用户名: 密码: 验证码:
660km深度俯冲板块流变强度的高温高压实验研究及其动力学应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
660km地震不连续面一般对应着地球深部林伍德石(ringwoodite,Mg2SiO4)向钙钛矿(perovskite, MgSiO3)和镁方铁矿(magnesiowustite, MgO)的相变,是地球内部分开上地幔和下地幔的重要地球动力学界面,深俯冲板块在这一深度附近发生了许多重要的演化,譬如深源地震的彻底消失,深俯冲板舌发生偏转后才进入下地幔等。因此,了解和把握660km地震不连续面附近物质的力学属性及其边界本身的化学/结构属性是当前地球深部物质科学和动力学研究的重要前沿课题。而高温高压实验研究是认识深部地球动力学过程的重要途径之一,它使得我们可用实验室的观察结果来代替仅仅是推测的假说,所以我们要充分认识实验研究工作在解决未来固体地球科学难题中的地位和意义。目前,国际上对上地幔橄榄岩等已经有较多的研究,而对660km地震不连续面附近的物质(钙钛矿和镁方铁矿)由于实验仪器的限制而研究很少,这在很大程度上限制了我们对660km深度俯冲板块的变形和演化及相关地球动力学问题的认识。
     本论文主要利用能很好控制变形并能精确确定其强度的加州大学河滨分校Green教授实验室的高温高压Griggs流变仪对与660km深度不连续面附近结构完全相同的物质(Co2TiO4→CoTiO3+CoO)进行了一系列开创性的初步研究工作,具体研究内容包括以下几个方面:a)660km地震不连续面附近物质分解前后强度变化的流变学实验研究;b)660km地震不连续面附近物质电子背散射衍射(EBSD)初步研究;以及c)以我国唯一的深源地震区——东北深震为例探讨了深源地震的发震机理及为什么大于660km深度以后没有地震发生的机制。
     对660km地震不连续面附近物质分解前后强度变化的流变学实验研究初步确定了1)分解产物(CoTiO3+CoO)的确具有后成合晶结构——表面上看是微小细粒的,在二维空间上看是独立的单个晶体,但在三维空间上它们很有可能是连在一起的。2)相同条件下后成合晶(CoTiO3+CoO)的强度比Co-Ti尖晶石(Co2TiO4)强约25%,说明这种后成合晶结构是一种使物质变强的结构而不是像前人提到的由于颗粒度变小而使物质变弱的结构;应用到地球科学中,俯冲岩石圈当其进入下地慢时并没有变弱而是比其下伏的地幔转换带具有更大的粘度,这与地球物理上的证据是一致的。利用我们的结果能够很好的解释俯冲陡倾板舌中(包括汤加以及我国的东北地区)由于下地幔粘度的加大导致的对插入板片的抵抗力致使其应力状态以下倾压缩应力为主的情况。之外,在尖晶石相分解的一系列试验中并没有发现任何的剪切不稳定性,那样深源地震在转换带底部停止的最可能解释或者是亚稳态橄榄石已经消耗殆尽(但已经在4个俯冲带内发现此深度橄榄石依然存在)或者就是像此文研究中的那样生成了不产生剪切不稳定性的这种后成合晶结构。
     另外,显微构造和岩石组构分析是构造地质学中一项重要基础工作,它通过研究变形岩石的显微构造和结晶学优选方位(LPO)来揭示宏观构造变形规律、应力状态、运动方式和形成机制等构造信息,对于研究地质体变形环境、变形机制和变形动力学过程非常关键,也是约束和建立地球深部地质与地球物理模型的重要支撑。最近十几年来,装备在扫描电镜上的电子背散射衍射(EBSD)技术日臻成熟,已经成为材料科学和地球科学显微组构分析的强有力手段。作为构造地质学中的革命性技术方法,EBSD能提供完整的量化显微构造和结晶学测量数据,实现矿物相鉴定、变形机制、位错滑移系、变质过程和岩石物理性质模拟等研究。我们对变形前后CoTiO3+CoO后成合晶的EBSD测定结果显示:1)变形前后成合晶结构中的CoTiO3和Co0在三维上的确是连接在一起的,并且它们同时生长还遵循一定的方向,即CoO的{111}//CoTiO3的{0001}、CoO的{110}//CoTiO3的{10-10}和CoO的{100}//CoTiO3的{2-1-14}或{1-214};2)后成合晶变形过程中,发生了动力学重结晶和颗粒生长,但并没有任何证据显示由颗粒边界滑移主导的“超塑性”流动使后成合晶结构弱化的现象;对变形后的Co-Ti尖晶石(Co2TiO4)和变形前后的分解产物(CoTiO3+CoO后成合晶)分别进行了电子背散射衍射(EBSD)晶格优选方位的初步研究,结果表明:1)变形后的Co-Ti尖晶石和变形前后的分解产物中的CoO其晶格优选方位都不明显,它们的极密图中均显示近随机分布的组构特征,对应的方位差角相对频率分布图也都接近理论随机分布曲线。可能这是由于我们的轴向压缩实验样晶变形量较小或者是其高对称性晶体结构(立方晶体)所导致的,因而不能用来推导其变形机制;2)变形后的分解产物中的具有三方结构的CoTiO3存在较强的晶格优选方位,{110}面和{100}面极点为近于平行面理(σ2和σ3组成的面)分布的大圆环带,其最大极密值对应轴向近于平行线理;{001}面极点垂直线理方向,最大极密值接近Z轴(σ1轴向压缩)方向;说明CoTiO3内的位错滑移很可能是主导其塑性变形和形成较强优选方位的主要变形机制,且(001)面是其主滑移系中的易滑移面;也就是说分解后这两种物质不是各自以颗粒边界滑移来进行变形,而是后成合晶以整体的位错蠕变来进行变形的。
     之外,深震是指震源深度大于300km的天然地震,研究深源地震的机理将有助于深入地了解板块构造的驱动机制、动力学特征;而通过深源地震体波的研究还可以获得许多与地球深部构造有关的物质状况和性质的重要信息,从而加深对地球内部结构的认识;同时深源地震也是人类潜在的自然灾害之一(例如1970年6月31日发生在南美哥伦比亚的深震和1977年6月17日发生于汤加地区(西南太平洋)的深震(震级5.6级,震源深度达684km)等);由此探索深源地震机制对于查明俯冲板块与地震空间成因关系和开展全球自然灾害地质研究具有十分重要的意义。因此本文对我国唯一的深震区——东北深源地震带的深源地震进行了初步性研究,研究结果显示:1)我国东北深震的发生与西北太平洋板块向欧亚大陆的俯冲直接相关,且其震源机制解显示的应力状态以下倾的压缩应力为主,这与上述的俯冲岩石圈当其进入下地幔时并没有变弱而是比其下伏的地幔转换带具有更大的粘度的结果相一致。证据主要有a,震源深度在SEE—NWW方向有依次加深的趋势,而在SSW—NNE方向的剖面上震源深度似乎没有明显变化,分布较SEE—NWW方向上的剖面是很均匀的;b,P轴的优势方位为北西西向,平均方位是277°,而P轴的平均仰角是31°,T轴的平均仰角为50.8°(与P轴方向接近垂直);也就是说东北深震震源机制解中的主压应力轴是与太平洋板块的下插方向相一致的,而主张应力轴与其垂直;c,从日本海沟到我国的东北地区震源深度逐渐增加,依次为浅源、中源和深源地震区,且中国东北深震几乎是从日本海沟沿直接倾斜下来;2)通过与东北深震区和西太平洋俯冲带的地球物理资料相对比,认为我国东北深源地震的发生很可能是由橄榄石的相变引起的,而没有发现任何超过660km的深源地震发生,或者与本区亚稳态橄榄石已经消耗殆尽有关,或者与林伍德石转换为钙钛矿和镁方铁矿从而形成稳定的后成结晶结构相关。
     最后值得一提的是本论文的第六章,从内容上来看它似乎与本博士论文的题目不太相关,但考虑到对较常用的高温高压Multianvil仪器操作和实验流程的学习也是我博士研究生期间主要目的之一,且单斜辉石中Ca-Eskola含量随温度、压力、化学成分的变化对理解许多超高压变质(UHPM)现象(例如在许多榴辉岩和石榴橄榄岩中的绿辉石和透辉石中显示有小的具有一定晶体学趋向的SiO2包裹体)有着重要的理论研究意义,所以在第六章中对我博士研究生期间重要的研究成果之一——“利用多压砧(Multianvil)高温高压仪器对单斜辉石中Ca-Eskola含量高温高压实验研究”进行了展示。本研究中我们利用加州大学河滨分校的Walker型多压砧高温高压仪器对具有绿辉石组成(Na2O=1.78wt.%,CaO=10.37wt.%,MgO=5.44wt.%,Al2O3=23.12wt.%,SiO2=59.29wt.%)的玻璃(glass)粉末样品在无水的、P分别为6、8、10、12GPa和T分别为900、1000、1100、1200℃状态下进行了一系列实验(共16个实验),并对实验后的样品进行了Ca-Eskola(简写为Ca-Esk)含量随温度、压力、化学成分变化的研究。研究结果显示:1)所有的反应产物中与单斜辉石共同存在的矿物有石榴石、蓝晶石和Si02(柯石英或斯石英),且单斜辉石都是非配比平衡的(nonstoichiometric),也就是说在6个氧的基础上总的阳离子数小于4;2)Ca-Esk含量对起始物质化学组成非常敏感,尤其是Si02的含量;3)等温条件下非配比平衡单斜辉石中Ca-Esk含量值在4-5和8GPa之间达到最大(38-42mol.%),随后随着压力的升高Ca-Esk含量在约9GPa-10GPa迅速降低直到斯石英变为稳定(在12GPa,1200℃时降低到约18mol.%),同时也伴随着辉石向石榴石的转换,直到15GPa所有的辉石全部转换为石榴石为止;4)等压条件下非配比平衡单斜辉石中Ca-Esk含量值随温度的变化较压力来说并不是很明显;且考虑到等温条件下单斜辉石中“过量Si02”从1.5到4-5GPa逐步升高,在5-8GPa达到最大,我们认为UHPM中Ca-Esk含量与从地球深部深达200-250km处(压力约为8GPa)折返上升来的辉石中SiO2的出溶相关,因为其在P≥9GPa后Ca-Esk含量迅速降低,这样系统中“过量SiO2”也将随着降低。只有UHPM岩石在“过饱和的Si”的状态下折返,其才能出溶SiO2(柯石英或石英),所以200-250km只是从本研究中推论出的岩石折返的最大深度。实验结果还说明辉石从地球深部上升过程是非常迅速的,因为发现在单斜辉石中出溶的SiO2是柯石英(如果上升过程很慢,其势必退变为石英)。
The660km seismic discontinuity corresponds, at least at lower temperatures, to the transition of the spinel phase of (Mg,Fe)2Si04, ringwoodite, to (Mg,Fe)SiO3, perovskite (pv)+(Mg,Fe)O, magnesiowustite (mw). The rheological properties of material above and below this discontinuity as well as the chemical/structural nature of the boundary itself play an important role for the understanding of deeply subducted slabs, the termination of deep earthquakes, mantle convection, post-glacial rebound, and other geodynamic processes. Although the rheology of olivine, the dominant upper-mantle mineral, has been extensively studied, knowledge about the rheological properties of the material near the660km discontinuity, especially pv+mw is limited because of technical reasons. As a consequence, the deformation behavior of deep subduction slab at the660km seismic discontinuity and its role in the deeper levels of subduction zones and mantle remain poorly understood. To address this important problem, we have performed preliminary studies on a similar realistic analogue system (disproportionation of Co2TiO4spinel into CoTiO3ilmenite+CoO) with the material near the660km discontinuity under high temperature and high pressure, including an experimental investigation on the rheology of the material near the660km discontinuity, preliminary EBSD study on the deformation microstructure of the material near the660km discontinuity and their significances for the mechanism of deep-focus earthquakes in North-Eastern area of China.
     We have conducted experiments at strain-rates of10-1~10-5/s, pressures of2-4GPa, and temperatures of1273-1523K to determine and compare the flow strength of spinel with its dissociation product in detail through high pressure and temperature experiments in the5GPa piston-cylinder (Griggs) deformation apparatus in which the deformation can be well controlled, with accurate stress measurement with a realistic analogue system:disproportionation of Co2TiO4spinel into CoTiO3ilmenite+CoO. Our results show that (i) Such decomposition reactions yield typical symplectic microstructures--"wormy" intergrowths of daughter phases-in which the domain size viewed in2D can appear much smaller than the actual size of individual intergrowths of the two phases in3D.(ii) The symplectic high-pressure reaction product (CoTi03+CoO) is stronger than the Co2TiO4spinel parent about25%rather than much weaker as predicted, that is, symplectites are structurally strong, not structurally weak because each is a complexly intergrown2-phase bicrystal, not weak nanocrystalline aggregates. Application to Earth shows that subducting lithosphere entering the lower mantle is not weaker and can be expected to be significantly more viscous than the mantle transition zone as has been shown for the lower mantle in general by geophysical measurements. With our results, the down-dip compressive stress states of subducting slabs can be understood well, as observed in the slabs of western Pacific Ocean (including the north-eastern area of China). In addition, there is no indication of a shearing instability during incipient breakdown of the spinel phase under stress in this system. Thus, the most likely explanation of termination of deep earthquakes at the base of the mantle transition zone is that either metastable olivine (now having been observed in4subduction zones) has been exhausted or that, if carried into the lower mantle, reacts aseismically to form symplectites.
