用户名: 密码: 验证码:
单体滑坡灾害风险评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑坡属于地质灾害中的一个重要灾种,它不仅给人类带来威胁,而且对环境、资源、财产等具有严重破坏性。在世界范围内,每年由滑坡及其所引起的次生灾害导致的人员伤亡数以万计,经济损失数以百亿美元。如何降低滑坡导致的经济损失和人员伤亡损失是滑坡灾害研究的宗旨。
     从50年代初期,我国便开始了对滑坡的系统研究和工程治理,滑坡研究的理论水平得到显著提高,并结合大量工程实例,不断提高和改善治理措施的技术水平。但是由于滑坡治理工程费用昂贵,尽管国家和地方投入的经费逐年增长,仍然只能选取危害性大、灾害损失严重的滑坡进行治理。针对某些体积大、滑体厚的滑坡,目前的治理措施仍不能达到有效治理的目的。同时,近期我国南方地区极端降雨天气引发的大量滑坡、崩塌、泥石流灾害以及山此造成的严重损失也为我们敲响了警钟,虽然我国滑坡灾害理论研究和防治水平在逐步提高,但所造成的人员伤亡和经济损失却没有因此而得到明显减少。
     因此,面对防灾减灾工作的实际需要,应突破目前对滑坡稳定性、机理及治理措施的研究,应用风险评价的理论与方法,合理确定并评价滑坡灾害对生命及财产的影响尺度,为经济有效的减灾应急措施及灾害优化决策管理提供技术支持。
     目前,在滑坡灾害风险研究领域,针对大尺度区域滑坡灾害风险评价已开展了较为深入及细致的研究工作,国际上部分主流国家或地区的学术机构对区域滑坡灾害风险评价及管理相继出版了一系列的研究计划、技术指南甚至法规条例。但是,针对小尺度单体滑坡灾害风险评价的研究仍相对欠缺。国内外部分学者对单体滑坡风险评价的思路、评价体系及相关的技术方法进行了有益的探索,但针对评价模型的建立,尤其是易损性评价中关于承灾体脆弱性及灾害体破坏作用强度计算的许多细节技术问题仍有待解决,例如滑坡变形阶段建筑物易损程度与坡体变形特征及变形量间的定量关系,考虑滑速及滑坡冲击力的承灾体易损性定量确定,以及位于建筑物内的室内人口易损性的评价等等。
     论文从理论模型研究及实例分析两个角度,开展单体滑坡灾害风险分析。在目前已被广泛接受的滑坡灾害风险分析定义的基础上,对灾害危险性评价及易损性分析模型进行深入细致的研究,并以三峡库区的赵树岭滑坡和萨尔瓦多的El Picacho滑坡为例,分别对论文提出的变形阶段及失稳滑动阶段的滑坡灾害风险评价模型进行实例分析,完成了单体滑坡灾害风险评价体系与模型的研究和实践。通过上述的分析和研究,论文主要取得了以下一些成果和结论:
     (1)综合考虑滑坡体物理力学参数及外界诱发因素的不确定性,进行滑坡破坏概率的研究。滑坡灾害危险性的具体表达形式为其失稳概率,而滑坡体失稳的不确定性来源包括多个方面。除坡体自身物理力学参数的不确定性外,外界诱发因素的作用及出现概率是不可忽视的重要内容。文章主要考虑降雨作用,归纳了降雨极值数据选样的方法、常用的极值频率分布线型及其参数估计,对皮尔逊Ⅲ型分布、指数分布和耿贝尔分布线型的计算方法进行总结,给出了考虑极值降雨出现概率条件下的滑坡体失稳概率的求解方法。
     (2)提出基于滑坡灾害破坏作用强度及承灾体脆弱性分析的单体滑坡灾害易损性评价模型。论文系统总结了易损性评价模型的研究现状,分析目前易损性计算中需要解决的关键问题,在此基础上提出了单体滑坡灾害易损性评价的定量化模型。模型从影响滑坡灾害风险效应的内因及外因入手,综合考虑了承灾体的脆弱性S及滑坡灾害破坏作用强度I。承灾体的脆弱性S描述承灾体自身的属性特征,表达影响承灾体破坏效应的内因,脆弱性评价指标的提出应建立在承灾体类型的基础之上;滑坡破坏作用强度I为灾害风险后果的外因,从灾害体破坏作用规模和强度的角度出发,以滑坡是否出现失稳滑动为界限,将破坏作用过程分为变形阶段和失稳阶段,针对不同阶段灾害对承灾体的作用机理,从破坏作用的剧烈程度及空间尺度两方面提出相应的指标,建立评价模型。
     (3)建立单体滑坡易损性评价中的承灾体脆弱性评价模型。承灾体的脆弱性评价从分析滑坡体与承灾体之间破坏作用的机理入手,选取影响灾害作用结果的承灾体属性特征为评价指标建立脆弱性评价模型:对于建筑物,考虑其结构类型、维护状况、使用年限与设计寿命的比值以及滑坡作用力方向与建筑物轴线方向的夹角;对于人员,考虑人口健康状况、年龄结构及灾害预警系统完善程度。其中对于人口年龄结构,在不同类型地质灾害导致的各年龄段人口死亡率统计数据分析的基础上,提出人口年龄结构脆弱性指标的计算式。
     (4)建立单体滑坡易损性评价中,滑坡变形阶段的灾害作用强度评价模型。论文在对变形阶段滑坡体的破坏作用形式及相应的承灾体的破坏损失效应分析的基础上,针对坡体变形影响范围内的建筑物,提出了滑坡体变形阶段的灾害作用强度评价模型。评价指标主要考虑滑坡地表变形、位移速率及滑体深度三个方面:首先,通过对地表变形条件下钢筋混凝土框架结构和砌体结构内部附加内力的计算,以及两种结构建筑物可以承受的极限内力的计算,利用附加内力与可承受极限内力的比值反映滑坡地表位移对建筑物的破坏强度;其次,根据建筑物极限破坏状态相应的滑坡速度阀值,提出针对建筑物的滑坡速度强度指标的计算公式;再次,以滑坡体厚度与建筑物基础埋深的比值反映滑坡灾害空间尺度对建筑物稳定性的影响,并提出相应的计算公式。
     (5)建立单体滑坡易损性评价中,滑坡失稳阶段的灾害作用强度评价模型。滑坡失稳滑动后在地形控制作用下运动过程的计算是灾害作用强度评价模型建立的基础。论文提出基于有限体积法的滑坡三维滑动过程计算的运动学模型,考虑滑坡运动过程中对沿程表层松散堆积物的夹带和滑体物质不同流变属性对应的滑动摩擦表达形式,进行滑坡运动趴离、滑动速度及滑体厚度的三维计算,为滑坡失稳阶段灾害作用强度评价提供依据。
     滑坡失稳阶段的易损性评价对象包括建筑物和人员,由于运动滑体对这两类承灾体的破坏作用机理不同,则相应的灾害作用强度指标的选取也有所差异。对于建筑物,论文针对钢筋混凝土框架结构和砌体结构建立简化的结构模型,通过对结构的受力、变形的分析及验算,建立结构可抵抗的极限水平冲击力的计算模型。在前述计算的基础上,以滑坡体冲击力与建筑物可承受极限水平冲击力的比值,以及运动滑体厚度与建筑物上部结构高度的比值作为灾害作用强度指标,建立评价模型;对于人员,从人逃离滑坡威胁范围的难易程度入手,主要考虑滑坡速度,深度及冲击区宽度。其中,在分析历史滑坡灾害实例中不同滑速及对应的人员伤亡情况统计数据的基础上,确定人能否逃离滑坡灾害的速度阀值,并提出针对人员的滑坡速度强度指标的计算公式。
     (6)提出基于建筑物易损性的室内人员易损性评价模型。室内人员的易损性受建筑物的易损性大小及结构类型的直接影响。建筑物的易损性反映其自身的变形破坏程度,建筑物的结构类型影响其剧烈变形时人员逃离的难易程度,以及建筑物内部建筑构件坠落对人员安仝的威胁性。在对文献资料中,熔岩流造成房屋倒塌及人员伤亡以及多次地震灾害后不同结构类型的建筑物内部人员伤亡程度及比例的统计数据分析的基础上,提出根据建筑物易损性求解位于建筑物内的人员易损失的计算模型。
     (7)以三峡库区赵树岭滑坡为例,进行滑坡变形阶段风险评价实例研究。利用三峡库区赵树岭滑坡的相关灾害体资料及承灾体调查数据,采用论文提出的变形阶段滑坡风险评价模型进行实例分析研究。论文统计分析了巴东县1980年1月到2010年6月的日降雨监测数据,分别对4个时段的5日、10日、20日、30日最大累计降雨量进行频率分布曲线的参数估算及优化,选择耿贝尔分布曲线进行巴东县多日累计极值降雨分布概率的计算,得到不同时段、不同累计降雨天数及不同重现期的降雨量,并以两种降雨及库水位的组合工况为例,计算滑坡破坏的年概率;其次,针对破坏概率较大的工况,进行滑坡灾害易损性评价,在承灾体野外调查数据的基础上,完成脆弱性评价指标的取值;采用FLAC3D对计算工况条件下滑坡的变形情况进行数值模拟,依据模拟得到的地表位移数据计算滑坡体上建筑物的结构附加内力,并结合滑速及滑体深度的模拟结果,完成灾害作用强度指标的计算,得到滑坡体上建筑物的易损性分布图;在滑坡破坏概率及易损性评价的基础上,进行建筑物风险评价。
     (8)以萨尔瓦多的EI Picacho滑坡为例,进行滑坡失稳阶段风险评价实例研究。首先,依据1982年滑坡失稳滑动的滑程与滑体堆积厚度的调查数据,对论文提出的滑坡运动学计算模型进行验证,结果表明模型计算得到的滑动路径及滑动距离与实际情况吻合较好,仅在无侧向斜坡约束的开阔地段,滑坡冲击区的宽度与实际情况相比较大,因此模拟结果在滑坡冲击影响范围的界定上偏安全。采用本文提出的运动学模型,计算同一研究区内其他八种工况条件下滑坡的滑动距离、滑动速度、滑体厚度及路径宽度,计算滑坡冲击影响范围内建筑物可抵抗的极限水平冲击力,完成失稳阶段对建筑物和人员的灾害作用强度评价;统计滑坡冲击影响范围内承灾体的属性特征完成脆弱性指标的取值;在此基础上得到室外人员易损性分布图、建筑物易损性分布图及室内人员易损性分布图。计算结果表明,在运动滑体冲击破坏作用下,滑坡影响范围内的人员及建筑物体现出极高的易损性,约64%的建筑物易损性等级为最高;相比室外人员,室内人员的易损性较小,说明建筑物对室内人员有一定的保护作用。最后根据易损性评价结果和定性给出的滑坡破坏概率,得到了不同工况条件下失稳滑坡的风险结果。
Landslide is an important hazard of the geological disasters, It is not only a threat to humans, but also serious destructions to the environment, resources and property.Around the world, there are tens of thousands of casualties and10billion dollars economic losses caused by landslides and the secondary disasters. The tenet of landslide hazards research is how to reduce the economic and casualty losses triggered by landslides.
