用户名: 密码: 验证码:
白蜡属种间杂种抗旱优势及其抗旱性分子机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白蜡属(Fraxinus)植物全世界约有70余种,广泛分布于北半球。我国白蜡属植物约20余种,其中有水曲柳(F. mandshurica)、绒毛白蜡(F. velutina)、小叶白蜡(F.sogdiana)及大叶白蜡(即美国白蜡,F. americana)等多种重要的珍贵用材树种,具有很高的经济价值。
     随着林业的发展和社会需求的提高,选育生长性能好,适应性强的优质树种尤为重要。在生物界杂种优势是存在的一个普遍的重要遗传现象。种间杂交能将优良性状集中在一起,显著改良品质、提高抗逆性,因而能创造出显著的经济效益和社会效益。然而,由于树木生长慢,生长周期长,树木的种间杂种优势利用不如玉米和水稻那样广泛,白蜡属种间杂种抗旱性优势的研究机理目前研究还很少,国内外对白蜡属种间杂种抗旱性优势在DNA甲基化水平和基因表达谱的研究尚未见报道。因此,迫切需要研究白蜡属种间杂种抗旱性优势的遗传机理以促进优良杂交树种的选育。本研究以水曲柳作为母本分别与大、小叶白蜡进行种间杂交得到杂种F1,通过干旱胁迫处理,对种间杂种F1抗旱性优势进行了研究,采用MASP方法,探索干旱胁迫对种间杂种及其亲本材料所引起的DNA甲基化的变化规律,发生DNA甲基化变化的基因,并对这些基因的抗旱功能进行进一步研究。利用数字基因表达谱深度测序,了解干旱胁迫下,种间杂种F1和亲本材料的基因表达的情况;通过基因表达差异分析,发掘影响植物抵抗干旱胁迫过程中的基因。揭示种间杂种抗旱优势产生的分子机理,探索种间杂种F1代抗旱优势形成的分子基础。主要研究结论如下:
     1.水曲柳×大、小叶白蜡种间杂种F1抗旱性生理研究
     (1)胁迫处理抑制了植株的生长量、光合作用、及光合色素的合成。同时,在干旱胁迫处理下各植株的SOD活性、POD活性均有不同程度的提高。复水处理3天后,大多数生理指标能得到恢复,但仍都大于处理前水平。
     (2)种间杂种F1对干旱胁迫的响应:以各干旱胁迫下生理指标为主,研究了水曲柳×大叶白蜡、小叶白蜡的杂种抗旱优势。干旱胁迫处理下,对于亲本材料来说,种间杂种F1的生长量、光合作用、相对电导率、光合色素含量及SOD、POD活性等生理指标表现出不同程度的抗旱性优势,但因母本家系的不同而有所差异。
     (3)对杂种F1在耐受力抗旱性方面进行了综合评价与排序,并最终得到综合抗旱能力排序为:110>135>137>36>149>195>14>76>62>142>171>65>136>16>169>72>32>58>131>24>114>29>156>47>15>115>87,其中种间杂种F1110、36、149、195、14排在前五位,其抗旱性综合评价指标超过其母本材料20%-35.48%,说明种间杂种Fl在抗旱性方面显示出明显的优势。其中初步选出优良种间杂种F1为:水曲柳与北京大叶白蜡种间杂种F1110,其抗旱性综合评价指标超过其母本材料达31.57%。
     2.水曲柳×大叶白蜡种间杂种F1干旱胁迫中DNA甲基化的变异机制
     (1)未经干旱处理的对照组:母本材料(母本自由授粉子代)113、父本材料(父本自由授粉子代)4-3甲基化程度分别为20.12%、24.61%;种间杂种F1110、115甲基化程度为15.48%、16.81%。种间杂种F1甲基化水平低于亲本材料,仅为亲本材料的72%。表明种间杂种F1比相应的亲本在形成杂合体时某些位点发生了去甲基化作用。
     (2)干旱胁迫处理:导致DNA甲基化平均水平明显增加,其中种间杂种F1115、母本材料113和父本材料4-3增加幅度尤为明显(分别由16.81%增至29.10%,20.12%至31.91%,24.61%至32.70%);而优良种间杂种F1110DNA甲基化水平胁迫前后无明显增幅,表明DNA甲基化水平变化具有一定的种属特异性。
     种间杂种F1115、母本材料113和父本材料4-3幼苗基因组的DNA甲基化模式主要以内侧胞嘧啶的甲基化为主,种间杂种F1110幼苗基因组的DNA甲基化模式内、外侧胞嘧啶的甲基化相差不多。种间杂种F1DNA甲基化模式经历了一定的改变与调整,推测种间杂种抗旱优势的产生与种间杂种F1基因组DNA甲基化模式的改变和重新调整有关。
     与对照相比,干旱处理3d都是以甲基化出现为主,且母本材料113的变化较大。干旱9d处理以去甲基化为主,且种间杂种Fl115和父本材料4-3的变化较大,这都与干旱处理的甲基化水平的变化的结果相似。
     (3)对干旱胁迫特异诱导DNA甲基化片段序列分析结果表明:其中一些条带与功能基因具有一定的同源性,包括氨基酸代谢相关蛋白、跨膜运输载体、细胞色素氧化酶、蛋白激酶、DNA结合蛋白、ATP结合蛋白、叶绿体PetD、多聚嘧啶结合蛋白、果胶酶的前体、解旋酶、葡萄糖-6-磷酸脱氢酶、热休克蛋白-70、脱氧核糖核酸外切酶、线粒体ort214、氧化还原酶、整合酶和三磷酸腺苷酶等。可以推知其中一些基因表达可能与干旱胁迫相关。
     3.水曲柳×大叶白蜡干旱胁迫中数字基因表达谱分析
     (1)通过对3个样品CleanTag(测序标签)拷贝数分布统计分析,大约占基因种类4%的基因,表达量占总表达量的65%,而占Tag种类60-70%的Tag表达量仅仅占总表达量的5-9%。这意味着在杂种F1和其亲本材料中,某些基因的高表达量,意味着其在抵抗干旱胁迫中可能发挥着重要的作用。
     (2)对差异表达基因进行pathway显著富集分析发现:种间杂种F1110与母本材料113、父本材料4-3差异均集中在对刺激的响应(包括外界刺激响应、化学刺激响应、水应答、压力响应等),代谢和能量前体合成,光合作用,物质运输系统。差异代谢过程,主要包括淀粉与蔗糖代谢、植物生理节律、光合作用、植物激素信号转导、苯基丙氨酸代谢等,暗示着这些过程可能在植物生长发育及抵抗干旱胁迫过程中起着重要作用。在这些过程中发现了一些关键的上调、下调表达的基因。
     综上所述,种间杂种F1在抗旱性能方面,从生长量、光合作用、相对电导率、光合色素含量及SOD、POD(?)舌性等方面都体现出了优于亲本的特点,从DNA甲基化水平分析,在干旱胁迫时种间杂种F1较其亲本材料DNA甲基化的程度低,这可能使与抗旱相关的基因表达量更高,进一步从转录水平分析时,得到了相似的结论,种间杂种F1与亲本材料对干旱胁迫表现出不同代谢途径差异,并且推测这些途径可能与抗旱性能有关。
The genus Fraxinus contains about70species throughout the world They are widely distributed in the Northern Hemisphere, among which20species are distributed in China, including F.mandshurica, F.velutina, F.sogdiana and F.americana etc.
