用户名: 密码: 验证码:
IEEE 1451混合接入模式下网络化智能传感系统建模与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文从智能传感器的功能构架入手,重点研究网络化智能传感器面向对象信息流层次化动态建模、混合接入模式下的智能传感系统即插即用策略与实现、智能传感系统集群服务器负载均衡评价与实现等理论与方法,并应用于网络化智能称重传感系统中。对于网络化智能传感技术的发展,促进现代制造业的信息化,具有重要的学术价值和实际意义。研究工作得到教育部新世纪优秀人才支持计划项目(NCET-08-0211)、广东省高等学校高层次人才项目、广东省科技厅工业攻关项目(2008B010400043)、广州市科技支撑计划项目(2009Z2-D531)资助。
     论文研究IEEE1451混合接入模式下网络化智能传感系统建模与实现,从IEEE1451标准、智能传感系统建模、智能传感系统即插即用、智能传感系统负载均衡四个方面,综述国内外研究进展,确定论文的研究内容。主要工作包括:
     ⑴结合UML静态描述与Petri网动态分析特点,研究面向对象信息流层次化动态IFHD建模方法与应用,结合广义随机Petri网、连续时间马尔可夫链CTMC方法简化模型,实现IFHD模型动态性能评价。该方法采用UML图描述信息流静态属性,制定转换规则、构造映射表,实现UML图到Petri网模型转换,利用模型优化与简化,形象、直观地描述了传感器静态结构与动态行为,准确表述智能传感器结构部署、信息流向及其与用户、外围设备交互关系。借助CPN Tools工具,对IEEE1451网络化智能传感器IFHD模型,分析可达性、有界性、活性、死锁特性;基于IFHD模型的应用,提出采用可控连续采样、增加有效数据长度、调整数据缓存方式的改善接口性能策略,讨论了传感信息到达时间间隔、信道忙概率、WTIM重发次数对WTIM网络性能影响规律,在多传感通道数据采集方式下TIM宜采用最小延迟优先调度方法MDPS。
     ⑵针对串口通信最小脉冲宽度难以直接测量以及多个TIM同时通信会发生数据冲突的问题,提出基于排序脉宽差分(SPWD)波特率自适应方法和多等级动态退避(MLDB)算法,实现数据冲突合理退避、波特率自适应的有线传感接口即插即用。基于排序脉宽差分波特率自适应方法,由TIM采集串行总线若干通信脉冲,采用排序脉宽差分反复计算,获得最小脉冲宽度,再借助通信确认机制,实现TIM与NCAP波特率自适应。多等级动态退避算法基于NCAP、TIM操作不同优先级划分,对不同数据冲突采取不同处理,结合TEDS参数信息选取竞争窗口,能够实现数据冲突合理退避,平均吞吐量提高47.14%,平均时延减少69.18%,有效优化了IEEE1451智能传感器有线传感接口即插即用性能。
     ⑶研究基于定期关联匹配通信(PAMC)的无线传感接口即插即用以及基于UPnP的网络接口即插即用机理。提出了基于ZigBee无线接入IEEE1451智能传感系统构架与流程,通过研究关联信息的帧格式定义方式、关联配置表参数选择与更新机制、ZigBee网络参数的实时保存方法三个关键技术实现定期关联匹配通信。研究了TEDS数据结构简化、ZigBee路由算法改进措施,借助ZigBee节点邻居表与节点特性参数,实现无线传感接口即插即用数据最优路径传输。实验结果表明,算法改进后平均跳数减少42.9%,平均时延降低28.1%,大大提高数据传输效率及网络实时性。采用基于信息公理的UPnP设备优选方法,将参数信息量计算分布在满足服务要求的NCAP,不必采用权重及规范化处理就可实现多设备满足服务要求时的设备优选,减少了网络接口数据流量开销,使UPnP设备服务效率得到提高。
     ⑷提出一种基于概率优先灰色马氏链预测(PP-GMCP)的网络化智能传感系统负载均衡实现方法,研究网络化智能传感系统负载均衡仿真平台,进行负载均衡算法测试验证。该方法针对NCAP不同Web服务,建立不同服务请求访问概率表,确定服务队列优先级,避免依靠TCP端口号进行数据转发控制而造成访问流量滞留;利用网络带宽占有率、CPU占用率、内存使用率、IO使用率、进程队列占用率实时监控NCAP负载状态,结合灰色GM(1,1)和马氏链预测有效预测NCAP负载容量;提出最高优先级概率优先(PPHP)策略执行服务调度,使用最小负载概率优先(PPML)策略执行服务分配,为NCAP提供了一种负载粒度更细的均衡方法。
     ⑸开展基于IEEE1451的网络化智能称重传感系统整体设计、称重传感器高精度设计与参数优化、系统软件平台开发等研究,检验整体应用效果。采取Σ-Δ模数转换、比率测量、斩波输入、同步抑制、温度补偿与自校准等技术提高智能称重传感器测量精度;提出将有效比特位数ENOB作为优化综合指标,采用正交实验方法实现称重传感器参数优化配置;从功能角度提出网络化智能称重传感器TIM、NCAP具体结构,结合信息流层次化动态混合建模方法进行功能建模;搭建智能称重传感器有线、无线接口、网络接口即插即用测试系统。
     试验表明,采用概率优先灰色马氏链预测(PP-GMCP)算法,综合考虑不同服务请求对NCAP资源影响,将服务请求均衡地分布到不同NCAP,相较于加权循环调度算法(WRR)、最小连接数调度算法(LCS),其平均服务响应延迟时间分别降低11.1%、25.1%,数据测量服务平均响应速率分别提高35.0%、11.1%,24小时内的NCAP负载量变化为815bit/s~1300bit/s,波动范围最小,具有更好的负载均衡效果。采用PAMC后ZigBee传感接口的平均首次入网时间Tfen、重复入网时间Tren、故障断网时间Tcut相对采用PAMC前,分别降低2.33%、77.02%、1.18%;采用MLDB后RS485传感接口的平均识别时间Treg、识别率Preg相对采用MLDB前,Treg降低15%、Preg提高0.48%,获得了理想即插即用性能测试结果;网络化智能称重传感器及软件平台经广东省质量监督计量器具检验站、中国赛宝实验室检测,各项指标均达到或优于项目要求。这充分表明论文所研究的网络化智能传感系统基础理论的正确性、有效性。
This paper starts with the functions of intelligent sensor structure, mainly researches onobject-oriented information flow hierarchical dynamic modeling of networked intelligentsensors, intelligent sensing system plug and play strategy and realization under mixed accessmode, intelligent sensing system cluster server load balancing evaluation and realization, andapplies these theory and methods to networked intelligent weighing sensors system. It hasimportant academic value and practical significance for development of networked intelligentsensing technology, promotion modern manufacturing informatization. The research work issupported by the New Century Excellent Researcher Award Program from Ministry ofEducation of China (NCET-08-0211), High-level Talents Project of Guangdong higher school,Industrial Research Project of Guangdong Science and Technology Department(2008B010400043), and Technology Support Project of Guangzhou (2009Z2-D531).