     From the early1950s, we began the systematic researches and engineering management of landslide in our country. The theoretical level of landslide research has being dramatically improved, and the technical level of management measures has also being continuously improved by combining with a lot of engineering examples. Because of the large expend of landslide treatment project,we can only choose the landslides of big harmfulness and serious loss for management, in spite of the growing funds from the national and local investment year by year. The current management measures still cannot reach the purpose of effective governance for some landslide of big volume and thick body.Meanwhile, recently in southern China,a lot of landslides, collapse and debris flow disaster caused by the extremely rainy weather and thus caused serious losses were also a wake-up call for us. Though the theoretical research and treatment level of landslide hazard have gradually increased, the casualties and economic losses didn't have a significant reduction.
     Therefore, with the actual needs of the disaster prevention and reduction works, we should break through the current research of the stability, mechanism and control measures of landslide, reasonably determine and evaluate the impact scale of landslide disaster on life and property by using the risk evaluation theory and method, to provide technical support for economic and effective emergency mitigation measures and disaster optimization decision management.
     In the landslide risk research field, the large scale spatial landslide risk evaluation has been deeply and detailed carried out at present time. Some academic institutions in the mainstream countries or regions have successively published a series of research plan, technical guidance or even laws in spatial landslide risk evaluation and management. While, it is still deficit in the research of the small scaled monomer landslide risk evaluation. A part of foreign scholars have worked on the idea of single landslide evaluations, evaluation systems, relevant techniques and methods, but there are still many problems to be settled as to the establish of the evaluation model, such as the quantitative relationship between the structures damaged conditions during the landslide deformation period and the characteristics and magnitudes of deformation, the quantitative ascertain of the vulnerability of the disaster body taking into account of landslide velocity and impacting force, the evaluation of the indoor population vulnerability and so on, especially on the calculation of fragility of destroyed body and the destroy intensity of the disaster in the vulnerability assessment.
     This thesis has developed the monomer landslide risk evaluation from two aspects as theoretical model and practical analysis. Based on the widely accepted definitions of landslide risk evaluation, the model of hazard assessment and vulnerability analysis is deeply researched. Taking the Zhaoshuling landslide in Three Gorges reservoir and E1.Picacho landslide in El Salvador as examples, analyze landslide risk evaluation model during the deformation stage and slide stage separately, and it accomplished the research and practice of the monomer landslide risk evaluation system and model. Through the above research, the main achievements and conclusions in this thesis are as follow:
     (1) Taking consideration of the uncertainty of the physical and mechanical parameters of landslide and their triggered factors, doing the research of landslide failure probability.
     Landslide failure probability can efficiently represent the landslide hazard. Many uncertain factors contribute to the uncertainty of landslide failure. In one hand, the uncertainty of physical and mechanical parameters of landslide materials play dominate role in that. In the other hand, we cannot ignore the other triggered factors and their occurred probabilities. This article mainly concerns the effects of rainfall and summarizes the rainfall threshold of landslide at home and abroad. The method of choosing decent extreme value date and the distribution curve of common extreme value frequency are also summarized. Besides, the paper gives overviews on the calculation method of K. Person Ⅲdistribution curve, exponential distribution curve and Gumbel distribution curve. Finally, the paper proposed a calculation method of landslide failure probabilities concerning the occurred probabilities of extreme rainfall.