     In the past decade the electron backscatter diffraction (EBSD) technique has become into a available apparatus for the microstructure and crystallographic analysis of materials equipped on the scanning electron microscope. This method was widely used for measurement of texture and microstructure of minerals because of its convenience, high quality positionand, high orientation resolution, and so on. Recently, it have been applied to phase identification, studying deformation mechanisms, constraining dislocation slip systems, studying metamorphic processes, constraining metamorphic processes and numerical computations of petrophysical properties. Our preliminary results from electron backscatter diffraction (EBSD) study on the deformed or undeformed microstructure of symplectites of CoTiO3+CoO and CO2TiO4spinel phase show that:
     (a) From the scatter diagrams of orientation map of symplectites, it can been seen that all plane{111} of CoO//{0001} of CoTiO3,{110} of CoO//{10-10} of CoTiO3and{100} of CoO//{2-1-14} of CoTiO3, although in the second (right) symplectite show two groups orientation of CoO, suggesting that CoO and CoTiO3are intergrowths in3D and also follow a special direction.
     (b) During deformation of the symplectites, dynamic recrystallization and grain growth occurs, however, there is only slight diminution of grain size and no evidence for structural weakening of the symplectite due to'structural superplastic' flow dominated by grain-boundary sliding.
     (c) There is no pronounce crystallographic preferred orientation (CPO) in deformed Co2TiO4and undeformed or deformed CoO of symplectites. All the misorientation angle distributions correspond to theoretically random distribution curves. The nearly random CPO may be attributed to the high symmetry of crystallographic structure (cubic) or inadequate deformation, and can not be used to imply active slip systems.
     (d) In contrast, a relative stronger crystallographic preferred orientation be developed in deformed CoTiO3of symplectites, the{110} plane tends to form a girdle in the plane subparallel to the lineation with a relatively weak point maximum subparallel foliation, and{100} plane nearly show the same pattern as{110}. The {001} plane poles normal to lineation and tend to parallel Z direction (σ1compression direction), all suggest dislocation glide on the plane of{001} maybe play a dominant role for the plasticity of CoTiO3.
     The results from the preliminary study of deep-focus earthquakes in Northeast area of China show that (i) The deep-focus earthquakes region of North-Eastern China is a part of Western Pacific Ocean subduction zones, and is the result of driving action from Western Pacific Ocean subducting slab. The down-dip compressive stress states is showed from the the focal mechanisms of the deep earthquakes in North-Eastern China. It is consensus with the greater viscosity of the lower mantle mentioned above,(ii) Most deep-focus earthquakes in North-Eastern China occur within metastable olivine wedge, so their occurrence should be related to phase transformation. The most likely explanation of termination of deep earthquakes at about660km is that either metastable olivine has been exhausted or that, ringwoodite breakdown yields such aseismically symplectites.
     It's worth noting that there seems no relation between the chapter6and the title of this paper, however, learning how to operate MA apparatus and how to process the sample for MA is one of main prospective objects during my time as a graduated student, besides, it is important to understand the composition of starting materials, temperature and pressure implications of Ca-Eskola component in clinopyroxene, such as, the explanation of omphacite and diopside from many eclogites and garnet peridotites display tiny, crystallographically oriented, rod-shaped or lamellar inclusions of quartz. So as one of important results during my time as a graduated student, the " Ca-Eskola component in clinopyroxene:experimental studies at high pressures and high temperatures in multianvil apparatus" is shown at the chapter6.
     A series of anhydrous experiments using powdered glass of omphacite composition (wt.%):Na2O=1.78, CaO=10.37, MgO=5.44, Al2O3=23.12, SiO2=59.29were conducted in a Walker-style multianvil apparatus in the P-T range6-12GPa and900-1200℃to study activity of the Ca-Eskola (Ca-Esk) component. All clinopyroxenes synthesized in equilibrium with garnet, kyanite and SiO2(coesite or stishovite) are nonstoichiometric, with the sum of cations<4, calculated for6oxygens. We systematically have measured the values of the Ca-Esk component of clinopyroxenes as a function of pressure and temperature. The results yield that the highest value of the Ca-Esk component (38-32mol.%) is reached at6GPa, then it slightly decreases up to36-30mol.%at8GPa, and significantly decreases at10-12GPa from26to16mol.%when stishovite becomes stable in the assemblage and the pyroxene progressively dissolves into garnet. Comparison of our data with those available in the literature (which all together cover a wider range of P and T within pyroxenes stability field) show that the Ca-Esk activity strongly depends on bulk chemistry at all ranges of pressure and temperature. However, the sensitivity of the Ca-Esk component to pressure and temperature is not a simple negative or positive correlation, it is characterized by complex relationships which are strongly affected by bulk composition. In general, integrated analyses of published experiments suggest that the Ca-Esk component rises rapidly to its highest values (~36-38mol.%) from1to4-6GPa, then it slightly decreases between8to10GPa followed by remarkable decrease at highest pressure ranges of12to15GPa culminating in replacement of pyroxene by garnet. We conclude that the SiO2exsolution lamellae observed in clinopyroxenes from many ultrahigh pressure terranes can be explained by decompressions of the "Si-rich" nonstoichiometric clinopyroxene, however the depth from which such rocks are uplifted should not exceed200-250km, corresponding to pressure~8-10GPa.