     The dissertation researches on modeling and realization of networked intelligent sensingsystem under IEEE1451mixed access mode, summarizes the domestic and foreign researchprogress from IEEE1451standard, intelligent sensing system modeling, intelligent sensingsystem plug and play, and intelligent sensing system load balancing, and determines researchcontents. Primary work includes:
     ⑴Combining UML static description with Petri Net dynamic analysis, researches onobject-oriented information flow hierarchical dynamic (IFHD) modeling method andapplication. Integrating generalized stochastic Petri Net and continuous time markov chain(CTMC), simplifies models, and realizes IFHD model dynamic performance evaluation. Themethod uses UML graphs descript information flow static attributes, establishes conversionrules, construct mapping table, and realizes the conversion of UML graphs to Petri Netmodel. Utilizing model optimization and simplification, static structure and dynamicbehaviors of sensors are described iconically and intuitively, and intelligent sensor structuredeployment, information flow direction, and its interactive relation with users and peripheralequipment are represented exactly. With the aid of CPN Tools, the reachability, boundedness,liveness, and deadlock features of IEEE1451networked intelligent sensor IFHD model are analyzed. Based on IFHD model application, interface performance improvement strategiesare proposed, such as adopting controllable continuous sampling, increasing valid data length,and adjusting data buffer mode. The regular influences of sensing information arrive interval,channel busy probability, and WTIM retransmission number on WTIM networkperformance are discussed. Under multi sensing channels data sampling method, TIM shouldadopt minimum delay priority scheduling (MDPS).
     ⑵Aiming at serial port communication minimum pulse width difficult to be measureddirectly, and several TIM communicating simultaneously cause to data collision, sortingpulse width difference (SPWD) baud rate self-adaptation method and multi levels dynamicbackoff (MLDB) algorithm are put forwarded to realize data collision reasonable withdrawn,and plug and play of baud rate self-adapting wired sensing interface. The SPWD baud rateself-adaptation method acquires a number of communication pulses of serial bus by TIM,uses sorting pulse width difference calculate minimum pulse width, and with the help ofcommunication confirm mechanism, implemented TIM baud rate self-adaptation with NCAP.Based on different NCAP and TIM operation priority partition, MLDB algorithm adoptsdifferent deal with different data collision, selects contention window combine with TEDSparameters information, capable of realize data collision reasonable withdrawn, and averagethroughput increases47.14%, average delay reduces69.18%, and effectively optimizes theplug and play performance of IEEE1451intelligent sensor wired sensing interface.