     (2) Individual landslide vulnerability analysis considering intensity of slope hazard and susceptibility of elements at risk
     Based on the systematic summary of research status of vulnerability assessment model in domestic and international field, this paper discussed the key issues existing in vulnerability calculation, proposed the quantitative assessment model for landslide vulnerability analysis accordingly. Starting with the internal and external causes of landslide risk effects, this model takes both susceptibility of elements at risk (S) and intensity of slope activity (I) into account, elaborates the indexes, concepts and correspondence of S and I. Susceptibility of elements at risk (S) describes the self-characteristic of elements at risk, points out that it's only proper to quantify indexes of S after considering the different internal factors and types of elements at risk. As the external factor, intensity of slope activity (1) puts the hazard scale and intensity into consideration, divides the landslide movement process into deformation stage and failure stage, proposes corresponding indexes and assessment model for various time scale and intensity degree, having the mechanism and criterion of landslide movement effect considered of.
     (3) Susceptibility assessment model of elements at risk for individual landslide vulnerability analysis
     After analyzing the mechanism of landslide movement effect, susceptibility assessment of elements at risk builds the appropriate model picking the indexes which are representative of the elements characters. Different types of elements at risk should be distinguished to ascertain the susceptibility indexes. As to the quantitative susceptibility indexes of buildings, structure type, the ratio of the useful life and design life, maintenance conditions and the angle between the direction of the landslide forces and the axis of building are chosen, while the health status of the population, age composition and the condition of disaster warning systems are provided for the quantitative susceptibility indexes of people. Generalized formula for deciding the susceptibility indexes of age composition are proposed, underlined by analyzing statistic data of all ages mortality rate of different types of geologic hazard.
     (4) Constructing a model to evaluate the hazard intensity of individual landslide vulnerabilities evaluation in deformation stage.
     The hazard intensity evaluation model of landslide in deformation stage is successful constructed base on the failure modes of deformed landslides and analysis of hazard bearing body loss effect, this evaluation model aim to the whole buildings in the areas affected by the landslide deformation. The evaluation factors mainly include3aspects (landslide surface deformation, displacement rate and landslide depth). The paper calculates the additional internal force of reinforced concrete frame structure and masonry structure in the condition of landslide surface deformation. Assuredly, the limited force the two structure types can bear should be also calculated. The ratio of additional internal force and limited force will reflect the damaged intensity of buildings affected by the landslide surface deformation. Secondly, the calculation equation of landslide speed strength indicators is created according to the landslide speed threshold related to the buildings limited damaged status. Lastly, the ratio of landslide thickness and building foundation depth represent the building stability effected by the spatial distribution of landslide hazard.
     (5) Establish the evaluation model of landslide effect intensity during failure stage for individual landslide vulnerability assessment
     Once landslide failure, during landslide's movement along the terrain in valleys, it will cause a very powerful impact, which has a strong threat and destructive power on the buildings and people within influence areas. Therefore, if you want to establish the evaluation model of landslide effect intensity, you should first calculate the movement process under the control of terrain after landslide failure. In this paper, on the basis of concluding the calculation methods of sliding distance, we put forward the kinematics model about three dimensional landslide sliding process calculation based on finite volume method, considering the different expressions of sliding friction corresponding to different rheological properties of interlayer of surface loose deposits and slide mass material during landslide movement process, acquiring the results of landslide sliding distance, sliding speed and sliding body thickness by three dimensional calculation, providing the basis for evaluation of landslide effect intensity during failure stage.
     The objects for Vulnerability evaluation during landslide instability phase include buildings and people. Owing to different failure mechanisms of moving landslide to these two elements at risk, the selections of intensity index corresponding to these elements are also different. For buildings, this paper simply modeled reinforced concrete frame structure and masonry structure, then through analysis of stress and deformation to the structure model and repeated computations, established a calculation model under the limit horizontal impact force to the structure. Based on the foregoing calculations, selecting the ratio of landslide body impact force to limit horizontal impact force of buildings and the ratio of sliding body thickness to buildings'upper structure height as hazard intensity index, founded a quantitative evaluation model. For people, starting with the difficulty escaping from the threatening scope, we took into account landslide speed, depth and impact zone's width. By analyzing statistics data about sliding velocity and the corresponding to different casualties in history landslide hazard examples, confirmed speed threshold for people escaping landslide, proposed calculation formula of landslide speed intensity index for personnel.
     (6) Proposing vulnerabilities evaluation model of persons in the room based on the buildings vulnerabilities.
     Vulnerabilities of person in the room can be directly affected by the structure type and their vulnerabilities. Buildings vulnerabilities reflect their deformation or damaged extend. However, buildings'structure influence the degree of difficulty of people's escape and persons'safety due to the drop of building elements when serious deformation happens. It can be easily found that people in different building types are damaged differently when lava flows or earthquake make them topple down. Therefore, vulnerabilities calculation model of person in the buildings related to the buildings'vulnerabilities is created by analyzing a great deal of date between the rate of casualties and building types from literatures.
     (7) Risk assessment study during landslide deformation stage, taking Zhao Shuling landslide in Three Gorges Reservoir area as an example
     Through analyzing the basic geological data, exploration data, soil test data, the displacement monitoring data, rainfall data and hazard-effected elements'field survey data of Zhao Shuling landslide in Ba Dong County Three Gorges Reservoir, a case study is made by adopting the landslide risk assessment model during deformation stage mentioned above. Based on the statistical analysis of rainfall monitoring data in Ba Dong County from January1980to June2010, this paper introduced the method to calculate frequency distribution curve parameter for maximum cumulative rainfall of five days, ten days, twenty days and thirty days in four stages, and then optimized the value of parameter. Besides, by calculating the probability of multi-day cumulative extreme rainfall distribution adopting Gumball distribution curve in Ba Dong County, we obtained rainfall intensity of different stage, different accumulative rainfall days and different return period. Based on the rainfall conclusion and landslide stability method, the paper calculated landslide's year failure probability with the combination of two kinds of rainfall intensity and water level. Secondly, landslide disaster vulnerability assessment was made for the operation conditions of larger failure probability. Based on the field investigation data of elements at risk, we acquired vulnerability evaluation index's values; Then made numerical simulation of landslide deformation under calculation conditions adopting FLAC3D, based on the surface displacement data from simulation results, calculated building's structure additional internal force on deformation landslide, combining with sliding speed and the depth of sliding body from simulation results, completed the calculation of disaster effect intensity index, obtained vulnerability distribution map of buildings on the landslide; Based on landslide failure probability and landslide vulnerability assessment, the risk assessment of buildings was given. Owing to Zhao Shuling landslide's stability state being better now, year failure probability under calculation conditions is2.18%, building vulnerability's values range only from0.00to0.15, consequently, the economic risk value under calculation conditions is low, only Y49,200.
     (8) Risk assessment study during landslide failure stage, taking El Picacho landslide in El Salvador as an example
     The application of risk assessment model during landslide failure stage is explained in El Picacho landslide, the emphasis of calculation is vulnerability assessment during landslide failure stage. First of all, according to remote sensing images of landslide sliding track and survey data of sliding distance and thickness of accumulation bodies, validated landslide kinematics calculation model mentioned in this paper, the results show that sliding path and sliding distance gained by model calculation have a good agreement with the actual situation, only in open area without lateral slope, the width of landslide impact area between calculation and actual situation is different, therefore the simulation result of landslide impact influence scope was safer.