引文
沈旭章,周蕙兰.2009.接收函数CCP-PWS偏移方法探测中国东北地区620 km深处低速层.科学通报.54(2):215-223.
    崔效锋,谢富仁,赵建涛.2005.中国及邻区震源机制解的分区特征.地震地质.27(2):298-307.
    段永红.2005a.中国东北西太平洋俯冲带火山区地壳上地幔结构研究.博士学位论文.中国地震局地球物理研究所.
    段永红,张先康,刘志,原秦喜,徐朝繁,王夫运,方盛明,杨卓欣.2005b.长白山-镜泊湖火山区地壳结构接收函数研究.地球物理学报.48(2):352-358.
    段永红,张先康,刘志,方盛明,王夫运,徐朝繁,原秦喜.2005c.长白山-镜泊湖火山区上地幔间断面接收函数研究.地球物理学报.48(4):834-842.
    傅维洲.1996.中国东北深震及其构造意义.长春地质学院学报.26(3):316-321.
    郭增建,秦保燕,李革平.1992.未来灾害学[M].北京:地震出版社.438-439.
    郭增建,张晓东,吴瑾冰.2002.东北深震区——8级大震的穴位.内陆地震.16(4):289—293.
    金振民.上地幔流变学.1993a.《当代地质科学前沿》(肖庆辉等主编).中国地质大学出版社,武汉,112-120.
    金振民.上地幔相变动力学.1993b.《当代地质科学前沿》(肖庆辉等主编).中国地质大学出版社,武汉,121-129.
    金振民.1997.我国高温高压实验研究进展和展望.地球物理学报.40(增刊):70-81.
    金振民.1988.高温高压岩石变形实验及其地球动力学的意义.地质科技情报.7:11-19.
    李春昱,郭令智,朱夏等.1986.板块构造基本问题.北京:地震出版社.10-33.
    刘维贺,王振亚,许勤.2000.东北深地震区的地震活动与中国大陆强震活动相关特征的初步研究.西北地震学报.22(1):68—73.
    马铭志,刘轶男,李雪梅,朱丽艳.2006.吉林深震的构造背景和区域地震能量的异常讨论.地震地磁观测与研究.27(增刊):11-16.
    孟宪森,朱景春,孙文斌,许学礼,李登恒.1996.东北地区浅源中强震及深震与西太平洋板块俯冲.东北地震研究.12(2):12-23.
    孙文斌,和跃时.2004.东北地区地震活动特征及其与日本海板块俯冲的关系.地震地质.26(1):1-11.
    王周元,何少林,李勇.2000.中国中深源地震分布特征及其意义.西北地震学报.22(3):288-295.
    王永峰.2006.西藏东巧地区上地幔橄榄岩的流变学研究.中国地质大学博士学位论文.
    吴建平.2005.中国大陆火山监测研究进展.地震地磁观测与研究.26(5):1-10.
    谢鸿森,候渭,周文戈等.2001.地球深部探索与高压研究.知识和进展.30:145-148.
    徐海军,金淑燕,郑伯让.2007.岩石组构学研究的最新技术——电子背散射衍射(EBSD).现代地质.21(2):213-225.
    徐志国,刘瑞丰,任枭,黎明,孙丽.2007.中国地震台网中心与美国哈佛大学快速震源机制解的对比.地震地磁观测与研究.28(4):1-6.
    余日东,金振民.2006.蛇纹石脱水与大洋俯冲带中源地震(70~300km)的关系.13(2):191-204.
    臧绍先,宁杰远.1996.西太平洋俯冲带的研究及其动力学意义.地球物理学报.39(2):188-202.
    张凤鸣,张亚江,许晓艳,张天雷,张震.2007.日本海西部-中国东北深震区俯冲运动对东北地区浅源地震的动力作用.东北地震研究.23(1):33-39.
    张立敏,唐晓明.1983.西太平洋板块俯冲运动与中国东北深震带.地球物理学报.26(4):331-340.
    章军峰.2003.榴辉岩高温高压变形实验研究.中国地质大学博士学位论文.
    张瑞青,李永华,姚雪绒.2006.西北太平洋俯冲带东北地区壳幔结构研究进展.地球物理学进展.21(4):1080-1085.
    周春银,金振民,章军锋.2010.地幔转换带:地球深部研究的重要方向.地学前缘.17(3):90-113.
    赵素涛,金振民.2008.地球深部科学研究的新进展——记2007年美国地球物理国际联合会(AGU).地学前缘.15(5):298-316.
    Abers, G. A.2000. Hydrated subducted crust at 100-250 km depth. Earth Planet. Sci. Lett.176: 323-330.
    Abers, G. A.2005. Seismic low-velocity layer at the top of subducting slabs:observations predictions, and systematics. Phys. Earth Planet. Int.149:7-29.
    Ai,Y., Zheng, T., Xu. W., He. Y., Dong, D.2003. A complex 660km discontinuity beneath northeast China. Earth Planet. Sci.Lett.212:63-71.
    Akaogi, M., Navrotsky, A.,1984. The quartz-coesite-stishovite transformation:new calorimetric measurements and calculation of phase diagram. Phys. Earth. Planet.Inter.36:124-134.
    Akimoto S., Syono.Y.1967. High-pressure decomposition of some titanite spinels. The Journal of Chemical Physics.47:1813-1817.
    Albarede, F., van der Hilst, R.D.1999. New mantle convection model may reconcile conflicting evidence, Eos.80,535:537-539.
    Anderson, D. L.1989. Theory of the Earth. Boston. Blackwell. Pp.366.
    Anderson, R. N., Hasegawa, A., Umino, N., Takagi, A.1980. Phase changes and the frequency-magnitude distribution in the upper plane of the deep seismic zone beneath Tohoku, Japan. J. Geophys. Res.85:1389-1398.
    Armstrong, J.T.,1988. Quantitative analysis of silicate and oxide minerals:comparison of Monte Carlo, ZAF and Phi-rho-z procedures. In:Newbury, D.E. (Ed.), Microbeam Analysis. San Francisco Press, San Francisco, pp.239-246.
    Bai, Q., Green, H. W.1998. Plastic flow of Mn2GeO4 I:Toward a rheological model of the Earth's transition zone. In:Manghnani, M. H., Yagi, T., eds., Properties of Earth and Planetary Materials at High Pressure and Temperature, AGU Monograph 101, Washington, pp. 461-472.
    Bakun-Czubarow, N.,1992. Quartz pseudomorphs after coesite and quartz exsolutions in eclogitic omphacites of the Zlote Mountains in the Sudetes (SW Poland). Arch Mineral.48,3-25.
    Barnhoorn, A., Bystricky, M., Burlini, L. and Kunze, K.,2004. The role of recrystallisation on the deformation behaviour of calcite rocks:large strain torsion experiments on Carrara marble. Journal of Structural Geology.26:885-903.
    Bassett, W. A., Shen, A.H., Bucknum, M., Chou, I. M. 1993. A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from-190 to 1200 ℃. Review of Scientific Instruments. 64:2340-2345.
    Benioff, H.1964. Earthquake source mechanisms. Science.143:1399-1406.
    Bercovici, D., Karato, S.2003.Whole-mantle convection and the transition-zone water filter, Nature.425:39-44.
    Bertka, C.M., Fei, Y.,1997. Mineralogy of the Martian interior up to core-mantle boundary pressures. J. Geophys. Res.102,5251-5264.
    Bina, C. R., Helffrich, G.1994. Phase transition Clapeyron slopes and tranition zone seismic discontinuity topography. J. Geophys. Res.99(B8):15853-15860.
    Bina, C. R., Navrotsky, A.2000. Possible pressure of high-pressure ice in cold subducting slabs. Nature.408:844-847.
    Bina, C. R., Stein, S., Marton, F.C., Van, A. E. M.2001. Implications of slab mineralogy for subduction dynamics, Phys. Earth Planet. Inter.127:51-66.
    Block, S., Piermarini G.1976. The Diamond Cell Stimulates high-pressure research. Physics Today. 29(9):44-45.
    Bouchon, M., Ihmle, P.1999. Stress drop and frictional heating during the 1994 deep Bolivia earthquake. Geophys. Res. Lett.26:3521-3524.
    Brearley, A. J., Rubie, D. C.1990. The effects of H2O on the disequilibrium breakdown of muscovite+quartz. J. Petrology.31:925-926.
    Bridgman, P. W.1936. Shearing phenomena at high pressure of possible importance for geology. J. Geol.44:653-669.