     Hybrid plant could greatly inerease quality, modestly improve and raise tolerance to stresses. Accordingly, hybrid forestry trees could create remarkable economic and social benefits. However, heterosis of trees has not been used as widely as that of rice and corn. Deficiency of slowly growing of trees and the expense of producing F1seeds are two main reasons leading to this present situation. Therefore, it is urgent to study the genetic mechanism of trees heterosis to promote selection of elite hybrideotton.
     Based on the hybridization between F.mandshurica and F.sogdiana/F.americana, this paper studied the heterosis of F.mandshurica×F.sogdiana and F.mandshurica×F.americana under drought stress. The main conclusions are as follows:
     1. F. mandshurica X F. americana, F. sogdiana interspecific hybrid F1drought resistance physiological research
     (1)Research on drought resistance indicators of F.mandshurica×F.sogdiana and F.mandshurica×F.americana:the hybrid combination were gradual wilting under drought stress and some were withered like burnt. All of them can resume normal after rehabilitation treatment. Drought stress inhibited plant growth, photosynthesis and the synthesis of pigment for photosynthesis. Furthermore, the SOD activity, POD activities increased in different degree under drought stress.3days after rewater, most of the physiological characters can be restored, but still greater than the level before treatment.
     (2)Research on heterosis of F.mandshurica×F.sogdiana and F.mandshurica×F.americana: The physiological character under drought stress were studied and used to analysis the heterosis of hybrids. For F.mandshurica×F.americana and Fmandshurica×Fsogdiana, growth, photosynthesis, POD activity, SOD activity, the relative conductivity, and photosynthetic pigment content showed heterosis in different degree and varied with their female parents.
     (3)Comprehensive evaluation of drought resistance on hybrids:39hybrids were evaluated on drought resistance. The order of integrated drought resistance was:110>135>137>36>149>195>14>76>62>142>171>65>136>16>169>72>32>58>131>24>114>29>156>47>15>115>87, of which the best drought resistance heterosis is F.mandshurica×F.americana F1110.
     2. DNA methylation variation mechanism of F. mandshurica X F. americana interspecific hybrid F1under drought stress
     (1) CK team:The MSAP ratio, which was the ratio of MSAP sites to the totally amplified sites, in two hybrids (110,115) were15.48%,16.81%, respectively, all of which were lower than those of either their parents(20.12%,24.61%). The results suggested that demethylation was occurred in some amplified5'CCGG sites.
     (2)Results showed that the average level of methylation was increased under drought stress treatment, especially in115,113,4-3. But the alterations of the DNA methylation state and level induced by drought stress were not increased obviously, and were species specificity.
     Genomic DNA methylation patterns in parental (113and4-3) and hybrids (115) seedlings were mainly inside cytosine methylation. Genomic DNA methylation patterns in hybrid (110) seedlings were mainly outside of cytosine methylation. The DNA methylation patterns of hybrid F1have been changed and adjusted, suggesting that heterosis of hybrids F1appeared because of the genomic methylation patterns' change and re-adjust.