     Adopting the kinematics model mentioned in this paper, we calculated landslide sliding distance, sliding speed, sliding body thickness and width of sliding path in the same research area under other eight conditions, confirmed the limit horizontal impact force to buildings within landslide impact influence area, completed disaster effect intensity evaluation of buildings and people during failure stage. Then counted the attributive characteristics of elements at risk within landslide impact influence area, based on the vulnerability assessment model mentioned above, we acquired vulnerability evaluation index's values. Based on the index values and GIS, we obtained vulnerability distribution map of outside personnel, buildings and indoor personnel. The results show that under moving landslide's giant impact energy, the people within landslide influence scope have a high vulnerability, whose values are greater than0.4. About64%of the buildings are the highest level of vulnerability, especially the buildings close to the landslide source area or the center of landslide accumulation area. Compared with outdoor personnel, indoor personnel's vulnerability is smaller; this suggests that buildings have protective effect on indoor personnel. Finally, according to the vulnerability assessment results and qualitative landslide probability, we got the landslide risk results during landslide failure stage under different conditions.
引文
[1]黄润秋.20世纪以来中国的大型滑坡及其发生机制.岩石力学与工程学报,2007,26(3):433-454.
    [2]Cascini L. Risk assessment of fast landslide from theory to practice[C]//General Report: Proceedings of the International Conference on "Fast Slope Movements-Prediction and Prevention for Risk Mitigation".2005,2:33-52.
    [3]Fell R, Corominas J, Bonnard C, et al. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning[J]. Engineering Geology,2008,102(3/4):85-98.
    [4]AGS. Landslide risk management concepts and guidelines, Australian geomechanics sciety[J]. Australian Geomechanics,2000,35(1):49-92.
    [5]AGS. A national landslide risk management framework for Australia, Australian geomechanics society[J]. Australian Geomechanics,2007,42(1):1-12.
    [6]Spiker E C,Gori P L. National landslide hazards mitigation strategy:a framework for loss reduction[J]. U.S. Geological Survey,2003:56.
    [7]Interior U S D ot,Survey USG. The U.S. Geological survey landslide hazards program 5-Year Plan 2006-2010[R].2006.
    [8]APAT.5. Environmental Risk[M]/Agency E Pa T S.Environmental Data Yearbook 2007. Rome,2008:1-20.
    [9]Tagliavini F, Mantovani M, Marcato G, et al. Validation of landslide hazard assessment by means of GPS monitoring technique- a case study in the Dolomites (Eastern Alps, Italy[J]). Natural Hazards and Earth System Sciences,2007,7:185-193.
    [10]Min B C, For R. Landslide risk case studies in forest development planning and operations[M]/Wise M P, Moore G D, VanDine D F. land management handbook. British Columbia,2004(56)
    [11]PGeo R G, PhD M J, PEng P M, et al. Guidelines for legislated landslide assessments for proposed residential development in British Columbia[S]. British Columbia,2006.
    [12]ERM-Hong Kong L. GEO Report No.75 Landslides and Boulder Falls from Natural Terrain: Interim Risk Guidelines (1998) [R]. Hong Kong:Geotechnical Engineering Office,1998:183.
    [13]Hungr O, Fell R, Couture R, et al. Landslide risk management[C]//International Conference on Landslide Risk Management. Vancouver, Canada Taylor & Francis,2005:776.
    [14]AGS. Guideline for landslide susceptibility, hazard and risk zoning for land use Management[J]. Australian Geomechanics,2007,42 (1):13-36.
    [15]Van Westen C J, Asch T W J,Soeters R. Landslide hazard and risk zonation-why is it still so difficult?[J]. Bulletin of Engineering Geology and the Environment,2005,65(2):167-184.
    [16]祝玉学,边坡可靠性分析,北京:冶金工业出版社,1993
    [17]陈丽霞,三峡水库库岸单体滑坡灾害风险预测研究,中国地质大学(武汉),博士论文,2008,5
    [18]罗文强等,斜坡稳定性概率分析的理论与应用,武汉:中国地质大学出版社,2003
    [19]贺可强.大型堆积层滑坡的多层滑移规律分析[J].金属矿山,1998,7:15-18.
    [20]杨继红,刘汉东,秦四清,董金玉,孙强,李厚恩,考虑土性参数空间变异性的边坡可靠度分析,工程地质学报,2007,15(2),206-211
    [21]陈强,李耀庄,边坡稳定的可靠度分析与评价,路基工程,2007,1,1-3
    [22]宋云连,焦同战,赵海芳,部分二次二阶矩法在公路边坡可靠度分析中的应用,公路交通科技,2007,24(9),1-5
    [23]王志旺,杨健,张保军,马水山水库库岸滑坡稳定性研究,岩十力学,2004,25(11:1837-1840
    [24]李萍,黄土边坡可靠性研究,长安大学,博十学位论文,2006,6
    [25]杨磊.基于概率方法的滑坡稳定性分析[J].地下水.2005,27(5):402-404
    [26]郑荣跃,梧松.基于Spencer法的边坡稳定性可靠度指标分析[J].岩土力学,2006,27(1):147-150
    [27]何淑军,张春山,吴树仁等,基于蒙特卡罗法的多级黄土滑坡可靠性分析,地质通报,2008,27(113):1822-1831
    [28]李猛.边坡稳定可靠度的蒙特卡罗数值模拟及其应用研究[学位论文].郑州大学硕十学位论文.2004
    [29]王保田,二维裂隙块体结构边坡稳定安全度分析,第三届全国工程结构可靠度论文集,1992,南京
    [30]张广文,陈祖煜,Rosenblueth法的探讨及其在工程结构可靠度分析中的应用,全国第三届工程结构可靠性学术会议论文集,1992,南京
    [31]王家臣,边坡工程随机分析,煤炭工业出版社,1992,5
    [32]张永荣,岩质高边坡稳定性的可靠性研究,勘察科学技术,2001,4
    [33]何满潮,苏永华,景海河.块状岩体的稳定可靠性分析模型及其应用.岩石力学与工程学报,2002,21(3):343-345.
    [34]苏永华,姚爱军,刘晓明.裂隙化硬岩洞室围岩失稳分析方法.岩士力学,2004,25(7):1085-1088.
    [35]张奇华.块体理论的应用基础研究与软件开发,武汉大学,博士学位论文,2004.
    [36]吴震宇,陈建康,许唯临等.岩质边坡稳定的体系可靠度分析及工程应用.四川大学学报(工程科学版),2008,40(2):32-37.
    [37]谭晓慧.多滑面边坡的可靠性分析.岩石力学与工程学报,2001,20(6):822-82
    [38]王业军.基于模糊随机理论的广义可靠度在边坡稳定性分析中的应用[J].岩土工程技术,2004,18(5):217-223
    [39]E P Penning-Rowsell, B Peerbolte, F N Correia,et al. Flood vulnerability analysis and climatic change:towards a European methodology [A]. Floods and Flood Management [C].1992.343-361.
    [40]PHughes &G B Brundrit. An index to assess South Africa's vulnerability to sea-level rise [J]. South African Journal of Science,1992,88:308-311.