     ⑶Wireless sensing interface plug and play based on periodic association matchingcommunication (PAMC) and network interface plug and play mechanism are studied. Thesystem structure and flow of IEEE1451intelligent sensing based on ZigBee wireless accessare proposed, and PAMC is implemented through studying three key technologies, includesassociation information frame format define method, association configuration tableparameters selection and update mechanism, ZigBee network parameters real time saving.TEDS data structure simplification and ZigBee route algorithm improvement measures arestudied. With the help of ZigBee node neighbor table and characteristic parameters, wirelesssensing interface plug and play data optimal path transmission is realized. The experimentalresult indicates, after algorithm improvement, average hop decreases42.9%, average delayreduces28.1%, and data transmission efficiency and network real time property are enhanced greatly. Using UPnP device optimum seeking method based on information axiom, amount ofparameters information are distributed to NCAPs which meeting services request. Deviceoptimum seeking can be implemented while several NCAPs meeting services request, neednot adopting weight and normalized dispose, which reduces network interface data trafficoverhead, and improves UPnP device service efficiency.
     ⑷The load balancing implementation method of networked intelligent sensing systembased on probabilistic preferred grey Markov chain prediction (PP-GMCP) is proposed, andnetworked intelligent sensing system load balancing simulation platform is also studied, usedto test and verify load balancing algorithm. This method aims at different NCAP web services,establishes different service request access probability table, determines service queuespriority, and avoids access traffic retention resulting from transferring data depend on TCPport number. NCAP load status is real time monitored using network bandwidth occupationratio, CPU occupation ratio, memory utilization, IO utilization, and process queuesoccupation ratio. NCAP load capacity is effectively forecasted combining gray GM(1,1) withmarkov chain prediction. Probabilistic preferred highest priority (PPHP) strategy is proposedto execute services scheduling, and probabilistic preferred minimum load (PPML) strategy isused to carry out services assignment, which offer a finer load granularity balancing method.
     ⑸Networked intelligent weighing sensing system entirety design, high precisionweighing sensor design and parameters optimization, and system software platformdevelopment are carried out to verify whole application effect. Σ-Δ ADC, ratio measure, chopinput, synchronous suppression, temperature compensation, and self-calibration technologiesare adopted to improve intelligent weighing sensor precision. Effective number of bits(ENOB) is proposed to use as optimization aggregative indicator, and orthogonalexperimental method is employed to implement weighing sensor parameters optimizationconfiguration. Networked intelligent weighing sensor TIM and NCAP concrete structures areproposed from the view of functions, and function modeling are carried out incorporated withIFHD modeling method. Intelligent weighing sensor wired, wireless interface, and networkinterface plug and play test system are set up.
     The experiments indicate that PP-GMCP algorithm comprehensive considers differentservice request’s influence on NCAP resource, distributes service requests to different NCAP evenly, and compared to weighted round robin (WRR) and least connection scheduling(LCS), its average service response delay drops11.1%and25.1%separately, averageresponse speed of data measure service increases35.0%and11.1%respectively, and theNCAP load variation is815bit/s~1300bit/s. The fluctuation range is smallest, and loadbalancing effect is better. After adopting PAMC, ZigBee sensing interface average firstaccess network time Tfen, repeat access network time Tren, fault disconnect network time Tcutdecreases2.33%,77.02%,1.18%respectively, and after employing MLDB, RS485sensinginterface average recognition time Treglower15%, recognition rate Pregincreases0.48%, andthe acquired plug and play performance test results are ideal. Networked intelligent weighingsensor and software platform are detected by Guangdong province quality supervision&inspection offices of measuring instruments and China CEPREI Laboratory, each index hasattain or superior to project requirement, and to certain extent, adequately manifests thecorrectness and validity of networked intelligent sensing system basic theory that researchedby this paper.
引文
[1]孙圣和.现代传感器发展方向[J].电子测量与仪器学报,2009,23(1):1-10.
    [2]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[Z].2006.
    [3]中华人民共和国工业和信息化部.物联网“十二五”发展规划[Z].2011.
    [4] Gurkan D. Interoperable smart sensor networking[C].12th International Conference on Engineering,Science, Construction, and Operations in Challenging Environments,2010:1634-1643.
    [5] Wobschall D. Networked sensor monitoring using the universal IEEE1451standard[J]. IEEEInstrumentation and Measurement Magazine,2008,11(2):18-22.