     Results showed that the average of DNA methylation in seedlings were increased under drought stress treatment after three days, while the main MSAP pattern was decreasing bands, and female parent(113) changed obviously. The average of DNA methylation in seedlings were increased under drought stress treatment after nine days, while the main MSAP pattern was also decreasing bands, and male parent(4-3) and hybrids (115)changed obviously. The result was similar with the genomic methylation level change.
     (3)Some variable MSAP profiles were isolated and sequenced, which were analyzed with Blast. Blast analysis results showed that sequences have homology with some functional genes.3. F. mandshurica×F. americana in drought stress digital gene expression profiling analysis
     (1)About4%of Tag types accounted for nearly65%of the total Tags, but60-70%of Tags type was less than5-9%of the total Tag number. This meant some specific genes play a significant role in the process of the resistance drought stress.
     (2)Through analysising the differential expressed genes in hybrids110and parent were significant differences in Photosynthesis、Photosynthesis-antenna proteins、Metabolic pathways、Biosynthesis of secondary metabolites、Biosynthesis of unsaturated fatty acids、 Carbon fixation in photosynthetic organisms、Pyruvate metabolism. Nitrogen metabolism、 Starch and sucrose metabolism、Glycolysis/Gluconeogenesis、Circadian rhythm-plant、 Phenylpropanoid biosynthesis、Plant hormone signal transduction etc.
引文
[1]张美珍,邱莲卿.中国植物志(第61卷).北京:科学出版社,1992,2:39[J]
    [2]《中国森林》编辑委员会.中国森林(第3卷/阔叶林).北京:中国林业出版社,2000
    [3]奚海英,宋克志.林木杂交育种技术的应用介绍.林业勘查设计.2004(04):62
    [4]耿如林,王相生,黄宏武.杂种优势遗传机理的研究进展.中国畜牧兽医.2007(11):46-49
    [5]陈天华.林木杂交育种研究的发展.林业科技开发.1998(04):3-5
    [6]王月福,陈建华,曲健磊.土壤水分对小麦籽粒品质和产量的影响.莱阳农学院学报.2002(01):7-9
    [7]杨蓓.干旱胁迫对节节麦DNA甲基化的影响.河南大学,2011
    [8]Ramanjulu S, Bartels D. Drought and desiccation-induced modulation of gene expression in plants. Plant Cell Environ.2002,25(2):141-151
    [9]Urao T, Yamaguchi-Shinozaki k, Urao S.An Arabidopsis mybhomolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence.Plant Cell,1993,5(11):1528-1539
    [10]Q Liu, M Kasuga, Y Sakuma, H Abe. S Miura, K. Yamaguchi-Shinozaki, and K Shinozaki.Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively.in Arabidopsis.Plant Cell,1998,10(8): 1391-1406
    [11]王关琳主编.植物基因工程原理.北京:科学出版社,2002:62-63
    [12]Pilon-Smits E, Ebskamp M, Paul MJ, Jeuken M, Weisbeek PJ, Smeekens S.Improved Performance of Transgenic Fructan-Accumulating Tobacco under Drought Stress.Plant Physiol.1995 Jan;107(1):125-130
    [13]Hellwege EM, Raap M, Gritscher D,Willmitzer L and Heyer AGDifferences in chain length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-FFT cDNAs.FEBS Letters, 1998,427(1):25-28
    [14]Kavikishor P B, Hong Z, Miao G H.Overexpression of 1-pyrroline-5-carboxylate Synthestase Increases Proline Production and Confers Osmotolerance in Transgenic plant.Plant Physiol,1995,108:1387-1394
    [15]张树珍.海藻糖的研究进展及其应用前景.华南热带农业大学学报.2000(03):22-29.
