 报,2001,12(1):13-16
    [116]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740
    [117]Shroeder, Brown, Birdsey et al. Biomass estimation for temperate broad leaf forests of the US using inventory data [J]. Forest Science,1997,43:424-434.
    [118]Brown. Measuring carbon in forests:current status and future challenges [J]. Environmental Pollution,2002,116:363-372.
    [119]Homann, Remillard, Harmon. Bormann. Carbon Storage in Coarse and Fine Fractions of PacificNorthwest Old-Growth Forest Soils[J]. Soil Science Society of America Journal,2004, 68(6):2023-2030.
    [120]王凤友.森林凋落物量综述研究[J].生态系统学进展,1989,6(2):95-102.
    [121]李志安,邹碧,丁永祯等.森林凋落物分解重要影响因子及其研究进展[J].生态学杂志,2004,23(6):77-83.
    [122]Singh K P,Tripathi S K.Litterfall,litter decomposition and nutrert Release patterns in four native tree species raised on coal mine spoil at Singrauli, India[J].boil Fertil Soils,1999.(29):371-378.
    [123]潘紫重,杨文化,曲银鹏.不同林分类型凋落物的蓄水功能[J].东北林业大学学报,2002,30(5):19-21.
    [124][124]杨玉盛,陈银秀,何宗明等.福建柏和杉木人上林凋落物性质的比较[J].林业科学,2004,40(1):2-10.
    [125][125] Grigg A H,Mulligan D R.Litterfall from two educalypt woodlands in central Queensland. Austra[J].Ecol,1999,24(6):662-664.
    [126][126] Yang Y S,Guo J F,Chen G S,et al. Litterfall.nutrient return,and leaf-litter decomposition in four plantations compared with a natural forest insubtropical China[J]. Annals of Forest Science,2004,61:465-476.
    [127][127] Liu Q,Peng S L,BiH,et al.Nutrient dynamics of foliar litter in reciprocal decomposition in tropical and subtropical forests[J].Journal of Beijing Forestry University,2005,27(1):24-32.
    [128]吴承祯,洪伟,姜志林等.我国森林凋落物研究进展[J].江西农大学报.2000.22(3):205-410.
    [129]邵玉琴,赵吉,杨劫.内蒙古皇甫川流域凋落物分解过程中营养元素的变化特征[J].水土保持学报,2004,18(3):82-84.
    [130]Berg B, Muller M, Wessen B.Decomposition of red clover(Trifolium pretense) roots[J]. Soil Boil.Biochem.1987,19:589-594.
    [131]Berg B.Litter decomposition and organic matter turnover in northern forst soils[J]. Forest Ecology and Management,2000,(133):13-22.
    [132]Austin A T& P M.Vitousek. Precipitation, decomposition and litter decomposability of Metrosideros polymorgha in a native forests on Hawaii[J]. Journal of Ecology,2000,(88):129-138.
    [133]邱尔发,陈卓梅,郑郁善等.麻竹山地笋用林凋落物发生、分解及养分归还动态[J].应用生 念学报,2005,16(5):811-814.
    [134]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应[J].生态学报,2002,22(9):1534-1544.
    [135]徐国良,莫江明,周国逸等.氮沉降下鼎湖山森林凋落物分解及与上壤动物的关系[J].生态环境,2005,14(6):901-907.
    [136]王小强.不同林龄巨桉人上林地上壤理化性质动态研究.2009.
    [137]曾曙才,俞元春.亚热带儿种森林类型土壤的理化性质[J].江苏林业科技,1997(2):10-13.
    [138]焦如珍,杨承栋,屠星南等.杉木人工林不同发育阶段林下植被、土壤微生物、酶活性及养分的变化[J].林业科学研究,1997(4):34-40.
    [139]盛炜彤,杨承栋,范少辉.杉小人林的上壤性质变化[J].林业科学研究,2003(4):4-12.
    [140]翁贤权,苏惠琴,连华森等.一代杉木人工林(29年生)土壤肥力特性研究[J].福建林学院学报,2001(4):80-83.
    [141]Eva Fruhwald. Effect of high-temperature drying on properties of Norway spruce and larch[J]. Holz Roh Werkst.2007(65):411-418
    [142]曾伟生,张会儒,唐守正.立木生物量建模方法[M].中国林业出版社,2011.
    [143]董鸣,王义凤,孔繁志等.陆地生物群落调查观测与分析[M].北京:中高标准出版社,1996.
    [144]毛子军.森林生态系统碳平衡估测方法及其研究进展[J].植物生态学报,2002,26(6):731-738.
    [145]罗淑华.上壤酸碱性[J].茶叶通讯,1995.1:23-25.
    [146]蒋文伟,周国模,余树全等.安吉山地主要森林类型土壤养分状况的研究.水土保持学报,2004,18(4):73-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700