    [6]林玉池,曾周末.现代传感技术与系统[M].北京:机械工业出版社,2009:420-453.
    [7] Lee K. IEEE1451: A standard in support of smart transducer networking[C].17th IEEEInstrumentation and Measurement Technology Conference,2000:525-528.
    [8] Song E Y, Lee K. Understanding IEEE1451-Networked smart transducer interface standard-Whatis a smart transducer[J]. IEEE Instrumentation and Measurement,2008,11(2):11-17.
    [9] Viegas V, Dias P J, Silva G P. A brief tutorial on the IEEE1451.1Standard-Part13in a series oftutorials in instrumentation and measurement[J]. IEEE Instrumentation and Measurement,2008,11(2):38-46.
    [10] Sorribas J, Del R J, Trullols E, et al. A smart sensor architecture for marine sensor networks[C].International Conference on Networking and Services,2006:1-8.
    [11] Fazel N, Simiana N. Adaptive self-organisation of wireless ad-hoc control networks[C]. IEEEInternational Conference on Signal Processing and Communications (ICSPC2007),2007:109-112.
    [12] Joshi B, Vincent T, Jinran C, et al. Hierarchical plug-and-play self-diagnosable intelligent sensornetworks for process control[C]. IEEE International Conference on Electro/Information Technology,2008:246-249.
    [13] Viegas V, Pereira J M, Girao P S. Next generation application processor based on the IEEE1451.1standard and web services[C]. International Instrumentation and Measurement TechnologyConference,2008:405-410.
    [14] Ciancetta F, Apice B, Gallo D, et al. Plug-n-play smart sensor network with dynamic web service[J].IEEE Transactions on Instrumentation and measurement.2008,57(10):2136-2145.
    [15] Lee K B, Song E Y. Sensor alert web service for IEEE1451-based sensor networks[C]. IEEEInstrumentation and Measurement Technology Conference (I2MTC),2009:1049-1054.
    [16] Kim W, Lim S, Ahn J, et al. Integration of IEEE1451and HL7Exchanging Information for Patients'Sensor Data[J]. Journal of Medical Systems,2010,34(6):1033-1041.
    [17] Ma Y, Wobschall D. A sensor network for buildings based on the DALI bus[C]. IEEE SensorsApplications Symposium,2007:1-7.
    [18] Mayikiv I, Stepanenko A, Wobschall D, et al. Remote reprogrammable NCAPs: Issues andapproaches[C].4th IEEE Workshop on Intelligent Data Acquisition and Advanced ComputingSystems,2007:109-113.
    [19] Rossi S R, Moreno E D, et al. A VHDL-based protocol controller for NCAP processors[J].Computer Standards and Interfaces,2009,31(2):515-522.
    [20] Batista E A, Silva A C R, Gonda L. IEEE1451-based Multi-Interface Module (I2M) for IndustrialProcesses Automation[C]. IEEE Sensors Applications SymposiumAtlanta,2008:1-5.
    [21] Lee K B, Song E Y. Object-oriented application framework for IEEE1451.1standard[J]. IEEETransactions on Instrumentation and Measurement,2005,54(4):1527-1533.
    [22]黄国健,刘桂雄,洪晓斌,等. IEEE1451网络化智能传感器的通用建模方法及应用[J].光学精密工程,2010,18(8):1914-1921.
    [23]吴媛媛,张森.基于UML的IEEE1451.4网络传感器软硬件协同设计[J].电子器件,2007,30(03):945-948.
    [24] Zairi S, Zouari B, Niel E. Coloured Petri net model for the formal validation of sensor networks[C].1st International Conference on Sensor Networks and Applications (SNA-2009),2009:148-153.
    [25] Shareef A, Yifeng Z. Energy Modeling of Wireless Sensor Nodes Based on Petri Nets[C].39thInternational Conference on Parallel Processing (ICPP2010),2010:101-110.
    [26] Depari A, Ferrari P, Flammini A, et al. A VHDL model of a IEEE1451.2smart sensor:Characterization and applications[J]. IEEE Sensors Journal,2007,7(5):619-625.
    [27] Nasreddine N, Boizard J L, Fourniols J Y, et al. VHDL-AMS behavioral models for the simulationof wireless sensors networks[C].6th International Multi-Conference on Systems, Signals andDevices,2009:1-6.
    [28] Terence Z, Vahed A. Using SensorML to describe Scientific Workflows in distributed Web serviceenvironments[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS2009),2009:375-377.
    [29]陈家赢,陈能成,王伟,等.基于SensorML的遥感卫星传感器建模方法[J].武汉大学学报(信息科学版),2010,35(8):971-974.