    Bromberg, S. E.; Chan, I. Y.1992. Enhanced sensitivity for high-pressure EPR using dielectric resonators. Review of Scientific Instruments.63:3670-3673.
    Brudzinski, M. R., Chen, W. P.2005. Earthquakes and strain in subhorizontal slabs, J. Geophys. Res.,110, B08303, doi:10.1029/2004JB003470.
    Burnley, P. C., Green, H. W., Prior, D.1991. Faulting associated with the olivine to spinel transformation in Mg2GeO4 and its implications for deep-focus earthquakes. J. Geophys. Res. 96:425-443.
    Bytritsky, M., Kunze, K., Burlini, L., Burg, J. P.2000. High shear strain of olivine aggregates: rheological and seismic consequences. Science.290:1564-1567.
    Cawthorn, R.G., Collerson, K.D.,1974. The recalculation of pyroxene end-member parameters and the estimation of ferrous and ferric iron content from electron microprobe analyses. Am. Mineral.59,1203-1208.
    Chai, M., Brown, J.M, and Wang, Y.1998. Yield strength, slip systems and deformation induced phase transformation of San Carlos olivine up to the transition zone pressure at room temperature. In Properties of Earth and Planetary Materials at High Pressure and Temperature, Geophysical Monograph 101, ed. by M. Manghnani and T. Yagi, AGU, Washington, D. C., pp. 483-493.
    Chen, C.Y., Frey, F.A.1983.Origin of Hawaiian tholeiite and alkalic basalt, Nature.302:785-789.
    Chen, J., Inoue, T., Weidner, D. J., Wu, Y., Vaughan, M. T.1998. Strength and water weakening of mantle minerals, olivine, wadsleyite and ringwoodite. Geophys. Res. Lett.25:575-578.
    Chen, W. P., Brudzinski, M. R.2001. Evidence for a large-scale remnant of subducted lithosphere beneath Fiji. Science,292,2475-2479.
    Chen, J.H; Weidner, D.J; Vaughan, M.T,2002. The strength of Mg0.9Fe0.1SiO3 perovskite at high pressure and temperature. Nature. pp:824-826.
    Connolly, J.A.D., Kerrick, D.M.2002. Metamorphic controls on seismic velocity of subducted oceanic crust at 100-250 km depth. Earth Planet. Sci. Lett.204:61-74.
    Creager, K. C., Jordan,T.H.1986. Slab penetration into the lower mantle beneath the Mariana and other island arcs of the northwest Pacific. J Goephys Res.91:3573-3586.
    Dennis, J. G., Walker, C. T.1965. Earthquakes resulting from metastable phase transitions. Tectonophysics.2:401-407.
    Deschamps, F., Tackley, P.J.2008. Exploring the model space of thermo-chemical convection I-Principles and influence of the rheological parameters. Phys. Earth Planet. Inter.171: 357-373.
    Deschamps, F., Tackley, P. J.2009. Searching for models of thermo-chemical convection that explain probabilistic tomography Ⅱ-Influence of physical and compositional parameters. Phys. Earth Planet. Inter. doi:10.1016/j.pepi.2009.03.012
    Dobrzhinetskaya, L.F., Bozhilov, K.N., Green, H.W.,2000. The solubility of TiO2 in olivine: implication for the mantle wedge environment. Chem. Geol.163,325-338.
    Dobrzhinetskaya, L.F., Schweinehage, R., Massonne, H.J., Green, H.W.,2002. Silica precipitates in omphacite from eclogite at Alpe Arami, Switzerland:evidence of deep subduction. J. Metamorph. Geol.20,481-492.
    Dobson D., Meredith, P. G., Boon, S. A.2002. Simulation of subduction zone seismicity by dehydration of serpentine. Science.298:1407-1410.
    Durham, W. B. and Rubie, D. C.1998. Can the multianvil apparatus really be used for high-pressure deformation experiments? In:Manghnani, M. and Yagi, T. (Eds), Properties of Earth and Planetary Materials at High Pressure and Temperature, Geophysical Monograph 101, AGU, Washington, pp.63-70.
    Durham, W. B., Weidner, D. J., Karato, S., Wang, Y.,2002. New developments in deformation experiments at high pressure. In:Karato, S., Wenk, H. R., eds., Plasticity of Minerals and Rocks. Reviews in Mineralogy and Geochemistry.51:21-49.
    Dziewonski, A. M., Gilbert, F.1974. Temporal variation of the seismic moment tensor and the evidence of precursive compression for two deep earthquakes. Nature.247:185-188.
    Estabrook, C. H.1999. Body wave inversion of the 1970 and 1963 South American large deep-focus earthquakes. J. Geophys. Res.104:28751-28767.
    Estabrook, C. H., Kind, R.1996. The nature of the 660-kilometer upper mantle discontinuity from precursors to the PP phase, Science.274:1179-1182.
    Fei, Y., Van Orman, J., Li, J., van Westrenen, W., Sanloup, C., et al.2004. Experimentally determined postspinel transformation boundary in Mg2Si04 using MgO as an internal pressure standard and its geophysical implications, J. Geophys. Res.,109, B02305, doi:10.1029/2003JB002562.
    Forte, A. M., Mltrovlca, J. X.2001. Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature,410:1049-1056.
    Forman,R.A.; Piermarini, G.J.; Barnett, J. D.; Block,S.1972. Pressure Measurement made by the utilization of ruby sharp-line luminescence. Science.176:284-285.
    Frohlich, C.1989. The nature of deep-focus earthquakes. Annu. Rev. Earth Planet. Sci.17: 227-254.
    Frohlich, C.1994. A break in the deep. Nature.368:100-101.
    Frohlich, C.2006. Deep earthquakes. Cambridge University Press, New York.
    Fukao, Y., Obayashi,M., Inoue, H., Nenbai,M.1992. Subducting slabs stagnant in the mantle transition zone. J. Geophys. Res.97:4809-4822.
    Fukao, Y., Widiyantoro, S., Obayashi, M.2001. Stagnant slabs in the upper and lower mantle transition region. Rev. Geophys.39:291-323.
    Fumiko, T., Yoshio, F., Masayuki, O., et al.1998. Evaluation of slab images in the northwestern pacific. Earth planet space.50:953-964.
    Funamori, N; Sato, T.2008. A cubic boron nitride gasket for diamond-anvil experiments. Rev Sci
    Gasparik, P.1992, Melting experiments on the Enstatite-pyrope join at 80-152 kbar. Journal of Geophysical Research,97,15181-15188.
    Gasparik, T.,1984a. Experimental study of subsolidus phaserelations and mixing properties of pyroxene in the system CaO-Al2O3-SiO2. Geochim. Cosmochim. Acta 48,2537-2545.
    Gasparik, T.,1984b. Experimentally determined stability of clinopyroxene+garnet +corundum in the system CaO-MgO-Al2O3-SiO2. Am. Mineral.69,1025-1035.
    Gasparik, T.,1986. Experimental study of subsolidus phase relations and mixing properties of clinopyroxene in the silica-saturated system CaO-MgO-Al2O3-SiO2. Am. Mineral.71, 686-693.
    Gasparik, T.,2003. Phase Diagrams for Geoscientists. Springer-Verlag, Berlin-Heidel-berg-New-York, p. pp.462.
    Gayk, T., Kleinschrodt, R., Langosch, A., Seidel, E.,1995. Quartz exsolution in clinopyroxene of high-pressure granulite from the Munchberg massif. Eur. J. Mineral.7,1217-1220.
    Gilbert, F., Dziewonski, A. M.1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Phil. Trans. Roy. Soc., London. A278:187-269.
    Gleason, G.C., Green, H.W., Ⅱ.2009. A general test of the hypothesis that transformation-induced faulting cannot occur in the lower mantle:Physics of the Earth and Planetary Interiors,172: 91-103.
    Goto, K., Susuki, Z., Hamaguchi, H.1987. Stress distribution due to olivine-spinel phase transition in descending plate and deep focus earthquakes. J. Geophys. Res.92:13811-13820.
    Grand, S. P., van der Hilst, R.D., Widiyantoro, S.1997. Global seismic tomography:A snapshot of convection in the Earth, GSA Today.7:1-7.
    Grand, S. P.2002. Mantle shear-wave tomography and the fate of subducted slabs. Phil. Trans. R. Soc. Lond.A 360:2475-2491.
    Green, H. W.1984. How and why does olivine transform to spinel? Geophys. Res. Lett. 11:817-820.
    Green, H. W., Borch, R. S.1989. A new molten salt cell for precision stress measurement at high pressure. European Journal of Mineralogy.1:213-219.
    Green, H. W., Burnley, P. C.1989. A new self-organizing mechanism for deep-focus earthquakes. Nature,341:733-737.
    Green, H. W., Houston, H.1995. The mechanics of deep earthquakes. Annu. Rev. Earth Planet. Sci.,23:169-213.
    Green, H. W., Scholz, C. H., Tingle, T. N., Young, T. E., Koczynski, T. A.1992. Acoustic emissions produced by anticrack faulting during the olivine-spinel transformation. Geophys. Res. Lett.19:789-792.