    [16]卢静君,多立安,刘祥君.盐胁迫下两草种SOD和POD及脯氨酸动态研究.植物研究.2004(01):115-119
    [17]刘宁,高玉葆,贾彩霞,等.渗透胁迫下多花黑麦草叶内过氧化物酶活性和脯氨酸含量以及质膜相对透性的变化.植物生理学通讯.2000(01):11-14
    [18]张宏一,朱志华.植物干旱诱导蛋白研究进展.植物遗传资源学报.2004(03):268-270
    [19]Lebo RV, Su Y.Positional cloning and multicolor in situ hybridization.Principles and protocols.Methods Mol Biol.1994,33:409-38
    [20]Vuorio OE, Kalkkinen N, Londesborough J.Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae.Eur J Biochem.1993,216(3):849-61
    [21]林栖凤,李冠一.植物耐盐性研究进展.生物工程进展.2000(02):20-25
    [22]王胤,杨章旗.木本植物耐盐抗旱机理研究及评价方法.广西林业科学.2006(03):117-122
    [23]John M.Ward etc.Plants Pass the Salt.Trends in Plant Science,2003,8 (5):200-201
    [24]张渝洁,全先庆,李新国.植物水孔蛋白研究进展.安徽农业科学.2006(20):5168-5170
    [25]杨淑慎,山仑,郭蔼光.水通道蛋白与植物的抗旱性.干旱地区农业研究.2005(06):218-222
    [26]Garay-Arroyo A,Colmencro-Flores JM,Gareiarru-bio A,Covarrubias AA.Highly Hydrophilie proteins in prokaryote and eukaryotes are common during conditongs of water deficit.J Bil Chem,2000,275:5668-5674
    [27]Bird A. DNA methylation patterns and epigenetic memory. Genes Dev.2002(16):6-21,
    [28]Adams R, Burdon G. Molecular Biology of DNA Methylation. New york, Berlin, Herdelberg, Tokyo:Springer-Verlag,1985:1-14
    [29]汪炳良.萝卜春化作用及其与DNA甲基化水平的关系,浙江大学博士论文,2004:24-26
    [30]孙颖,葛锋,刘迪秋,等.植物中DNA甲基化模式及其相关机制.植物生理学报.2011(08):745-751
    [31]Kashkush K, Khasdan V. Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics.2007,177(4):1975-1985
    [32]Finnegan E J, Kovac K A. Plant DNA methyltransferases. Plant Mol Biol.2000,43(2-3): 189-201
    [33]Vanyushin B, Kirnos M. DNA methylation in plants. Gene.1988,74:117-121
    [34]Finnegan E, Kovac K. Plant DNA methyltransferases. Plant Mol Biol.2000,43:189-201
    [35]Buryanov Y I, Shevchuk T V. DNA methyltransferases and structural functional specificity of eukaryotic DNA modification. Biochemistry.2005,70(7):730-742
    [36]Aufsatz W, Mette M F, Matzke A J. The role of MET1 in RNA directed denovo and maintenance methylation of CG dinucleotides. Plant Molecular Biology.2004,54(6):793-804
    [37]Vanyushin B F. DNA Methylation In Plants. Curr Top Microbiol Immunol.2006,301: 67-122
    [38]Cao X, Jacobsen S E. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Current Biology.2002,12(13):1138-1144
    [39]Cao X, Springer N M. Muszynski M G, et al. Conserved plant genes with similarity to mammalian de novo methyltransferases. Proc Natl Acad Sci USA.2000,97(9):4979-4984
    [40]Gener R, Kovac K A, Dennis E S. Multiple DNA methyltransferase genes in Arabidopsis thaliana. Plant Mol Biol.1999,41(2):269-278
    [41]Goodrich J, Tweedie S. Rememberance of things past:Chromatin remodeling in plant development. Annu Rev Cell Dev Biol.2002,18:707-746
    [42]Jeddeloh J A, Stokes T L, Richards E J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet.1999,22(1):94-97
    [43]Kanno T, Mette M F, Kreil D P. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr Biol.2004,14(9):801-805
    [44]Jackson J P, Lindroth A M, Cao X. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature.2002,416(6880):556-560
    [45]Liu B, Vega J M, Feldaman M. Rapid genomic changes in newly synthesized amphiploids of Triticumand Aegilops. Ⅱ.Changes in low-copy coding DNA sequences Genome.1998,41(4):535-542
    [46]Vongs A, Kakutani T, Martienssen R. Arabidopsis thaliana DNA methylation mutants. Science.1993(226):1926-1928
    [47]工晓凤,曾凡锁,詹亚光.植物DNA甲基化变异对生物和非生物胁迫的响应机制.生物技术通讯.2011(01):108-112
    [48]南楠,曾凡锁,詹亚光.植物DNA甲基化及其研究策略.植物学通报.2008(01):102-111
    [49]Leutwiler L, Hough-Evans B, Meyerowitz E. The DNA of Arabidopsis thaliana. Mol Gen Genet.1984(194):15-23
    [50]Wanger I, Capesius I. Determination of 5-methylcytosine from plant DNA by high performance liquid chromatography. Biochemica and Biophysica Acta.1981(654):52-56.