    [41]R D Cin & USimeon. Amodel for determining the classification, vulnerability and risk in the southern coastal zone of the Marche (Italy) [J]. Journal of Coastal Research,1994,10 (1): 18-29.
    [42]I S Zektser, AP Belousova&VY Dudov. Regional assessment and mapping of groundwater vulnerability to contamination [J]. Environmental Geology,1995,25:225-231
    [43]A Maskrey. Disaster Mitigation [M]. Oxford:Oxfam,1989.1-100.
    [44]G Tobin & B E Montz. Natural Hazards:Explanation and Integration [M]. New York:The Guilford Press,1997.1-388
    [45]R E Deyle, S P French, R B Olshansky, et al. Hazard assessment:the factual basis for planning and mitigation[A]. Cooperating with Nature:Confronting Natural Hazards with Land-Use Planning for Sustainable Communities [C].1998.119-166.
    [46]M Panizza. Environmental Geomorphology [M]. Amsterdam:Elsevier,1996.1-268
    [47]United Nations, Department of Humanitarian Affairs. Internationally agreed glossary of basic terms related to disaster management [M]. DNA/93/36, Geneva,1992.
    [48]D E Alexander. Natural Disasters [M]. London:UCL Press Limited,1993.1-632.
    [49]W D Liam Finn. Geotechnical aspects of the estimation and mitigation of earthquake risk [A]. Issues in Urban Earthquake Risk [C].1993.35-77.
    [50]R Fell & D Hartford. Landslide risk management [A].Landslide Risk Assessment [C].1997. 51-109.
    [51]Marco Uzielli, Farrokh Nadim, Suzanne Lacasse, Amir M. Kaynia, A conceptual framework for quantitative estimation of physical vulnerability to landslides, Engineering Geology, 2008(102):251-256
    [52]Hungr, O.,1997. Some methods of landslide intensity mapping. In:Cruden, D.M., Fell, R. (Eds.), Landslide risk assessment-Proceedings of the International Workshop on Landslide Risk Assessment, Honolulu,19-21 February 1997. Balkema, Rotterdam,215-226.
    [53]蒋勇军,况明生,匡鸿海等.区域易损性分析、评估及易损度区划[J].灾害学,2001,16(9):59-64
    [54]刘希林,莫多闻,王小丹.区域泥石流易损性评价[J].中国地质灾害与防治学报,2001,12(2):7-12
    [55]苏桂武,高庆华.自然灾害风险的分析要素[J].地学前缘,2003,10(特):272-279.
    [56]苏桂武,高庆华.自然灾害风险的行为主体特性与时间尺度问题[J].自然灾害学报,2003,12(1):9-16.
    [57]谢其勇,吴立,周丽珍.旧铺滑坡地质灾害评估[J].西部探矿工程,2004(7):201-203.
    [58]Mirco Galli, Fausto Guzzetti, Landslide Vulnerability Criteria:A Case Study from Umbria, Central Italy, Environ Manage (2007) 40:649-664
    [59]A.M. Kaynia, M. Papathoma-Kohle, B. Neuhauser, Probabilistic assessment of vulnerability to landslide:Application to the village of Lichtenstein, Baden-Wurttemberg, Germany, Engineering Geology,2008(101):33-48
    [60]Zhihong Li. Farrokh Nadim. Hongwei Huang. Marco Uzielli. Suzanne Lacasse, Quantitative vulnerability estimation for scenario-based landslide hazards, Landslides (2010) 7:125-134
    [61]W. Roberds, The Estimation of time-space Variability and Vulnerability, LANDSLIDE RISK MANAGEMENT,2005,5
    [62]姜彤,许朋柱.自然灾害研究的新趋势—社会易损性分析.灾害学,1996,11(2):5-9
    [63]张业成,张梁.论地质灾害风险评价.地质灾害与环境保护,1996,7(3):1-6.
    [64]刘希林,莫多闻,王小丹.区域泥石流易损性评价.中国地质灾害与防治学报,2001,12(2):7-12
    [65]李闽.地质灾害人口安全易损性区划研究.中国地质矿产经济,2002(8):24-27
    [66]胡焕校,张立明,三峡库区地质灾害易损性模糊综合评价,地质灾害与环境保护,2008,19(2),57-61
    [67]朱静,唐川,城市山洪灾害易损性的RS和GIS分析,成都理工大学学报(自然科学版),2008,35(1),61-67
    [68]张桂荣,殷坤龙,陈丽霞,浙江省永嘉县区域滑坡灾害人口易损性评价和伤亡风险预测,地质科技情报,2007,26(4):70-75
    [69]汪洋,郭跃,赵纯勇,陈阿林,杨华,基于3S技术的地质灾害易损性面评价研究,灾害学,2003,12,V01.8,No.4,18-23
    [70]樊运晓,罗云,陈庆寿,承灾体脆弱性评价指标中的量化方法探讨,灾害学,2000,6,V01.15,No.2.78-81
    [71]樊运晓,罗云,陈庆寿,区域承灾体脆弱性综合评价指标权重的确定,灾害学,2001,3,V01.16,No.1,85-87
    [72]樊运晓,高朋会,王红娟,模糊综合评判区域承灾体脆弱性的理论模型灾害学,2003,9,V01.18,No.3,20-23
    [73]汪敏,刘东燕,滑坡灾害风险分析中的易损性及破坏损失评价研究,工程勘察,2001,3,7-11
    [74]O.Hungr, J.C., E.Eherhardt. Estimating landslide motion mechanism, travel distance and velocity. In The Intemationai Conference on Landslide Risk Management,2005. Vancouver, Canada:A.A.Balkema Publishers.
    [75]Fausto Guzzetti, Paola Reichenbach, Mauro Cardinali, Probabilistic landslide hazard assessment at the basin scale, Geomorphology,2005,72(1-4):272-299
    [76]Guzzetti, F., etal., Power-law correlations of landslide areas in certral Italy. Earth and Planetary Seience Letters,2002.195(3-4):169-183.