    Green, H. W., Young, T. E., Walker, D.,Scholz, C. H.1990. Anticrack-associated faulting at very high pressure in natural olivine. Nature.348:720-722.
    Green, H. W. and Zhou, Y.1996. Transformation-induced faulting requires an exothermic reaction and explains the cessation of earthquakes at the base of the mantle transition zone. Tectonophysics,256:39-56.
    Green, H. W., Ⅱ.2001. A graveyard for buoyant slabs? Science.292:2445-2446.
    Green, H.W., Chen, W-P., Brudzinski, M. R.2010. Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere. Nature.467:828-831.
    Green, H. W. and Marone, C.2002. Instability of deformation. In Plasticity of Minerals and Rocks, Reviews in Mineralogy and Geochemistry.51:181-199.
    Green, H. W. and Jung, H.2005. Fluids, Faulting, and Flow. ELEMENTS, vol.1.,pp.31-37.
    Griggs, D. T., Handin, J.1960. Observations on fracture and a hypothesis of earthquakes. Geo. Soc, Am. Mem.79:347-373.
    Griggs, D. T., Baker, D. W.1969. The origin of deep-focus earthquakes. In:Properties of Matter Under Unusual Conditions. H Mark, S Fernbach (eds.) New York, Wiley Interscience, pp. 23-42.
    Grigne, C., Labrosse, S.2001. Effects of continents on Earth cooling:thermal blanketing and depletion in radioactive elements. Geophys. Res. Lett.28:2707-2710.
    Grigne, C., Labrosse, S., Tackley, P.J.,2005. Convective heat transfer as a function of wavelength: implications for the cooling of the Earth. J. Geophys. Res.110, B03409.
    Grigne, C., Labrosse, S., Tackley, P.J.,2007a. Convection under a lid of finite conductivity:heat flux scaling and application to continents. J. Geophys. Res.112,B08402.
    Grigne, C., Labrosse, S., Tackley, P.J.,2007b. Convection under a lid of finite conductivity inwide aspect ratiomodels:effect of continents on thewavelength ofmantle flow. J. Geophys. Res. 112, B08403.
    Guest, A., Schubert, G., Gable, C W.2003. Stress field in the subducting lithosphere and comparison with deep earthquakes in Tonga, J. Geophys. Res.,108 (B6),2288, doi:10.1029/2002JB002161.
    Guest, A., Schubert, G., Gable, C. W.2004. Stress along the metastable wedge of olivine in a subducting slab:possible explanation for the Tonga double seismic layer. Phys.Earth Planet. Inter.141:253-267.
    Guillou, L., Jaupart, C.1995. On the effect of continents on mantle convection. J. Geophys. Res. 100:24217-24238.
    Gurnis, M.1988. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature.332:695-699.
    Hacker, B. R., Peacock, S.M., Abers, G. A., Holloway, S. D.2003. Subduction factory-2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res.108, doi:10.0129/JB001129.
    Hara, T., Kuge, K., Kawakatsu, H.1996. Determination of the isotropic component of deep focus earthquakes by inversion of normal-mode data. Geophys. J. Int.115:14-40.
    Hemley, R.J.; Ashcroft, N.W.1998. "The revealing role of pressure in the condensed matter sciences. Physics Today.51:26-32.
    Hermann, J.,2002. Experimental constraintsonphaserelationsinsubducted continental crust. Contrib. Mineral. Petrol.143,219-235.
    Hetland, E. A., Wu, F. T., Song, J. L.,2004. Crustal structure in the Changbaishan volcanic area, China, determined by modeling receive functions. Tectonophysics.386:157-175.
    Hobbs, B. E., Ord, A.1988. Plastic instabilities:implications for the origin of intermediate and deep focus earthquakes. J. Geophys. Res.93:10521-10540.
    Hodder, A.P.M.1984. Thermodynamic constraints on phase changes as earthquake source mechanisms in subduction zone. Phys. Earth Planet. Int.34:221-225.
    Holmes, A.,1931. Radioactivity and earth movements. Transactions of the Geological Society of Glasgow.18:559-606.
    Huang, J., Zhao, D.2006. High-resolution mantle tomography of China and surrounding regions.J. Geophys.Res. 111, doi:10.1029/2005JB004066.
    Hubbert, M.K., Rubey, W.W.1959. Role of fluid pressure in overthrust faulting. Geol. Soc. Amer. Bull.70:115-206.
    Irifune, T., Kubo, N., Isshiki, M., Yamasaki, Y.1998. Phase transformations in serpentine and transportation of water into the lower mantle. Geophys. Res. Lett.25:203-206.
    Irifune, T., Seking, T., Ringwood, A.E., Hibberson, W.O.,1986. The eclogite-garnetite transformation at high pressure and some geophysical implication. Earth Planet. Sci. Lett.77, 245-256.
    Ito, E., Sato, H., Aseismicity in the lower mantle by superplasticity of the descending slab, Nature, 351,140--141,1991.
    Jiang, G., Zhao, D., Zhang. G.2008. Seismic evidence for a metastable olivine wedge in the subducting Pacific slab under Japan Sea. Earth Planet. Sci. Letts.270:300-307.
    Jin, Z., Zhang, J., Green, H.W., Jin. S.2001. Eclogite rheology:Implications for subducted lithosphere. Geology.29:667-670.
    Jung, H., Green, H. W., Dobrzhinetskaya, L.F.2004. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature.428:545-549.
    Kanamori, H., Anderson, D. H., Heaton, T.H.1998. Frictional melting during the rupture of the 1994 Bolivian earthquakes. Science.279:839-842.
    Kaneshima, S., Okamoto,T., Takenaka, H.2007. Evidence for a metastable olivine wedge inside the subducted Mariana slab. Earth Planet. Sci. Lett.258:219-227.
    Karato, S., Paterson, M. S., Fitz Gerald, J. D.,1986. Rheology of synthetic olivine aggregates: influence of grain size and water. Journal of Geophysical Research.91:8151-8176.
    Karato, S. Zhang, S. and Wenk, H. R.1995. Superplasticity in Earth's Lower Mantle:Evidence from Seismic Anisotropy and Rock Physics, Science,270:458-461.
    Karato, S; Rubie, D C.1997. Plastic deformation (Mg,Fe)2SiO4 under deep mantle conditions.EOS, Transactions, American Geophysical Union, vol.78, no.46, Suppl., pp.722.
    Karato, S., Dupas-Bruzek, C. and Rubie, D.C.1998. Plastic deformation of (Mg,Fe)2SiO4 spinel (ringwoodite) under the transition zone conditions. Nature.395:266-269.
    Karato, S., Riedel, M. R.,Yuen, D. A.2001. Rheological structure and deformatio of subducted slabs in the mantle transition zone:implications for mantle circulation and deep earthquakes, Phys. Earth Planet Int.127:83-108.
    Kasahara, J., Tsukahara, H.1971. Experimental measurements of reaction rate at the phase change of nickel olivine to nickel spinel. J. Phys. Earth.19:79-88.
    Katayama, I., Parkinson, C.D., Okamoto, K., Nakajima, Y., Maruyama, S.,2000. Super- silicic clinopyroxene and silica exsolution in UHPM eclogite and pelitic gneiss from the Kokchetav massif. Kazakhstan. Am. Mineral.85,1368-1374.
    Katayama, I., Masahito, O., Ogasawara, Y.,2002. Mineral inclusions in zircon from diamond-bearing marble in the Kokchetav massif, northern Kazakhstan. Eur. J. Mineral.14, 1103-1108.
    Kawakatsu, H.1991. Insignificant isotropic component in the moment tensor of deep earthquakes. Nature.351:50-53.
    Kawakatsu, H.1996. Observability of the isotropic component of a moment tensor. Geophys. J. Int. 126:525-544.
    Kayal,J.R.,Zhao,D., Mishra, O.P.,et al.2002. The 2001 Bhuj earthquake:Tomographic evidence for fluids at the hypocenter and its implications for rupture nucleation. Geophys.Res.Lett.29, dio:10.1029/2002GL015177.
    Kellogg, L.H., Hager, B.H., van der Hilst, R.D.1999. Compositional stratification in the deep mantle, Science.283:1881-1884.
    Kerschofer, L., Rubie, D.C., Sharp, T.G., McConnell, J.D.C., Dupas-Bruzek, C.2000. Kinetics of intracrystlline olivine-ringwoodite transformation. Phys. Earth Planet. Int.121:59-76.
    Kinslow, Ray; Cable, A.J.1970. High-velocity impact phenomena. Boston:Academic Press. ISBN 0-12-408950-X.
    Kirby, S. H.1987. Localized polymorphic phase transformation in high-pressure faults and applications to the physical mechanism of deep earthquakes. Nature.351:50-53.
    Kirby, S. H., Durham, W. B., Stern, L.1991. Mantle phase changes and deep earthquake faulting in subducting lithosphere. Science.252:216-225.
    Kirby, S. H.1995. Intraslab earthquakes and phase changes in subducting lithosphere. Rev. Geophys.33:287-297.