    [30]邱华.用于工业自动化设备互联的设备描述语言的定义和实现[D].上海:华东师范大学,2006.
    [31] Chen C, Helal A. Device Integration in SODA using the Device Description Language[C].9thAnnual International Symposium on Applications and the Internet (SAINT2009),2009:100-106.
    [32]车英丽.基于UML的智能传感器框架设计[D].电子科技大学,2007.
    [33]林闯.随机Petri网和系统性能评价[M].北京:清华大学出版社,2005.
    [34] Lorente B, Barrachina L, Ferrer C. Smart Sensors modeling using VHDL-AMS for microinstruments implementation with a distributed architecture[M].2005:86-97.
    [35]蔡永娟,沈春山,吴仲城,等.基于SensorML和IEEE1451的新型传感器网络标准研究[J].仪表技术,2010(1):1-3.
    [36]潘强,沈杰,邢涛.传感器网络技术与标准化连载(六)传感器网络信息处理标准研究综述[J].信息技术与标准化,2010(04):42-43.
    [37] Matsumoto S. Echonet: A Home Network Standard[J]. IEEE Pervasive Computing,2010,9(3):88-92.
    [38] Chin-Feng L, Yi-Wei M, Sung-Yen C, et al. OSGi-based services architecture for Cyber-PhysicalHome Control Systems[J]. Computer Communications,2011,34(2):184-191.
    [39] Reed C, Botts M, Davidson J, et al. OGC Sensor Web Enablement: Overview and high levelarchitecture[C]. Baltimore, MD, SEP17-20:2007.
    [40] Chao C, Helal S. Sifting through the jungle of sensor standards[J]. IEEE Pervasive Computing.2008,7(4):84-88.
    [41]吴忠杰. IEEE1451标准网络化智能传感器研究[D].吉林大学,2006.
    [42] Bissi L, Placidi P, Scorzoni A, et al. Environmental monitoring system compliant with the IEEE1451standard and featuring a simplified transducer interface[J]. Sensors and Actuators, A: Physical,2007,137(1):175-184.
    [43]赵春杰,韩卫光.基于DeviceNet总线的即插即用技术研究[J].微计算机技术,2009,25(11-2):44-54.
    [44]王燕,方尔正,郭龙翔.一种符合IEEE1451.4协议的声矢量传感器智能化方法[J].仪表技术与传感器,2009(8):102-103.
    [45] Mattoli V, Mondini A, Mazzolai B, et al. A Universal Intelligent System-on-Chip Based SensorInterface[J]. Sensors,2010,10(8):7716-7747.
    [46] Hussain S A, Gurkan D. Management and plug and play of sensor networks using SNMP[C].Special Issue on the2010IEEE International Instrumentation and Measurement Conference,2011:1830-1837.
    [47] Eugene Song K L. An Implementation of Smart Transducer Web Services for IEEE1451-basedSensor Systems[C]. IEEE Sensors and Applications Symposium (SAS2007),2007:1-6.
    [48]尚涛,刘智武,刘丽艳.多总线接口无线传感器网络节点[J].华中科技大学学报(自然科学版),2008,36(SI):243-246.
    [49] Wang R, Morris J, Figueroa F, et al. Wireless Intelligent Sensors Supporting Integrated SystemsHealth Management Architecture[C]. IEEE Sensors and Applications Symposium (SAS2008),2008:215-219.
    [50] Larrauri J M, Larrinaga B A, Lopez M L, et al. A Sensor Network Solution To Evaluate TheWellbeing Of The Passenger And Improve Safety In Cars[C]. International Conference on WirelessInformation Networks and Systems (WINSYS2010),2010:61-66.
    [51] Brewka L, Wessing H, Dittmann L. Signaling performance of UPnP QoS architecture[C].3rdInternational Symposium on Advanced Networks and Telecommunication Systems (ANTS2009),2009:1-3.
    [52]谭大鹏,李培玉,潘晓弘.基于UPnP的状态监测与故障诊断网络系统[J].浙江大学学报(工学版),2009,43(3):425-429.
    [53] Al-Mejibli I, Colley M. Evaluating UPnP service discovery protocols by using NS2simulator[C].2nd Computer Science and Electronic Engineering Conference (CEEC2010),2010:1-5.
    [54] Pehkonen V, Koivisto J. Secure Universal Plug and Play Network[C]. Sixth InternationalConference on Information Assurance and Security (IAS2010),2010:11-14.
    [55] Yuefang X, Xiangqian D. Design and implementation of interoperable module between UPnP andIGRS[C]. Third International Symposium on Intelligent Information Technology Application,2009:561-564.