    [77]Scheidegger, A.E. On the prediction of the research and velocity of Catastrophic landslides. Rock Mechanics,1973,5:231-236
    [78]王念秦,张倬元.一种典型黄土滑坡的滑距预测方法[J].西北大学学报.2003,33(1):,111-114
    [79]李先华,陈晓清,胡凯衡,GIS支持下的滑坡运动过程数字仿真,岩石力学与工程学报,2001,20(2):175-179
    [80]李先华,管群,杨武年,数字地形图上滑坡动态方向稳定性系数的计算与滑坡滑动方向的确定,岩石力学与工程学报,1999,18(3):308-311
    [81]李先华,林珲,龚建华,数字滑坡与数字仿真应用研究,地球信息科学,2003,9(3): 36-41
    [82]刘鑫,单体滑坡风险评价方法研究—以陕西省陇县李家下滑坡为例,中国地质大学(北京),2008,5
    [83]陈丽霞,殷坤龙,汀洋,单体滑坡灾害风险预测,自然灾害学报,2008,17(2),65-70
    [84]何淑军,张春山,陈志华等,陕西省宝鸡市渭滨区夏呀河滑坡风险评估,地质通报,2009,28(8):1064-1076
    [85]陈红旗,张若琳,单体滑坡灾害风险简易评价研究,地质灾害与环境保护,2010,21(1):45-48
    [86]沈娜,唐川,金沙江水电站工程区典型单体滑坡风险评价探讨,云南地理环境研究,2008,20(1):45-51
    [87]陈丽霞,三峡水库库岸单体滑坡灾害风险预测研究,中国地质大学(武汉),博十学位论义,2008,4
    [88]罗元华,泥石流灾害破坏损_失风险评价方法.国土资源管理,2000,17(5):6-9
    [89]蒋庆丰,游珍,沈吉等,山坡泥石流场地易损性评价.自然灾害学报,2006,15(1):123-127
    [90]E.D.Haugen, A.M.Kaynia, Vulnerability of structures impacted by debris flow, Landslide and Engineered Slopes,2008,381-387
    [91]Varnes, D J. Landslide hazard Zonation:A Review of Principal and Practice. Commission of Landslide of IAEG, UNESCO, Natural Hazades,1984,3:63
    [92]Fell R (1994) Landslide risk assessment and acceptablerisk.Can Geotech J 31:261-272
    [93]Leroi E (1996) Landslide hazard-risk maps at different scales:objectives, tools and development. In:SennesetK. (eds) Landslides-Glissements de Terrain,7th International symposium on landslides. Balkema, Trondheim, Norway, pp35-51
    [94]Lee EM, Jones DK C (2004) Landslide risk assessment. Thomas Telford, London, pp454
    [95]包承纲.谈岩土工程概率分析法中的若十基本问题.岩土工程学报,1989,11(4):95-98
    [96]陈丽霞,殷坤龙,刘礼领,周玉才,江西省滑坡与降雨的关系研究,岩土力学,2008,29(4)
    [97]陈剑,杨志法,李晓,三峡库区滑坡发生概率与降水条件的关系,岩石力学与上程学报,2005,24(17)
    [98]薛凯喜(极端降雨诱发山地公路地质灾害风险评价及应用研究,重庆大学博士学位论文,2011.5
    [99]Caine N. The rainfall intensity-duration control of shallow landslides and debris flows. GeogrAnn A,1980,62:23-27
    [100]Aleotti P. A warning system for rainfall-induced shallow failures. EngGeol.2004.73:247-265
    [101]Innes J L. Debris flows. Prog Phys Geogr.1983.7:469-501
    [102]Govi M, Sorzana P F. Landslide susceptibility as function of critical rainfall amount in Piedmont basin (North-Western Italy). Stud Geomorphol Carpatho-Balc.1980.14:43-60
    [103]Crozier MJ, Eyles RJ. Assessing the probability of rapid mass movement. In:Technical Groups (eds) Proceedings of 3rd Australia-NewZealand Conferenceon Geomechanics. Wellington:NewZealand Institution of Engineers.1980.6:247-251
    [104]Onodera T, Yoshinaka R, Kazama H. Slope failures caused by heavy rainfall in Japan. In: Proceedings of the 2nd International Congress of the International Association of Engineering Geology.SaoPaulo, Brazil.1974.11:1-10
    [105]Wilson R C, Torikai J D, Ellen S D. Development of rainfall thresholds for debris flows in the Honolulu District, Oahu. US Geological Survey Open-File Report 92-521,1992:45
    [106]Aleotti P. A warning system for rainfall-induced shallow failures. EngGeol.2004.73:247-265
    [107]Govi M, Sorzana P F. Landslide susceptibility as function of critical rainfall amount in Piedmont basin (North-Western Italy). Stud Geomorphol Carpatho-Balc.1980.14:43-60
    [108]张桂荣,殷坤龙,刘礼领,谢剑明,杜惠良.基于WEBGIS和实时降雨信息的区域地质灾害预警预报系统.岩土力学.2005.26(8):1312-1317
    [109]岑国平,暴雨资料的选样与统计方法,给水排水,1999,4:
    [110]黄振平.水文统计.南京:河海大学出版社,2003
    [111]刘光文.皮尔逊Ⅲ型分布参数估计.水文,1990,(4-5):1-10,1-14;
    [112]邓培德,极值分布和指数分布的降雨公式的统计方法.西南给水排水,1982,(4)
    [113]夏宗尧.编制暴雨公式中应用P-m曲线与指数曲线的比较.中国给水排水,990,(3)
    [114]朱颖元,米伟亚.城市短历时暴雨的指数分布及参数估计.福州大学学报(自然科学版),2005,33(3):285-288;
    [115]王俊德.水文统计.北京:水利水电出版社,1993
    [116]李庆扬,王能超,易大义等.数值分析.清华大学出版社施普林格出版社,2003
    [117]Greenwood J A, Landwehr J M, Matalas N C, Probability Weighted Moments:Definition and Relation to Parameters of Several Distributions Expressible in Inverse Form. Water Resources Research,1979,15(5):1049-1054.
    [118]宋德敦,丁晶.概率权重矩法及其在P-Ⅲ分布中的应用.水利学报,1988(3):1-11;
    [1]9]马秀峰.计算水文频率参数的权函数法.水文.1984,21(3):1-8
    [120]王俊德.水文统计.南京:河海大学出版社.2001.
    [121]Ding Jing. Expressions relating probability weighted moments to parameters of several distributions inexpressible in inverse form. J Hydrology,1989,(110):259-270
    [122]丁晶.水文水资源文集.四川出版集团-四川科学技术出版社,2006
    [123]刘治中.数值积分权函数法推求P-Ⅲ分布参.水文.1987,5
    [124]陈元芳,顾圣华,沙志贵.P-Ⅲ型分布混合权函数估计法的研究.水文.2003,23(1):18-20
    [125]陈元芳,候玉.P-Ⅲ型分布分布参数方法的研究.河海大学学报.1992,20(3):24-29
    [126]周芬.P-Ⅲ型分布参数估计方法的比较研究.水电能源科学.2003,21(3):10-13
    [127]杨荣富,丁晶.概率权重矩法估P-Ⅲ型分布参数用表的近似表达式.水文.1994,(3):17-20
    [128]David Alexander. Vulnerability to landslide. In:Landslide Hazard and Risk. Landslide risk assessment. John Wiley & Sons Ltd. England.2001.175
    [129]Thomas Glade, Michael J. Crozier. The nature of landslide impact. In:Landslide Hazard and Risk. John Wiley & Sons Ltd. England.2001.43
    [130]Einstein, H.H.1988. Special lecture-landslide risk assessment procedure, In:5th International Symposium on Landslides, Switzerland, July 10-15, Landslides,2:1075-1090.
    [131]Leone, F., Aste, J.P., Leroi, E.1996. Vulnerability assessment of elements exposed to mass moving:working towards a better risk perception. In:Senneset K (ed) Landslides. Balkema, Rotterdam, pp.263-269.
    [132]Li, Z.H., Nadim, F., Huang, H.W., Uzielli, M., Lacasse, S.2010. Quantitative vulnerability estimation for scenario-based landslide hazards, Landslides,7:125-134. doi: 10.1007/s 10346-009-0190-3.
    [133]F.C Dai, C.F Lee, Y.Y Ngai. Landslide risk assessment and management:an overview, Engineering Geology.2002,64(1):65-87
    [134]Fell, R.1994. Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal 31:261-272. doi:10.1139/t94-031.