    Kirby, S.H., Stern, L.A.1993. Experimental dynamic metamorphism of mineral single crystals. J. Struc. Geol.15:1223-1240.
    Kirby, S.H., Stein, S., Okal, E. A., Rubie, D. C.1996a. Metastable oceanic lithosphere, Rev. Geophys.34:261-306.
    Kirby, S.H., Stein, S., Okal, E. A.,et al.1996b Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere.Rev.Geophys.34:261-306.
    Komabayshi, T. S., Omori, S., Maruyama, S.2004. Petrogenetic grid in the system MgO-SiO2-H2O up to 30 Gpa,1600℃:application to hydrous peridotite subducting into the Earth's deep interior. J. Geophys. Res.109, doi:10.1029/2003JB002651.
    Konzett, J., Frost, D.J., Proyer, A.,2008. The Ca-Eskola component in eclogitic clinopyroxene as a function of pressure, temperature and bulk composition:an experimental study to 15 GPa with possible implications for the formation of oriented SiO2-inclusions in omphacite. Contrib. Mineral. Petrol.155,215-228.
    Lay, T.1994. The fate of descending slabs. Annu. Rev. Earth Planet. Sci.22:33-61.
    Lebedev, S., Sebastien, C., van der Hilst, R.2002. The 660 km discontinuity within the subducting NW-Pacific lithospheric slab. Earth Planet Sci Lett.205:25-35.
    Lei, J., Zhao, D.2005. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics.397:281-293.
    Leith, A., Sharpe, J.A.1936. Deep-focus earthquakes and their geological significance. J. Geol. 44:877-917.
    Lenardic, A., Kaula,W.M.1995. Mantle dynamics and the heat-flow into the Earth's continents. Nature 378:709-711.
    Lenardic, A., Kaula,W.M.1996. Near-surface thermal/chemical boundary layer convection at infinite Prandtl number:two-dimensional numerical experiments. Geophys. J. Int.126: 689-711.
    Lenardic, A.1997. On the heat flow variation from Archean cratons to Proterozoic mobile belts. J. Geophys. Res.102:709-721.
    Lenardic, A.1998. On the partitioning of mantle heat loss below oceans and continents over time and its relationship to the Archaean paradox. Geophys. J. Int.134:706-720.
    Lenardic, A., Moresi, L.,2001. Heat flow scaling for mantle convection below a conducting lid: resolving seemingly inconsistent modeling results regarding continental heat flow. Geophys. Res. Lett.28:1311-1314.
    Lenardic, A., Moresi, L.,2003. Thermal convection below a conducting lid of variable extent:heat flow scalings and two-dimensional, infinite Prandtl number numerical simulations. Phys. Fluids 15:455-466.
    Lenardic, A., Moresi, L.N., Jellinek, A.M., Manga, M.,2005. Continental insulation, mantle cooling, and the surface area of oceans and continents. Earth Plan. Sci.Lett.234:317-333.
    Li, L., Weidner, D., Raterron, P., Chen, J., Vaughan, M.2004. Stress measurements of deforming olivine at high pressure. Physics of the Earth and Planetary Interiors,143-144:357-367
    Li, X., Sobolev, S.V., Kind, R., Yuan, X., Estabrook,C.H.2000. A detailed receive function image of t he upper mantle discontinuities in the Japan subduction zone. Earth Planet Sci Lett.183: 527-541.
    Li, X., Yuan, X.2003. Receiver functions in northeast China implications for slab penetration into t he lower mantle in northwest Pacific subduction zone. Earth Planet Sci Lett.216:679-691.
    Liu, L., Zhang, J., Green II, H.W., Jin, Z.-M., Bozhilov, K.N.,2007. Evidence of former stishovite in metamorphosed sediments, implying subduction to N350 km. Earth Sci. Planet. Lett.263, 180-191.
    Lidaka, T., Suetsugu, D.,1992. Seismological evidence for metastable olivine inside a subducting slab. Nature.356:593-595.
    lidaka, T., Obara, K.1997. Seismological evidence for the existence of anisotropic zone in the metastable wedge inside the subducting Izu-Bonin slab. Geophys. Res. Lett.24:3305-3308.
    Liu, L.1983. Phase transformations, earthquakes, and the descending lithosphere. Phys. Earth Planet. Int.32:226-240.
    Liu, L.G., William, A. B.1986. Phase diagram for ceramist. Oxford univeristy press. New York, Oxford.
    Lomnitz-Adler, J.1990. Are deep focus earthquakes caused by a Martensitic transformation? J. Phy. Earth.38:83-98.
    Loshak, M. G., Alexandrova, L. I.2001. Rise in the efficiency of the use of cemented carbides as a matrix of diamond-containing studs of rock destruction tool. Int. J. Refractory Metals and Hard Materials.19:5-9.
    Lowman, J.P., Jarvis,G.T.,1995.Mantle convectionmodels of continental collision and breakup incorporating finite thickness plates. Phys. Earth Plan. Int.88:53-68.
    Lowman, J.P., Jarvis, G.T.,1996. Continental collisions in wide aspect ratio and high Rayleigh number two-dimensional mantle convection models. J. Geophys. Res.101:25485-25497.
    Lundgren, P., Giardini, D.1994. Isolated deep earthquakes and the fate of subduction in the mantle. J. Geophys. Res.99:15833-15842.
    Mao, H.K.,1971. The system jadeite (NaAlSi2O6)-anorthite (CaA12Si2O8) at high pressures. Carnegie Inst. Yearb.69,163-168.
    Marton, F. C., Shankland, T. J., Rubie, D. C., Xu, Y.2005. Effects of variable thermal conductivity on the mineralogy of subducting slabs and implications for mechanisms of deep earthquakes. Phys. Earth Planet. Int.149:53-64.
    McCormick, T.C.,1986. Crystal-chemical aspects of nonstoichiometric pyroxenes. Am. Mineral. 71,1434-1440.
    McKenzie, D. P., Brune, J. N.1972. Modeling on fault planes during large earthquakes. Geophys. J. Roy. Astron. Soc.29:65-78.
    McGuire, J.J., Wiens, D.A., Shore, P.J., Bevis, M. G.1997 The Match 9,1994 (Mw7.6) deep Tonga earthquake:rupture outside the seismically active slab. J.Geophys. Res,102:15163-15182.
    Meade, C., Jeanloz, R.1989. Acoustic emissions and shear instabilities during phase transformations in Si and Ge at ultrahigh pressure. Nature.339:616-618.
    Meade, C., Jeanloz, R.1990. The strength of mantle silicates at high pressures and room temperature:implications for the viscosity of the mantle. Nature.348:533-535.
    Meade, C., Jeanloz, R.1991. Deep-focus earthquakes and recycling of water into the Earth's mantle. Science.252:68-72.
    Mishra,O.P., Zhao,D.2003. Crack density,saturation rate and porosity at the 2001 Bhuj,India, earthquake hypocenter:A fluid driven earthquake? Earth Planet.Sci.Lett.212:393-405.
    Moresi, L.N., Lenardic, A.1997. Three-dimensional numerical simulations of crustal deformation and subcontinental mantle convection. Earth Plan. Sci. Lett.150:233-243.
    Morris, J., Gosse, J., Brachfels, S., Tera, F.2002. Cosmogenic Be-10 and the solid Earth, studies in geomagnetism, subduction zone processes, and active tectonics. Rev. Mineral. Geochem.50: 207-270.
    Mosenfelder, J.L., Marton, F.C., Ross, C R.,et al.2000. Experimental constrains on the depth of olivine metastability in subducting lithosphere. Phys. Earth Planet.Inter.120:63-78.
    Mosenfelder, J.L., Connolly, J.A.D., Rubie, D.C., Liu, M.2001. Strength of (Mg,Fe)2SiO4 wadsleyite determined by relaxation of transformation stress. Phys. Earth Planet.Inter.127: 165-180.
    Nakajima, J., Matsuzawa, T., Hasegawa, A., et al.2001. Three-dimensional structure of Vp, Vs, and Vp/Vs beneath northeastern Japan:Implications for arc magmatism and fluids. J. Geophys. Res.106:21843-21857.
    Nakamura, A.,Hasegawa, A., Ito, A.,et al.2002. P-wave velocity structure of the crust and its relationship to the occurrence of the 1999 Izmit,Turkey,earthquake and aftershocks. Bull. Seismol.Soc.Amer.92:330-338.
    Nishiyama, N; Irifune, T; Inoue, T, et al.2004. Precise determination of phase relations in pyrolite across the 660 km seismic discontinuity by in situ X-ray diffraction and quench experiments. Physics of the Earth and Planetary Interiors.143,185-199.
    Niu, F., Kawakatsu, H.1996. Complex structure of Mantle Discontinuities at the tip of the subducting slab beneath northeast China. J. Phys Earth.44:701-711.
    Niu, F., Kawakatsu, H.1998. Broadband converted phases from midmantle discontinuities. Earth, Planets and Space.50:987-997.
    Ogawa, M.1987. Shear instability in a viscoelastic material as a cause of deep focus earthquakes. J. Geophys. Res.92:13,801-13,810.