    [51]葛才林,杨小勇,刘向农,等.重金属对水稻和小麦DNA甲基化水平的影响.植物生理与分子生物学学报.2002(05):363-368
    [52]Bennetezen J. Contrinbutions of retroelement to plant genome organization,function and evolution. Trends Microbiol.1996(4):347-353
    [53]Jacobsen S, Meyerowitz E. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science.1997(277):1100-1103
    [54]Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural vatiation in floaral symmetry. Nature.1999(401):157-161
    [55]Gruenbaum Y, Naveh-Many T, Cedar H. Sequence specificity of methylation in higher plant DNA. Nature.1981(292):860-862
    [56]Okaeley E, Jost J. Non-symmetrical cytosine methylation in tobacco pollen DNA. Plant Mol Biol.1996(31):727-730
    [57]Huang L, Lin L, Chen C. Phase reversal in Sequoia sempervirens in relation to mtDNA. Physiologia Plantarum.1995(94):379-383
    [58]Simkova H. Methylation of mitochondrial DNA in carrot. Plant Cell Rep.1998(17):220-224
    [59]曹东慧.水稻与玉米、狼尾草远缘杂交诱发甲基化变异和转座子mPing及Pong的激活.东北师范大学硕士论文,2009:12-18
    [60]Wendel J. Genome evolution in polyploids. Plant Mol Biol.2000,42(1):225-249
    [61]Johnson T, Rd C. Research on pyrimidines C111.The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the tubercle bacillus. J Am Chem. 1925(47):2838-2844
    [62]Gr W. Occurrence of 5-methyl-cytosine in nucleic acids. Nature.1950(166):237-238
    [63]Gr W. Recognition and estimation of 5-methylcytosine in nucleic acids. Biochem. 1951(48):581-584
    [64]Ergle D R, Katterman F R H. Deoxyribonucleic acid of cotton. Plant Physiol.1961(36): 811-815
    [65]Thomas A J, Sherrat H S A. The isolation of nucleic acid fractions from plant leaves and their purine and pyrimidine composition. Biochem.1956(62):1-4
    [66]Kakutani T, K M, E R. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddml mutation of Arabidopsis thaliana. Genetics.1999, 151(2):831-838
    [67]Mette M F, Aufsatz W, van der Winden J. Transcriptional silencing and promoter methylation triggered by double stranded RNA. EMBO J.2000,19(19):5194-5201
    [68]Bezdek M, Koukalova B, Kuhrova V. Differential sensitivity of CG and CCG DNA sequences to ethionine-induced hypomethylation of the Nicotiana tabacum genome. FEBS Lett.1992,300(3):268-270
    [69]Wagner C, Vaucheret H, Furner I. The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 gene codes for an S-adenosyl-L-homocysteine hydrolase required for DNA methylationdependent gene silencing. Plant Cell.2005,17(2):404-417
    [70]Finnegan E J, Peacock W J, Dennis E. DNA methylation, a key regulator of plant development and other processes. Cur Opion in Genet and Develop.2000,10(2):217-223
    [71]Finnegan E J, Peacock W J, Dennis E. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA.1996, 93(16):8449-8454
    [72]Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature.1999,401(6749):157-161
    [73]Birchler J, Auger D, Riddle N. In search of the molecular basis of Heterosis. Plant Cell. 2003,15:2236-2239
    [74]Stupar R, Gardiner J, Oldre A, et al. Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol.2008,8:33
    [75]Guo M, Rupe M, Yang X, et al. Genome-wide transcript analysis of maize hybrids:allelic additive gene expression and yield heterosis. Theor Appl Genet.2006,113:831-845
    [76]Springer N, Stupar R. Allelic variation and heterosis in maize:How do two halves make more than a whole?. Genome Res.2007,17:264-275
    [77]Maenhout S, De Baets B, Haesaert G. Prediction of maize single-cross hybrid performance:support vector machine regression versus best linear prediction. Theor Appl Genet (in press).2009
    [78]Repsilber D, Andorf S, Selbig J, et al. Enriched partial correlations in genome-wide gene expression profiles of hybrids (A. thaliana)—a systems biological approach towards the molecular basis of heterosis. Theor Appl Genet (in press).2009
    [79]Steinfath M, Gartner T, Lisec J, et al. Prediction of hybrid biomass in Arabidopsis thaliana by selected parental SNP and metabolic markers. Theor Appl Genet (in press). 2009
    [80]任毅,黄三文.功能基因组学在蔬菜中的应用.中国蔬菜.2009(02):1-6
    [81]Veleulescu V, Zhang L, Zhou W. Characterization of the yeast transeriptome. Cell.1997, 88:243-251
    [82]吴春颖,宋经元,陈士林.表达序列标签在药用值物研究中的应用.中草药.2008(05):778-782
    [83]Li Y, Luo H, Sun C. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis. BMC Genomies.2010,11:268
    [84]Sun C, Li Y, Wu Q. De novo sequencing and analysis of American ginseng root transcriptome using a GS Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics.2010,11:262
    [85]Koike T, KitaoM, MaruyamaY, MoriS, LeiT.T.Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile.Tree Physiology,2001,21(12/13):951-958
    [86]Kim YoungSik,Kim ChangHwan,KilBongSeop.Classification and ordination analysis of the Quercusmongolica communities inMt.Changan, Chonbuk.Korean Journal of Environment& Ecology,1999,13(2):143-152
    [87]Kim JHi ong, YangHeeMoon.The estimation of tree form index for major canopy species in the natural deciduous forest. Journal of Forest Science-Kangwon National University, 1999,15:1-9
    [88]UtsumiY, SanoY, FunadaR, Fujikawa S, Ohtani J.The progression of cavitation in earlywood vessels of Fraxinus mandshurica var japonica during freezing and thawing.Plant Physiology,1999,121(3):897-904
    [89]JacobsK, DanielsonD.Variation in field susceptibility ofnative and exotic ash species to anthracnose.Journal of Arboriculture,2002,28(1):35-40
    [90]KubojimaY, KatoH, TonosakiM.Proportional limit of wood obtained from a load-time diagram during an impact bending test. Journal of Wood Science,2002,48(6):527-531.