    [135]Wong, H.N., Ho, K.K.S., Chan, Y.C.. Assessment of consequence of landslides. In:Cruden, R., Fell, R. (Eds.), Landslide Risk Assessment. Balkema, Rotterdam,1997,111-149
    [136]Remondo J., Bonachea J.& Cendrer A. Quantitative landslide risk assessment and mapping on the basis of recent occurences, Geomorphology,2008,94:496-507
    [137]Kaynia A.M., Papathoma-Kohle M., Neuhauser B., Ratzinger K., Wenzel H.& Medina-Cetina Z. Probabilistic assessment of vulnerability to landslide:Application to the village of Lichtenstein, Baden-Wurttemberg, Germany. Engineering Geology,2008, 101:33-48
    [138]Amatruda, G., Bonnard, C, Castelli, M., Forlati, F., Giacomelli, M., Morelli, M., Paro, L., Piana, F., Pirulli, M., Polino, R., Prat, P., Ramasco, M., Scavia, C., Bellardone, G., Campus, S., Durville, J.-L., Poisel, R., Preh, A., Roth,W., Tentschert, E.H.,2004. A key approach:the IMIRILAND project method. Identification and mitigation of large landslide risks in Europe-advances in risk assessment. In:Bonnard, C., Forlati, F., Scavia, C. (Eds.), European Commission, Fifth Framework Program. Balkema.13-44.
    [139]Heinimann, H.R.,1999. Risikoanalyse bei gravitativen Naturgefahren-Fallbeispiele und Daten. Umwelt-Materialen 107/1, Bern.
    [140]Baxter, P.J., Boyd, R., Cole, P., Spence, R.2004. The impacts on buildings of pyroclastic surges at the Soufriere Hills Volcano, Montserrat. Bulletin of Volcanology.67(4):292-313.
    [141]Spence, R.J.S., Baxter, P.J., Zuccaro, G.2004. Building vulnerability and human casualty estimation for a pyroclastic flow:a model and its application to Vesuvius, Journal of Volcanology and Geothermal Research.133(1-4):321-343.
    [142]Tsai Y.-B., Yu T.-M., Chao H.-L.& Lee C.-P. Spatial distribution and age dependence of human-fatality rates from the Chi-Chi, Taiwan, Earthquake of 21 September 1999. Bulletin of the Seismological Society of America,2001,91(5):1289-1309
    [143]Jia Y., Gao J.G. The analysis of death number-ages distribution during the M7.3 earthquake in Haicheng of Liaoning, Earthquake Research in China,2004,20(4):394-398
    [144]Gasparini, P., Manfredi, G., Zschau, J.2007. Preface. Earthquake Early Warning Systems, Gasparini, P., Manfredi, G.& Zschau, J. eds., Springer, Berlin Heidelberg, V-XI.
    [145]Arnhardt, C., Asch, K., Azzam, R. et al.2007. Sensor based Landslide Early Warning System-SLEWS Development of a geo-service infrastructure as basis for early warning systems for landslides by integration of real-time sensors. Reprint from:GEOTECHNOLOGIEN Science Report. Early Warning Systems in Earth Management. Kick-Off-Meeting 10 October 2007 Technical University Karlsruhe.75-88.
    [146]Christian Huggel, Nikolay Khabarov, Michael Obersteiner and Juan Manuel Ramirez. Implementation and integrated numerical modeling of a landslide early warning system:a pilot study in Colombia. Natural Hazards.2010.52(2):501-518
    [147]Sassa, K., Picarelli, L., Yin, Y.P. 2008. Monitoring, Prediction and Early Warning. landslides-disaster reduction. Springer.351-375.
    [148]Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P.1999. Landslide hazard evaluation:an aid to a sustainable development. Geomorphol 31:181-216
    [149]Ojeda-Moncayo J., Locat J., Couture R.& Leroueil S. The magnitude of landslides:An overview. In Landslides:Evaluation and Stabilization, Lacerda et al. (eds),2004, p379-384
    [150]颜荣贵.地计开采沉陷及地表建筑.北京:冶金工业出版社,1995
    [151]煤炭科学研究院北京开采所.煤矿地表移动与覆岩破坏规律及其应用.北京:煤炭工业出版社,1981
    [152]邓喀中,马伟民,邢安仕等.基础动态沉陷规律及地基反力.煤炭科学技术,1995,23(10)
    [153]邓喀中,郭广礼,谭志祥等.采动区建筑物移动变形特性分析.中国矿业大学学报,2001,30(4):354-358
    [154]牛宗涛.采动区建筑物变形特性研究与工程应用.西安科技大学.2008,4
    [155]段敬民.矿山塌陷区房屋杭采动理论及加固技术研究.西南交通大学.2005.9
    [156]谭志祥.采动区建筑物地基、丛础和结构协同作用理论与应用研究.中国矿业大学.2004,5
    [157]崔冬梅.地表移动变形值与地而房屋损坏关系.山东科技大学.2008.5
    [158]吴戈.地表负曲率变形时建筑物附加应力的计算.阜新矿业学院学报.1988,7(1):67-75
    [159]徐剑波.地基不均匀沉降对房屋的危害分析及治理对策研究.湖南大学.2006.1
    [160]山丽雯,刘文生.考虑附加应力的采动沉陷区建筑物设计.辽宁科技大学学报.2011.34(3):264-270
    [161]谭志祥,刘润芳,邓喀中,采动区建筑物移动变形及附加应力数值模拟研究,煤炭科学技术,2007,35(3):94-97
    [162]施楚贤.砌体结构.中国建筑工业出版社.北京:2003年7月
    [163]蔡乾煌,庄茁.工程力学精要.清华大学出版社.北京:2005,286
    [164]装捷,张问清,赵锡宏.考虑砖填充墙的框架结构与地基基础共同作用的分析方法.建筑结构学报.1984.4
    [165]东南大学,天津大学,同济大学.混凝土结构设计原理.中国建筑工业出版社:北京2002
    [166]Cruden DM, Varnes DJ. Landslide types and processes. In:Landslide investigation and mitigation (1996). National Academy Press, Washington,1996:36-75
    [167]Ragozin AL, Tikhvinsky IO. Landslide hazard, vulnerability and risk assessment. In: Bromhead E, Dixon N, Ibsen ML (eds) Proceedings of the 8th International Symposium onLandslides,Cardiff,2000:1257-1262
    [168]石菊松,石玲,吴树仁,工涛,滑坡风险评估实践中的难点与对策,地质通报,2009,28(8):1020-1030
    [169]吴越,刘东升,李明军.岩体滑坡冲击能计算及受灾体易损性定量评估.岩石力学与工程学报.2011,35(5):901-909
    [170]吴越,刘东升,陆新宋强辉.单体滑坡灾害财产风险定量评估模型.岩土力学.2010,31(增):342-348
    [171]Heim, A. Landslide and human lives. Translated by N. Skermer. Bitech Press, Vancouver, 1989
    [172]Scheidegger, A.E. On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics,5:231-236
    [173]Li, J. Yuan, I. The main features of the mudflow in JiangJia Ravien. Zeitschrift fur Geomorphologie.1983.27:325-341
    [174]Corominas, J. The angle of reach as a obility index for small and large landslide. Canadian Geotechnical Journal,1996.33:260-271
    [175]王念秦,张倬元.一种典型黄土滑坡的滑距预测方法.西北大学学报.2003:33(1).111-114
    [176]王思敬,王效宁.大型高速滑坡的能量分析及其灾害预测.滑坡论文集.四川科技出版社:四川.1989.117-124
    [177]Fannin, R.J. and M.P. Wise. A method for calculation of debris flow travel distance. In Proceedings 48th Canadian Geotechnical Conference, Volume 1.1996.643-650.