    Ohtani, E., Litasov, K., Hosoya, T., Kubo, T., Kondo, T.2004. Water transport into the deep mantle and formation of a hydrous transition zone. Phys. Earth Planet. Int.143-144:255-269.
    Okal, E.A.1996. Radial modes from the great 1994 Bolivian earthquakes:no evidence for an isotropic component to the source. Geophys. Res. Lett.23:431-434.
    Okamoto, K., Maruyama, S.,2004. The eclogite-garnetite transformation in the MORB+H2O system. Phys. Earth. Planet. Int.146,283-296.
    Omori, S., Kamiya, S., Maruyama, S., Zhao, D.2002. Morphology of the intraslab seismic zone and devolatilization phase equilibria of the subducting slab peridotite. Bull. Earthq. Res. Inst. 76:455-478.
    Omori, S., Komabayashi, T., Maruyama, S.2004. Dehydration and earthquakes in the subducting slab:empirical link in intermediate and deep seismic zones. Phys. Earth Planet. Int.146: 297-311.
    Ono, S., Yasuda, A.,1996. Compositional change ofmajoritic garnet in aMORB composition from 7 to 17 GPa and 1400-1600 ℃. Phys. Earth. Planet. Int.96,171-179.
    Orowon, E.1960. Mechanism of seismic faulting. In Deformation, ed. DT Griggs, J Handlin. London:Geol. Soc. Amer.Mem.79:323-345.
    Pal'yanov, N., Sokol, A. G, Borzdov, M., Khokhryakov, A. F.2002. Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle:an experimental study. Lithos.60:145-159.
    Panero, W. R., Benedetti, L. R., Jeanloz.2003. Transport of water into the lower mantle:role of stishovite. J. Geophys. Res.108, doi:10.1029/2002JB002053,2039.
    Pankow, K. L., Williams, Q., Lay, T.2002. Using shear wave amplitude patterns to detect metastable olivine in subducted slabs. J. Geophys. Res.,107, doi:10.1029/2001JB000608, 2108.
    Paterson, M. S., Olgaard, D. L.2000. Rock deformation tests to large shear strains in torsion. Journal of Structural Geology.22:1341-1358.
    Peacock, S. M.2001. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology.29:299-302.
    Poirier, J.P.1981. On the kinetics of olivine-spinel transition. Phys. Earth Planet. Int.26:179-187.
    Post, R. L. Jr.1977. High temperature creep of Mt. Burnet dunite. Tectonophysics,42:75-110.
    Raleigh, C. B.1967. Tectonic implications of serpentinite weakening. Geophys. J. Roy. Astron. Soc.14:113-118.
    Raleigh, C. B., Paterson, M. S.1965. Experimental deformation of serpentinite and its tectonic implications. J. Geophys. Res.70:3965-3985.
    Ranero, C. R., Morgan, J. P., Mclntosh, K., Reichert, C.2003. Bending-related faulting and mantle serpentinization at the Middle America Trench. Nature.425:367-373.
    Richards, P. G.1976. Dynamic motions near an earthquake fault:a three-dimensional solution. Bull. Seismol. Soc. Amer.66:1-32.
    Ringwood, A.E.1967. The pyroxene-garnet transformation in the Earth's mantle. Earth Planet. Sci. Lett.2:255-263.
    Ringwood, A.E.1975. Composition and petrology of the Earth's Mantle. New York, McGraw Hill, pp.618.
    Ringwood, A.E.,1991. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochi. Cosmochim. Acta 55,2083-2110.
    Ringwood, A.E., Irifune, T.1988. Nature of the 650-kmseismic discontinuity:implications for mantle dynamics and differentiation. Nature.331:131-136.
    Rubie, D. C., Ross, C. R.1994. Kinetics of the olivine-spinel transformation in subducting lithosphere:experimental constraints and implications for deep slab processes. Phys. Earth Planet. Int.86:223-241.
    Rushmer, T.1996. The influence of dehydration and partial melting reactions on the seismicity and deformation in warm subducting crust. In:Subduction:Top to bottom. Geophysical Monograph Am. Geophys. Union.96:299-306.
    Russakoff, D., Ekstr m, G., Tromp, J.1997. A new analysis of the great 1970 Colombia earthquake and its isotropic component. J. Geophys. Res.102:20423-20434.
    Safonov, O.G., Perchuk, L.L., Litvin, Y.A., Bindi, L.,2005. Phase relations in the CaMgSi2O6-KAlSi3O8 join at 6 and 3.5 GPa as a model for formation of some potassium-bearing deep-seated mineral assemblages. Contrib.Mineral. Petrol.149,316-337.
    Savage, J.C.1969. The mechanics of deep-focus faulting. Tectonophysics.8:115-127.
    Schmidt,M.W., Poli,S.1994. The stability of lawsonite and zoisite at high pressures:Experiments in CASH to 92 kbar and implications for presence of hydrous phases in subducted lithosphere. Earth Planet.Sci.Lett.124:105-118.
    Scholz, C. H.1990.2002. The mechanics of earthquakes and faulting. Cambridge Univ. Press, New York.
    Seno, T., Gonzalez, D.G.,1987. Faulting caused by earthquakes beneath the outer slope of the Japan Trench.J. Phys. Earth.35:381-407.
    Seno, T., Zhao, D., Kobayashi, Y., Nakamura, M.2001. Dehydration of serpentinized slab mantle: seismic evidence from southwest Japan. Earth Planet Space.53:861-871.
    Shen, X. Z., Zhou, H. L., Kawakatsu, H.2008. Mapping the upper mantle discontinuities beneath China with teleseismic receiver functions. Earth Planet Space.60(7):713-719.
    Shearer, P.M.1991.Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases, J. Geophys. Res.96:18,147-18,182.
    Silver, P.G., Carlson, R.W., Olson, P.1988. Deep slabs, geochemical heterogeneity and the large-scale structure of mantle convection. Annu. Rev. Earth Planet. Sci.16:477-541.
    Silver, P. G., Beck, S. L., Wallace, T. C., et al.1995. The rupture characteristics of the deep Bolivian earthquake of 1994 and the mechanism of deep-focus earthquakes. Science.268: 69-73.
    Sinha, G. and Butler, S.L.2009. The combined effects of continents and the 660 km- depth endothermic phase boundary on the thermal regime in the mantle. Phys. Earth Planet. Inter. 173:354-364.
    Smith, D.C., Cheeney, R.F.,1980. Oriented needles of quartz in clinopyroxene:evidence for exsolution of SiO2 from a nonstoichiometric supersilicic "clinopyroxene".26th International Geological Congress, Paris, France, Abstract,1, p.145.
    Smith, D.C.,1988. Eclogites and eclogite facies-rocks. Developments in petrology. Elsevier, Amsterdam, pp.524.
    Smith, D.C.,2006. The SHAND quaternary system for evaluating the supersilicic or subsilicic crystal-chemistry of eclogite minerals, and potential new UHPM pyroxene and garnet endmembers. Mineral. Petrol.88,87-122.
    Smyth, J.R.,1980. Cation vacancies and the crystal-chemistry of breakdown reactions in kimberlitic omphacites. Am. Mineral.65,1185-1191.
    Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L.C., Alisic, L., Ghattas.,O.2010. The Dynamics of Plate Tectonics and Mantle Flow:From Local to Global Scales. Science.329:1033-1038.
    Subramanian, N., Chandra Shekar, N. V., Sanjay Kumar, N. R., Sahu, P. C.2006. Development of laser-heated diamond anvil cell facility for synthesis of novel materials. Current Science.91: 175-182.
    Sung, C.1974. The kinetics of high pressure phase transformations in the mantle:possible significance for earthquake generation. Proc. Geol. Soc. China.17:67-84.
    Sung, C., Burns, R. G.1976a. Kinetics of high-pressure phase transformations:implications to the evolution of the olivine-spinel transition in the downgoing lithosphere and its consequences on the dynamics of the mantle. Tectonophysics.31:1-31.
    Sung, C., Burns, R. G.1976b. Kinetics of the olivine-spinel transition:implications to deep-focus earthquake genesis. Earth. Planet. Sci. Lett.32:165-170.
    Tajima, F., Nakagawa, T.,2006. Implications of seismic waveforms:complex physical properties associated with stagnant slab. Geophys. Res. Lett.33, L03311,doi:10.1029/2005GL024314.
    Tajima, F., Katayama, I., Nakagawa, T.2009. Variable seismic structure near the 660 km discontinuity associated with stagnant slabs and geochemical implications. Phys. Earth Planet. Inter.172:183-198.
    Tetzlaff, M., Schmeling, H.2000. The influence of olivine metastability on deep subduction of oceanic lithosphere, Phys. Earth Planet. Inter.120:29-38.
    Tibi, R., Wiens, D. A., Shiobara, H., Sugioka, H., Shore, P. J.2006. Depth of the 660-km discontinuity near the Mariana slab from an array of ocean bottom seismographs. Geophys. Res. Lett.,33, L02313, doi:10.1029/2005GL024523.
    Tibi, R., Wiens, D. A., Shiobara, H., Sugioka, H., Yuan X.2007. Double seismic discontinuities at the base of the mantle transition zone near the Mariana slab. Geophys Res Lett,34, L16316.