    [91]Liu Jun,FurunoT.The fractal evaluation of wood texture by the triangular prism surface area method.Wood& Fiber Science,2001,33(2):213-222
    [92]工乐祥,张同余,吕玉臣.红松、水曲柳混交林营造技术初报.吉林林业科技.2002(01):6-8
    [93]迟长义,腾贵波,中新春,等.红松透光抚育林下天然水曲柳大苗造林初报.辽宁林业科技.2002(03):24-40
    [94]苏含英,林代斌.影响水曲柳人工林生长的主要立地因子(英文)Journal of Forestry Research.2003(01):83-86
    [95]吴楚,工政权,范志强,等.不同氮浓度和形态比例对水曲柳幼苗叶绿素合成、光合作用以及生物量分配的影响(英文).植物生态学报.2003(06):771-779
    [96]梁建萍,梁小明,寇元斌.不同实验处理条件下水曲柳种子的生活力动态.山西农业大学学报.2001(02):138-140
    [97]付玉嫔.水曲柳苗木抗寒性培育研究.林业调查规划.2003(03):57-61
    [98]李京.苏明焱.罗旭.水曲柳无性系初级种子园营建技术标准.中国林副特产2007(05):30-32
    [99]吴学,孙建新,刘玫,等.白蜡树嫁接水曲柳育苗技术.现代种业.2004(05):25
    [100]张惠君,罗凤霞.水曲柳未成熟胚的离体培养研究.林业科学.2003(03):63-69
    [101]沈洁梅.水曲柳板材干燥处理的研究.木工机床.2003(02):19-22
    [102]李涛,顾炼百.185℃高温热处理对水曲柳木材力学性能的影响.林业科学.2009(02):92-97
    [103]甄志先,迟德富,孙凡,等.柳蝙蛾危害对水曲柳木材性质的影响.东北林业大学 学报.2006(03):13-15
    [104]孔冬梅,沈海龙,吕晋慧.水曲柳雌花发育、大孢子发生及胚胎发育的解剖学观察.植物研究.2008(04):387-391
    [105]詹亚光,尹立辉,刘雪梅,等.水曲柳大小孢子发生、雌雄配子体发育及其系统学意义.北京林业大学学报.2005(05):42-47
    [106]M.Schaub, J.M.Skelly, J.W.Zhang, J.A.Ferdinand, J.E.Savage, R.E.Stevenson, D.D.Davis and K.C.P hysiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions.Steiner.Environmental Pollution, Volume 133, Issue 3, February 2005, Pages 553-567
    [107]M.Schaub, J.M.Skelly, K.C.Steiner, D.D.Davis, S.P.Pennypacker, J.Zhang, J.A.Ferdinand, J.E.Savage and R.E.Physiological and foliar injury responses of Prunus serotina, Fraxinus americana, and Acer rubrum seedlings to varying soil moisture and ozone.Stevenson.Environmental Pollution, Volume 124, Issue 2, July 2003, Pages 307-320
    [108]Patricia R.Knight, Matthew P.Kelting, J.Roger Harris and John R.Seiler.T he impact of season of harvest and duration of pre-measurement storage impact hydraulic conductance of stem samples for Acer rubrum L.x saccharinum L.and Fraxinus americana L.Environmental and Experimental Botany, Volume 44, Issue 1, August 2000, Pages 23-29
    [109]Roger W.Carlson.Reduction in the photosynthetic rate of Acer, quercus and Fraxinus species caused by sulphur dioxide and ozone.Environmental Pollution (1970), Volume 18, Issue 2. February 1979, Pages 159-170
    [110]C.Trudeau, J.-L.Malo, A.Cartier, M.Chan-Yeung and Henry Chan.615 Occupational asthma caused by exposure to ash wood dust (Fraxinus Americana). Journal of Allergy and Clinical Immunology, Volume 81, Issue 1, January 1988, Page 322
    [111]H.Woodcock, W.A.Patterson and K.M.Davies.The relationship between site factors and white ash (Fraxinus americana L.) decline in Massachusetts.Forest Ecology and Management, Volume 60, Issues 3-4, September 1993, Pages 271-290
    [112]张俊霞,苏瑾妤.大叶白蜡育苗试验技术.内蒙古林业.2005(03):19-20
    [113]王建华,杨秀莲,徐占平,等.大叶白蜡引种试验初报.内蒙古林业.2003(03):30-31
    [114]孙庆军冯大千Author.大叶白蜡等六树种在新疆造林的最佳时期探讨.林业科技通讯.1984(12):11-14
    [115]洪源范,沈雨佳,洪青,等.大叶白蜡的离体培养与快速繁殖.植物生理学通讯.2006(06):1139
    [116]王炳文.两种生长调节剂对大叶白蜡幼苗生长的影响.新疆林业.2005(04):20-21
    [117]赵刚,王冬良,王炳举.生长调节剂对大叶白蜡幼苗生长的影响.石河子大学学报(自然科学版).2002(02):115-117
    [118]沈作奎,严昌荣.大叶白蜡蒸腾作用特征研究.湖北民族学院学报(自然科学版).2005(04):378-380
    [119]莫庸.大叶白蜡水分状况和叶绿素含量的研究.石河子农学院学报.1986(01):93-95
    [120]马常耕.我国杨树杂交育种的现状和发展对策.林业科学.1995(01):60-68
    [121]马常耕.国外针叶树种间杂交研究进展.世界林业研究.1997(03):10-18
    [122]杨丽琼,蒋天华.林木杂交育种研究的趋向.贵州林业科技.2000(02):36-40
    [123]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2006,1:134-261
    [124]《作物抗旱节水的生理遗传育种基础》.华北农学报.2004(02):56
    [125]齐明聪,蒋向瞬.苗木活力的探讨.东北林业大学学报.1988(S2):1-7
    [126]Hans Lambers,Hendrik Poorter.Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences.Advances in ecological research,1992(23):187-261
    [127]尹伟伦.不同种类杨树苗木的生长和光合性能的比较研究Ⅱ净光合速率、光呼吸和Hill反应等光合性能指标.北京林学院学报.1983(02):41-55
    [128]尹伟伦.不同种类杨树苗木的生长和光合性能的比较研究——Ⅰ叶、茎、根的生长和相互关系.北京林学院学报.1982(04):93-108