    [178]Mclellan, P.J. Kaiser, P.K. Application of two-parameter model to rock avalanches of the Mackenzie Mountains. In Proceedings of the 4th international symposium on landslide, Tpronto. Vol.1.1984.135-140
    [179]Salm, B. Contribution to avalanche dynamic. In Proceedings of the symposium on scientific aspects of snow and ice avalanche, Davos. International association of scientific hydrology publication 69.1966.19-29
    [180]Kobayashi, Y. Kagawa, T. The prediction of hazards from debris avalanche and rockfalls with the aid of computer simulations. In Proceedings of the international symposium on engineering geological environment in mountain areas, Beijing, Vol.1.1987.567-572
    [181]刘忠玉,马崇武,苗天德,慕青松.高速滑坡远程预测的块体运动模型.岩石力学与上程学报,2000,19(6):742-746
    [182]刘忠玉,方波.高速滑坡活动强度的动力模拟.郑州工业大学学报,2000,21(1):41-45
    [183]Oldrich Hungr, A Model for the runout analysis of rapid flow slides, debris flows, and avalanches, Can Geotech J,1995,32:610-623
    [184]Scott McDougall, Oldrich Hungr. A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal.2004.41:1084-1097
    [185]Dieter Rickenmann, run out ptediction methods, Dynamic response of granular and porous materials under large and catastrophic deformation,305-324
    [186]王福军.计算流体动力学分析.清华大学出版社:北京.2004
    [187]Gauer, P. and Issler, D. Possible erosion mechanisms in snow avalanche. Annals of Glaciology.2004.38:384-392
    [188]Voight, B., Sousa, J. Lessons from Ontake-san:a comparative analysis of debris avalanche dynamic. Engineering Geology.1994,38:267-297
    [189]Takahashi, T. Mechanical characteristics of debris flow. Journal of the hydraulics division of the American society of civil engineers,104.1978:1153-1169
    [190]McDougall, S., Hungr, O. Dynamic modelling of entrainment in rapid landslides. Canadian Geotechnical Journal.2005.42,1437-1488
    [191]Chen, H., Crosta, G.B., Lee, C.F., Erosional effects on runout of fast landslides, debris flows and avalanches:a numerical investigation. Geotechnique.2006.56 (5),305-322
    [192]Morgenstern N.R.,1967, Submarine slumping and the initiation of turbidity currents.Marine geotechnique. Edited by A.F.Richards. University of Illinois Press.189-220、
    [193]Bagnold R.A.,1954, Experiments on the gravity-free dispersion of large spheres in a Newton fluid shear. Proceedings, Royal Society of Londen, Series A,225:49-63
    [194]Perla, R., Chen T.T..1980, A two-parameter model of snow-avalanche motion. Journal of Glaciology,26(94):197-207
    [195]Revellino, P., Hungr,O.,2004. Velocity an drunout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy. Enviromrental Geology, 45:295-311
    [196]Savage S.B. and Hutter K. The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics,1989,199:177-215
    [197]Brufau, P., Garacia-Navarro, P.,Ghilardi, P. 1D mathematical modeling of debris flow. Journal of Hydraulic Research,2000,38(6):435-446.
    [198]Lacroix, A. La Montagne Pel_e et ses eruptions. Paris:Masson.1904.1-650.
    [199]Petrazzuoli, S.M., Zuccaro, G. Structural resistance of reinforced concrete buildings under pyroclastic flows:a study of the Vesuvian area, Journal of Volcanology and Geothermal Research. 2004.133(1-4):353-367.
    [200]Meli, R. Code prescribed seismic action and actual seismic forces in buildings. In:Proc.5th National Conference L'Ingegneria Sismica in Italia, Milan,1991.735-758.
    [201]Cosenza, E., Manfredi, G., Verderame, G. Seismic assessment of r.c. structures:Case studies in Catania. In:Faccioli, E., Pessina, V. (Eds.), The Catania Project:Earthquake Damage Scenario for a High Risk Area in the Mediterranean. Gruppo Nazionale per la Difesa dai Terremoti-CNR, Roma.2003.215.
    [202]Dai, H., Xia, L.P., Ding, Y.Z. Aseismic construction for multi-storey composite structures. Earthquake. Engeering. Structure. Dynamics.1996.25(9):87-907.
    [203]Spence, R.J.S., Baxter, P.J., Zuccaro, G. Building vulnerability and human casualty estimation for a pyroclastic flow:a model and its application to Vesuvius, Journal of Volcanology and Geothermal Research.2004.133(1-4):321-343.
    [204]王社良.抗震结构设计.武汉理工大学出版社:武汉.2007
    [205]Valentine, G.A. Damage to structures by pyroclastic FLows and surges, inferred from nuclear weapons effects. Journal of Volcanology and Geothermal Research.1998.87(1-4):117-140.
    [206]Hunger, O. Dynamic of rock avalanches and other types of mass movements. PhD Thesis. University of Alberta.1981.
    [207]Del Prete, M., Gostelow, T. P.& Summa, V. Studio dei movirnenti framinosi della Basilicata appenninica attraverso I'utlizzazione dei dati storici. Atti del I Conv. Dei Giovani Ricercatori in GeologiaApplicata, Gargnano.1990.
    [208]Thomas Glade, Malcolm Anderson and Michael J. Crozier. Landslide Hazard and Risk. England:John Wiley&Sons, Ltd.2005
    [209]Swami, V., Einon, D., Furnham, A. The leg-to-body ratio as a human aesthetic criterion, Body Image.2006.3:317-323.
    [210]Andrew Coburn, Robin Spence, earthquake protection, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO198SQ, England.2002
    [211]Antonios Pomonis, Robin Spence, Peter Baxter, Risk assessment of residential buildings for an eruption of Furnas Volcano, Sa-o Miguel, the Azores, Journal of Volcanology and Geothermal Research 92.1999.107-131
    [212]长江水利委员会综合勘测局.长江三峡水利枢纽库区巴东县迁建城镇新址地质论证报告.1995
    [213]李远耀,殷坤龙,柴波,等.三峡库区滑带土抗剪强度参数的统计规律研究.岩土力学,2008,29(5):1419-1424.
    [214]Sebesta, J. Geomorfologia del Area Metropolitana de San Salvador (AMSS) y su relacion con los movimientos de ladera. Oficina de Planificacion del Area Metropolitana de San Salvador (OPAMSS), San Salvador.2007.
    [215]Kiernan, S.H., Ledru, O. Remedial measures against landslide hazards at the San Salvador volcano, El Salvador. Royal Institute of Technology, Stockholm, Sweden,1996.100.
    [216]Jose Cepeda. Jose Alexander Chavez. Celina Cruz Martinez. Procedure for the selection of runout model parameters from landslide back-analyses:application to the Metropolitan Area of San Salvador, El Salvador. Landslides.2010.105-116
    [217]Backlin C, Finnson H. Landslide hazard at the San Salvador volcano. Royal Institute of Technology, Stockholm, Sweden,1994.136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700