    [56]刘夕炎. Jini分布式计算体系结构探讨[J].重庆工商大学学报(自然科学版),2010,27(4):488-492.
    [57] Costa N, Pereira A, Serodio C. Integration of Resource Poor Wireless Sensor Networks into SmartSpaces[C].8th IEEE International Conference on Dependable, Autonomic and Secure Computing,2009,496-501.
    [58]王波,王艳锋.基于Jini的建筑智能化系统集成技术[J].计算机系统应用,2009,(11):29-32.
    [59]赖红辉.基于Jini技术的互联网计算资源共享框架[J].计算机工程与设计,2010,31(10):2216-2218.
    [60] Pereira A, Costa N, Serodio C. Peer-to-Peer Jini for Truly Service-Oriented WSNs[J]. InternationalJournal of Distributed Sensor Networks,2011:1-13.
    [61]李坤,王百杰.服务器集群负载均衡技术研究及算法比较[J].计算机与现代化,2009(8):7-9.
    [62] Hong Y S, No J H, Kim S Y. DNS-based load balancing in distributed Web-server systems[C].2ndInternational Workshop on Collaborative Computing, Integration, and Assurance-SEUS2006(WCCIA2006),2006.
    [63]鞠洪尧.基于RR-DNS和MASK SORT的负载均衡策略实现[J].计算机工程与设计,2009,30(3):594-596.
    [64] Yang C, Chen C, Chen J. Random Early Detection Web Servers for Dynamic Load Balancing[C].10th International Symposium on Pervasive Systems, Algorithms, and Networks (ISPAN2009),2009:364-368.
    [65] Xiaoqiao W, Wei F. Research and implementation of the multiple exit load balancing of campusnetwork based on DNS service[C]. IEEE International Conference on Computer Science andAutomation Engineering (CSAE2011),2011.
    [66]肖磊,胡众义,郑小海.基于智能DNS电子商务系统的负载均衡研究[J].安徽理工大学学报(自然科学版),2009,29(1):51-54.
    [67] Deshmukh S S, Deshmukh P S. LIBRA: client initiated algorithm for load balancing using workstealing mechanism[J].2nd International Conference on Emerging Trends in Engineering andTechnology (ICETET2009),2009.
    [68] Ganesh A, Lilienthal S, Manjunath D, et al. Load balancing via random local search in closed andopen systems[C]. International Conference on Measurement and Modeling of Computer Systems,2010:287-297.
    [69]万晓鸽,董丽丽.基于反向代理的单点登录系统设计[J].计算机应用与软件,2011,28(3):156-158.
    [70]郑光勇,军尹,朱贤友.用反向代理技术保护Web服务器的实现[J].计算机安全,2010(5):30-32.
    [71]肖辽亮,赵凯辉,邓木生. NAT-PT簇的负载均衡[J].计算机工程,2008,34(9):136-138.
    [72] Hara M, Yoshihiro T, Lee S S W, et al. Adaptive Load Balancing based on IP Fast Reroute to AvoidCongestion Hot-spots[C]. IEEE Symposium on Computers and Communications (ISCC2011),2011.
    [73] Sharifian S, Motamedi S A, Akbari M K. A content-based load balancing algorithm with admissioncontrol for cluster web servers[J]. International Journal of Grid Computing Theory Methods andApplications,2008,24(8):775-787.
    [74]谢红薇,谢显宇.基于内容的网络集群负载平衡算法模型[J].计算机应用与软件,2010,27(1):131-133.
    [75]任国庆,杨金民,张大方.基于内容的Web服务器动态负载均衡算法[J],计算机工程.2010,36(13):82-83.
    [76]郑祺,周广平.基于内容分类的集群负载均衡算法[J].计算机系统应用,2011,20(5):47-50.
    [77]张维勇. Web服务器集群的负载均衡中遗传算子的设计[J].计算机应用与软件,2010,27(4):209-211.
    [78]王琦.基于反向代理的网站群单点登录[J].计算机工程,2008,34(14):138-139.
    [79]梁本来,杨忠明,邓家斌.基于流量调度的多链路负载均衡算法[J].计算机工程,2011,37(9):118-120.
    [80]魏臻,王雪辉,周霞.基于内容识别的Web集群负载均衡算法的研究[J].计算机工程与设计,2006,27(18):3410-3412.
    [81]秦胜君,陈燕,杨明.基于信息流结构分析的系统建模[J].大连海事大学学报,2011,37(2):97-100.
    [82]付茂洺,王悠.可视化UML模型验证环境研究[J].电子科技大学学报,2010,39(2):289-292.