    Tingle, T. N., Green, H. W., Young, T. E., Koczynski, T. A.1993. Improvements to Griggs-type apparatus for mechanical testing at high pressures and temperatures. Pure and Applied Geophysics.141:523-543.
    Torii, Y; Yoshioka, S.2007. Physical conditions producing slab stagnation:Constraints of the Clapeyron slope, mantle viscosity, trench retreat, and dip angles. Tectonophysics,445, 200-209.
    Tsai, C.H., Liou, J.G.,2000. Eclogite-facies relics and inferred ultrahigh-pressuremetamorphism in the North Dabie Complex, central-eastern China. Am. Mineral.85,1-8.
    Tullis, J.1990. Experimental studies of deformation mechanisms and microstructures in quartzo-feldspathic rocks. In:Barber, D., Meredith, P., eds., Deformation Processes in Minerals, Ceramics, and Rocks. Unwin and Hyman, Cambridge, pp.190-227.
    Ulmer, P., Trommsdorff, V.1995. Serpentine stability to mantle depths and subduction-related magmatism. Science.26:858-861.
    Vaisnys, J. R., Pilbeam, C.C.1976. Deep-earthquake initiation by phase transformations. J. Geophys. Res.81:985-988.
    Van der Hilst, R. D., Engdahl, R., Spakman, W., Nolet, G.1991. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature.353:37-43.
    Van der Hilst, R.D., Widiyantoro, S., Engdahl, E.R.1997. Evidence for deep mantle circulation from global tomography, Nature.386:578-584.
    Venkataraman, A., Kanamori, H.2004. Observational constraints on the fracture energy of subduction zone earthquakes. J. Geophys. Res.109.5302,doi:10.1029/2003JB002549.
    Vidale, J. E., Benz, H.M.1992. Upper-mantle seismic discontinuities and the thermal structure of subduction zones. Nature.356:678-683.
    Vidale, J. E., Schubert, G., Earle, P.S.2001.Unsuccessful initial search for a midmantle chemical boundary with seismic arrays. Geophys. Res. Lett.,28:859-862.
    Vogel, D.E.,1966. Nature and chemistry of the formation of clinopyroxene-plagioclase symplectite from omphacite. Neues Jahrb. Mineral. Monatsh.6,185-189.
    Wadati, K.1928. Shallow and deep earthquakes. Geophys. Mag.1:162-202.
    Walker, D., Carpenter, M.A., Hitch, C.M.,1990. Some simplifications to multianvil devices for high pressure experiments. Am. Mineral.75,1020-1028.
    Walker, D.,1991. Lubrication, gasketing, and precision in multianvil experiments. Am. Mineral. 76,1092-1100.
    Walter, M.J., Thibault, Y., Wei, K., Luth, R.W.,1995. Characterizing experimental pressure and temperature conditions in multianvil apparatus. Can. J. Phys.73,273-286.
    Wang, T., Chen, L.2009. Distinct velocity variations around the base of the upper mantle beneath northeast Asia. Phys. Earth Planet. Inter.172:241-256.
    Weidner, D. J., Wang, Y.1998. Chemical and clapeyron induced buoyancy at the 660 km discontinuity. J. Geophys. Res.103:7431-7441.
    Weidner, D. J., Wang, Y.2000. Phase transformations:Implications for mantle structure.117: 215-235.
    Wenk, H. R., Matthies, S., Hemley, R. J. et al.2000. The plastic deformation of iron at pressure of the Earth's inner core. Nature.405:1044-1047.
    Wenk, HR; Lonardelli, I; Pehl, J, et al.2004. In situ observation of texture development in olivine, ringwoodite, magnesiowustite and silicate perovskite at high pressure. Earth and Planetary Science Letters.226,507-519.
    Widiyantoro, S., van derHilst, R.D.1996. Structure and evolution of lithospheric slab beneath the Sunda arc, Indonesia. Science.271:1566-1570.
    Wiens, D. A.2001. Seismoligical constraints on the mechanism of deep earthquakes:temperature dependence of deep earthquake source properties. Phys. Earth Planet. Int.,127:145-163.
    Wiens, D. A., McGuire, J. J. and Shore, P. J.1993. Evidence for transformational faulting from a deep double seismic zone in Tonga. Nature.364:790-793.
    Wiens, D. A., McGuire, J. J. and Shore, P. J. et al.1994. A deep earthquake aftershock sequence and implications for the rupture mechanism of deep earthquakes. Nature.372:540-543.
    Wiens, D. A., Snider, N. O.2001. Repeating deep earthquakes:evidence for fault reactivation at great depth. Science.293:1463-1466.
    Wood, B.J., Henderson, C.M.B.,1978. Compositions and unit-cell parameters of synthetic non-stoichiometric tschermakitic clinopyroxenes. Am. Mineral.63,66-72.
    Wood, B.J.,1979. Activity-composition relationships in Ca(Mg, Fe)Si2O6-CaA12SiO6 clinopyroxene solid-solutions. Am. J. Sci.279,854-875.
    Wu, T. C., Bassett, W. A., Burnley, P. C., Weathers, M. S.1993. Shear-promoted phase transitions in Fe2SiO4 and Mg2SiO4 and the mechanism of deep earthquakes. J. Geophys. Res.98: 19767-19776.
    Yamasaki, T., Seno, T. 2003. Double seismic zone and dehydration embrittlement of the subducting slab. J. Geophys. Res.108, doi:10.1029/2002JB001918.2212.
    Yamazaki, D., Karato, S.2001. High pressure rotational deformation apparatus to 15GPa. Review of Scientific Instruments.72:4207-4211.
    Yoshioka, S., Murakami, T.2002. The effects of metastable olivine (a) wedge in subducted slabs on theoretical seismic waveforms of deep earthquakes. J. Geophys. Res.107, doi:10.1029/2001JBOO1223,2365.
    Zhang, G., Song, S., Zhang, L., Niu, Y.,2008. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NWChina:evidence from petrology, geochemistry and geochronology. Lithos 104,99-118.
    Zhang, J., Green, H.W.2007. Experimental investigation of eclogite rheology and fabrics at high pressure. J. Metamorphic. Geol.25,97-115.
    Zhang, J., Green, H.W., Bozhilov, K.N. Jin, Z.M.2004. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust. Nature.428:633-636.
    Zhang, J., Herzberg, C.,1994. Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. J. Geophys. Res.99,17729-17742.
    Zhang, J., Li, B., Utsumi, W., Liebermann, R.C.,1996. In situ X-ray observations of the coesite-stishovite transition:reversed phase boundary and kinetics. Phys. Chem. Minerals.23. 1-10.
    Zhang, L.F., Ellis, D.J., Jiang, W.,2002. Ultrahigh-pressure metamorphism in western ianshan. China:Part Ⅰ. Evidence from inclusions of coesite pseudomorphs in garnet and from quartz exsolution lamellae in omphacite in eclogites. Am. Mineral.87,853-860.
    Zhang, L., Ellis, D., Williams, S., Jiang, W.,2003. Ultrahigh-pressure metamorphism in eclogites from the western Tianshan, China-reply. Am. Mineral.88,1157-1160.
    Zhang, L.F., Song, S.G., Liou, J.G., Ai, Y.L., Li, X.P.,2005. Relict coesite exsolution in omphacite from Western Tianshan eclogites. China. Am. Mineral.90,181-186.
    Zhang, Z., Shen, K., Liou, J., Zhao, X.,2007. Fluid inclusions associated with exsolved quartz needles in omphacite of UHP eclogites, Chinese Continental Scientific Drilling main drill-hole. Int. Geol. Rev.49,479-486.
    Zhao, D., Hasegawa, A., Kanamori H.1994. Deep structure of Japan subduction zone as derived from local regional and teleseismic events. J. Geophys. Res.99:22313-22329.
    Zhao, D.,Kanamori H.,Negishi H.,et al.1996. Tomography of the source area of the 1995 Kobeearthquake:Evidence for fluids at the hypocenter? Science,274:1891-1894.
    Zhao, D., Hiroaki, N.1998. The 1995 Kobe earthquake:seismic image of the source zone and its implications for the rupture nucleation. J. Geophys. Res.103(B5):9967-9986.
    Zhao, D., Xu, Y., Douglas, A., et al.1997. Depth extent of the lau Back-Arc Spreading Center and its relation to subduction processes. Science.278(10):254-257.
    Zhao, D.2004. Global tomographic images of mantle plumes and subducting slabs:insight into deep Earth dynamics. Phys. Earth. Planet. Int.146:3-34.
    Zharikov, V.A., Ishbulatov, R.A., Chudinovskikh, L.T.,1984. High pressure clinopyrox-enes and the eclogite barrier. Geol. Geofiz.25,54-63.
    Zhong, S.J., Gurnis, M.1993. Dynamic feedback between a continent-like raft and thermal-convection. J. Geophys. Res.98:12219-12232.
    Zhou, H. W., Clayton, R. W.,1990. P and S wave travel time inversion for subducting slabs under the island arcs of the northwest Pacific. J. Gephys Res.95:6829-6851.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700