    [129]刘玉华,贾志宽,史纪安,等.旱作条件下不同苜蓿品种光合作用的日变化.生态学报.2006(05):1468-1477
    [130]姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制.热带农业科学.2005(04):84-89
    [131]王宇超,王得祥,彭少兵,等.干旱胁迫对木本滨藜生理特性的影响.林业科学.2010(01):61-67
    [132]徐云刚,詹亚光.植物抗旱机理及相关基因研究进展.生物技术通报.2009(02):11-17
    [133]张继澍.植物生理学[M].西安:世界图书出版公司,1999
    [134]王洪春.专题讲座——第二十六讲植物抗性生理.植物生理学通讯.1981(06):72-81
    [135]Paul M,Hase gawaragepaulM,Hasegawa RageA,Bressan Sangita Handa,etal.Celllular mechanism tolerance of water stress[J].Horticscience,1984,15
    [136]李锦树,王洪春,王文英,等.干旱对玉米叶片细胞透性及膜脂的影响.植物生理学报.1983(03):223-229
    [137]蒋明义,荆家海,王韶唐.渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响.植物生理学报.1991(01):80-84
    [138]Mccord J.M..Superoxide dismutas:An enzymic function for erythrocuprein. Biol. Chem, 1969,244:6049-6055
    [139]工宝山,赵思齐.干旱对小麦幼苗膜脂过氧化及保护酶的影响.山东师大学报(自然科学版).1987(01):29-38
    [140]Kalir A,Poljakoff Mayber A.Changes in activity of malate dehydrogenase, catalase, peroxidase and uperoxide dismutase in leaves of Halimione porlulacoides (L) aellen exposed to high sodium chloride concentrations. Ann. Bot.1981,47:75-85
    [141]曹翠玲,高俊凤.小麦细胞根细胞质膜脱氢化还原酶对干旱胁迫与K+积累关系.西北农业大学学报,1996,24(3):25-29
    [142]杨建伟,韩蕊莲,刘淑明.不同土壤水分下杨树蒸腾变化及抗旱适应性研究.西北林学院学报,2004,19(3):7-10
    [143]文建雷,张檀.三种杜仲无性系抗旱性比较.西北林学院学报,2000,15(3):12-15
    [144]Chen G, Hu WY, Xie FT, Zhang LJ. Solvent for extrating malondialdehyde in plant as an index of senescence.Plant Physiology Communications,1991,27(1):44-46
    [145]Takahama U, Oniki T.A peroxidase,phenolics, ascorbate system can scavenge hidrogen peroxide in plant cells.Physiol.Plant,1997,101:845-852
    [146]唐峰波熊正英张志勤工致远拉元来.POD活性与水稻抗早性的关系.陕西师大学报(自然科学版).1995(04):63-66
    [147]薛崧,汪沛洪,许大全,等.水分胁迫对冬小麦CO_2同化作用的影响.植物生理学报.1992(01):1-7
    [148]陈建.四种灌木植物光和效率对土壤水分的响应过程与机制[D].山东:山东农业大学,2008
    [149]叶金山,胡伟华,谢青,等.白兰杂种F_1种间杂种优势形成的水分胁迫抗性生理基础.西北林学院学报.2012(01):70-74
    [150]Xiao J, Li J, Yuan L, Tanksley SD. Dominance is the major genetic basis of heterosis in rice as revealed by OLT analysis using molecular markers. Genetics,1995.140:745-754
    [151]孙其信.农作物杂种优势机理研究及展望.作物杂志.1998(04):32
    [152]钟兰,王建波.DNA超甲基化在小麦耐盐胁迫中的作用.武汉植物学研究.2007(01):102-104
    [153]潘雅姣,傅彬英,工迪,等.水稻干旱胁迫诱导DNA甲基化时空变化特征分析.中国农业科学.2009(09):3009-3018
    [154]Xiong L, Xu C, Maroof M A, et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Molecular and General Genetics.1999,261:439-446
    [155]骆薇.转基因白桦微繁过程中DNA甲基化的变异机制.东北林业大学硕士论文,2011:37-39
    [156]Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res.1995,23:4407-4414
    [157]X C. Jaeo bsen SE Role of the Arabidopsis DRM methyltransferases in denovo DNA methylation and gene silencing. Curr Biol.2002,12:1138-1144
    [158]Tariq M, Paszkowski J. DNA and histone methylation in plants. Trends Genet.2004,20: 244-251
    [159]Rangwala S, Richards E. The value-added genome:building and maintaining genomic cytosine methylation landscapes. Curr Opin Genet Dev.2004,14:686-691
    [160]Sw C, Ir H, Jacobsen S. Gardening the genome:DNA methylation in Arabidopsis thaliana. Nat Rev Genet.2005,6:351-360
    [161]Rabinowiez P, Citek R, Budiman M, et al. Differential methylation of genes and repeats in land Plants. Genome Res.2005,15:1431-1440
    [162]仪治本,孙毅,牛天堂,等.高粱基因组DNA胞嘧啶甲基化在杂交种和亲本间差异研究.作物学报.2005(09):1138-1143
    [163]郭予琦,陈明灿.基因表达与杂种优势遗传机理.河南职技师院学报.2001(02):7-11
    [164]陈欣,工子成.植物DNA甲基转移酶.生命的化学.2009(04):534-538
    [165]Li X Q, Xu M L, Korban S S. DNA methylation profiles differ between field- and in vitro-grown leaves of apple. Journal of Plant Physiology,2002,159:1229-1234
    [166]Hua Y, Chen X F, Xiong J H, Zhang Y P, Zhu Y G. Isolation and analysis of differentially methylated fragment CIDM7 in rice induced by cold stress. Heredits,2005,27 (4):595-600