    [83] Xu Y, Xie X. Modeling and analysis of authentication protocols using Colored Petri Nets[C].3rdInternational Conference on Anti-counterfeiting, Security, and Identification in Communication(ASID2009),2009:443-448.
    [84] Kerkouche E, Chaoui A, Khalfaoui K. Transforming UML models to colored petri nets models usinggraph grammars[C]. IEEE Symposium on Computers and Communications (ISCC2009),2009:230-236.
    [85] Guangyu L, Shuzhen Y. Research on mapping algorithm of UML sequence diagrams to object petrinets[C]. WRI Global Congress on Intelligent Systems (GCIS2009),2009:285-289.
    [86]宋瑜辉.基于UML和Petri网建模的研究与应用[D].西安建筑科技大学,2009.
    [87] Mitchell B, Kristensen L M, Lin Z. Formal specification and state space analysis of an operationalplanning process[J]. International Journal on Software Tools for Technology Transfer,2007,9(3-4):255-267.
    [88] Kularatna N, Sudantha B H. An Environmental air pollution monitoring system based on the IEEE1451standard for low cost requirements[J]. IEEE Sensors Journal,2008,8(4):415-422.
    [89]王开宇,喻言,傅晓军.基于IEEE1451.2协议的变送器接口TII设计与实现[J].仪表技术与传感器,2008(12):78-80.
    [90]刘龙,陶利民,陈仲生.智能传感器标准IEEE1451解析[J].兵工自动化,2007,26(08):48-49.
    [91]徐钦桂,刘桂雄,高富荣.虚拟仪器的时间特性建模与实时优化分析[J].华南理工大学学报(自然科学版),2010,38(1):113-118.
    [92]崔书平,杨志家,吕岩,等.传感器接口标准中NACK响应协议研究[J].微计算机信息,2008,24(22):126-127.
    [93] Rozinat A, Mans R S, Song M, et al. Discovering simulation models[J]. Information Systems.2009,34(3):305-327.
    [94] Song E Y, Lee K B. IEEE1451.5standard-based wireless sensor networks[C]. Advances in WirelessSensors and Sensor Networks,2010:243-271.
    [95] Jin W, Guiping S, Meng X. An integrated model to analyze cryptographic protocols with coloredPetri nets[C]. IEEE11th High-Assurance Systems Engineering Symposium,2008:457-460.
    [96] Xu M, Su G, Ding Y. Considering Time in Formal Analysis of Security Protocols Using ColoredPetri Nets[C]. International Conference on Embedded Software and Systems Symposia (ICESS2008),2008:63-68.
    [97] Rao M, Ramakrishnan S, Dagli C. Modeling and simulation of net centric system of systems usingsystems modeling language and Colored Petri-nets: A demonstration using the Global EarthObservation System of Systems[J]. Systems Engineering,2008,11(3):203-220.
    [98] Basile F, Carbone C, Chiacchio P. Simulation and analysis of discrete-event control systems basedon Petri nets using PNetLab[J]. Control Engineering Practice,2007,15(2):241-259.
    [99]白欣,宋博,左继章,等.测控集群系统随机Petri网模型与可用性分析[J].小型微型计算机系统,2005,26(6):979-982.
    [100]门鹏,段振华.广义随机Petri网下的组合Web服务建模与评价[J].西安交通大学学报,2008,42(8):967-971.
    [101]赵昶宇,颜昌翔,于平.1553B总线上消息的实时调度[J].光学精密工程,2010,18(3):732-739.
    [102]童小念,舒万能,李子茂.异构多处理机系统的负载均衡与任务调度[J].光学精密工程,2007,15(12):1969-1973.
    [103]中国赛宝实验室.基于IEEE1451的网络化智能称重传感器测量软件系统与平台软件测试报告
    [R]. No:002031611050230,2011.
    [104]广东省计量科学研究院.基于IEEE1451的网络化智能称重传感器[R]. No:Z2011015,2011.
    [105] Song E Y, Lee K B. Sensor network based on IEEE1451.0and IEEE p1451.2-RS232[C]. IEEEInternational Instrumentation and Measurement Technology Conference,2008:1728-1733.
    [106]唐璐丹,李和. MAC协议冲突概率自适应退避算法的研究与实现[J].光通信研究,2010(5):55-59.
    [107]张黎达,刘宗行,李作进. IEEE802.11MAC层退避算法的一种改进方案[J].重庆工学院学报(自然科学),2008,22(5):69-72.
    [108] Lee S, Shin Y, Ahn J, et al. Performance analysis of a Non-Overlapping Binary Exponential Backoffalgorithm over IEEE802.15.4[C].4th International Conference on Ubiquitous InformationTechnologies&Applications (ICUT2009),2009:492-496.