    [167]Lu G Y, Wu X M, Chen B Y. Gao G Z, Xu K, Li X Z. Detection of DNA methylation changes during seed germination in rapeseed (Brassica napus). Chinese Science Bulletin, 2006,51(2):182-190
    [168]Ruiz G L, Cervera M T, Martine Z J M. DNA methylation increases throughout Arabidopsis development. Planta,2005,222:301-306
    [169]Portis E, Acquadro A, Comino C, et al. Analysis of DNA methylation during germination of peper (Capsicum annuum L) seeds using ethylation-sensitive amplification polymorphism (MSAP). Plant Sci,2004,166(1):169-178
    [170]Zhao X X, Chai Y, Liu B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids.Plant Sci,2007,172:930-938
    [171]Guimil S, Dunand C. Patterning of Arabidopsis epidermal cells:Epigenetic factors regulate the complex epidermal cell fate pathway.Trends Plant Sci,2006,11(12):601-609
    [172]华扬,陈学峰,熊建华,等.水稻冷胁迫诱导的甲基化差异片段CIDM7的分离和分 析.遗传.2005(04):595-600
    [173]Lander E, Linton L, Birren B. Initial sequencing and analysis of the human genome. Nature.2001,409(6822):860-921
    [174]黄琛,武明花,李桂源.鼻咽癌转录组学研究的现状与进展.生物化学与生物物理进展.2007(11):1129-1135
    [175]薛建江,邱景富.病原菌感染宿主的转录组学研究进展.河北北方学院学报(医学版).2007(05):63-66
    [176]Colebatch G, Trevaskis B, Udvardi M. Functional genomies:tools of the trade. New Phutologist.2002,153:27-36
    [177]Grabherr M, Haas B. Full-length transcriptome assembly from RNA-Seq data without a reference genome, nature biotechnology:doi:10.1038/nbt.1883.2011
    [178]Iseli C,Jongeneel C V. ESTScan:a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol.1999,138: 48
    [179]Conesa A, Gotz S. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics.2005,21(18):3674-3676
    [180]Ye J, Fang L. WEGO:a web tool for plotting GO annotations. Nucleic Acids Res 34(Web Server issue):W293-7.2006
    [181]Hooper, S. D. and P. Bork. Medusa:a simple tool for interaction graph analysis. Bioinformatics 2005,21(24):4432-3
    [182]Morrissy, A. S., R. D. Morin, et al. Next-generation tag sequencing for cancer gene expression profiling. Genome Res.2009:432-437
    [183]Audic, S. and J. M. Claverie. The significance of digital gene expression profiles. Genome Res.1997,7(10):986-95
    [184]Benjamini, Y. and D. Yekutieli. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics.2001,29:1165-1188
    [185]Kanehisa, M., M. Araki, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res.2008,36:480-4
    [186]Wang, J. et al. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics.2006.172:507-517
    [187]Lippman, Z. B.& Zamir, D. Heterosis:revisiting the magic. Trends Genet.2007,23: 60-66
    [188]Birchler. J. A.. Auger. D. L.& Riddle, N. C. In search of the molecular basis of heterosis. Plant Cell.2003,15:2236-2239
    [189]Comai, L. et al. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 2000,12:1551-1568
    [190]Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 2005,309:630-633
    [191]Wijnen, H.& Young, M. W. Interplay of circadian clocks and metabolic rhythms. Annu. Rev. Genet.2006,40:409-448
    [192]Panda, S., Hogenesch, J. B.& Kay, S. A. Circadian rhythms from flies to human. Nature 2002,417:329-335
    [193]Michael, T. P. et al. Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science.2003,302:1049-1053
    [194]Mizoguchi, T. et al. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev. Cell.2002,2:629-641
    [195]Alabadi, D. et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 2001,293:880-883
    [196]Wang, Z. Y.& Tobin, E. M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell,1998,93:1207-1217
    [197]Ni Z, Kim E, Ha M, et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids Nature.2009,457:327-333

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700