    [109] Song E Y, Lee K B. An interoperability test system for IEEE1451.5-802.11standard[C]. IEEESensors Applications Symposium (SAS2010),2010:183-188.
    [110] Sveda M, Trchalik R. ZigBee-to-Internet interconnection architectures[C].2nd InternationalConference on Systems (ICONS2007),2007.
    [111] Sindhu M, Deniz G. IEEE1451.0compatible TEDS creation using.NET framework[C]. SensorsApplications Symposium,2009:281-286.
    [112]戚剑超,魏臻. ZigBee树型路由算法的改进[J].合肥工业大学学报(自然科学版),2010,33(4):529-532.
    [113]李刚,陈俊杰,葛文涛.一种改进的ZigBee网络Cluster Tree路由算法[J].测控技术,2009,28(9):52-55.
    [114]谭大鹏,李培玉,潘晓弘.基于通用即插即用的网络化制造系统研究[J],计算机集成制造系统.2009,15(1):130-134.
    [115]毛全有,陆长明.信息公理在模块选择决策中的应用[J].机电工程,2007,24(7):88-90.
    [116] Kim D, Lee S. UPnP-Based Telematics Service Discovery for Local Hot-Spots[C]. InternationalConference on Multimedia and Ubiquitous Engineering (MUE2007),2007:1-6.
    [117]李红婵,蔡乐才,赵然,等. Web服务器的网络负载均衡研究[J].电子设计工程,2009,17(5):38-40.
    [118] Sharifian S, Motamedi S A, Akbari M K. Estimation-based load-balancing with admission controlfor cluster web servers[J]. ETRI Journal,2009,31(2):173-181.
    [119] Eludiora S, Abiona O, Aderounmu G, et al. A Load Balancing Policy for Distributed Web Service[J].International Journal of Communications, Networks and System Sciences,2010,3(8):645-654.
    [120]郑祺.基于集群的Web服务器负载均衡算法研究[J].浙江科技学院学报,2009,21(1):15-18.
    [121]沈富可,张卫,常潘.应用时间序列分析进行网络负载预测[J].中山大学学报(自然科学版),2009,48(S):84-86.
    [122]薛正华,董小社,李炳毅,等.基于BP神经网络的集群负载预测器[J].华中科技大学学报(自然科学版),2007,35(S2):164-167.
    [123]刘思峰,党耀国,方志耕.灰色系统理论及其应用[M].北京:科学出版社,2008.
    [124]曾明,胥布工.传感器网络中考虑负载平衡的节点密度控制策略[J].传感技术学报,2008,21(7):1212-1216.
    [125]黄银华.马尔科夫链在中长期负荷组合预测中的应用[D].湖南大学,2010.
    [126]马雪梅.分布式系统中主机负载预测[D].吉林大学,2005.
    [127]高蔚.基于Markov理论的改进灰色GM(1,1)预测模型研究[J].计算机工程与科学,2011,33(2):159-163.
    [128]司丽娜,胡玉清.基于OPNET的自相似网络仿真与性能分析[J].计算机工程与设计,2009,30(15):3550-3551.
    [129]张美俊,胡玉清.基于OPNET的交换节点仿真模型的性能分析[J].计算机应用与软件,2011,28(10):225-226.
    [130] Xue Z, Guiqiang N, Fenglin J, et al. A new WRR algorithm based on ideal packet interval time[C].4th International Conference on Intelligent Computation Technology and Automation (ICICTA2011),2011:1039-1042.
    [131] Choi D, Chung K S, Shon J. An improvement on the weighted least-connection schedulingalgorithm for load balancing in web cluster systems[C]. International Conferences on Grid andDistributed Computing (GDC2010) and Control and Automation (CA2010),2010:127-134.
    [132]刘九卿.关于称重传感器设计与制造的一些问题(上篇)[J].衡器,2008(03):8-11.
    [133] Prabuwono A S, Akbar H, Usino W. PC Based Weight Scale System with Load Cell for ProductInspection[C]. International Conference on Computer Engineering and Technology,2009:343-346.
    [134] Yun L, Xiaoping L, Zushun D. Optimization for the outer hull parameters of high speed trimaranswith orthogonal design and regression analysis method[J]. Journal of Ship Mechanics,2008,12(5):716-726.
    [135] Hsin-Chuan K, Jeun-Len W. A new approach with orthogonal array for global optimization indesign of experiments[J]. Journal of Global Optimization,2009,44(4):563-578.
    [136] GB/T7551-2008,称重传感器[S].北京:中国国家标准化管理委员会,2008.
    [137] JJG669-2003,称重传感器检定规程[S].北京:国家质量监督检验检疫总局,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700