用户名: 密码: 验证码:
基于热管技术的磨削弧区强化换热基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制约高效深切磨削进一步发展的主要瓶颈之一是弧区热量积聚导致的磨削温度过高和工件表面的热损伤。以往只需将足量的磨削液引入到弧区便可确保换热效果的看法其实是一种误解。磨削过程中,在超过临界值的高磨削热流密度下,即使有再多的磨削液进入弧区也无济于事,因为磨削液既已处于成膜沸腾状态,由于工件表面所覆盖的汽膜层的阻挡,磨削液很难真正起到换热作用,如不及时采取相应的措施,工件必定很快发生烧伤。从另外一方面讲,磨削液的大量使用本身也与当前绿色制造的发展趋势相悖。
     本文从这种现状出发,基于绿色制造的理念,提出了一项可望突破高效深切磨弧区换热瓶颈的全新构想——基于热管的磨削弧区强化换热。该项构想的核心是基于旋(回)转热管技术的传热原理,采用一定的结构和工艺,使磨削弧区的热量直接导入热管蒸发端并经热管迅速疏导出去,使冷却的重心由工件转向砂轮,以达到强化弧区换热、提高材料去除率的目的。围绕此构想,本文主要完成了以下几项工作:
     1、研制了热管制作平台,在此平台上制作了一个热管磨头。对热管磨头的传热特性进行了测试,并进行了铣磨钛合金试验,结果表明,在其它工艺参数相同的条件下,使用热管磨头时磨削温度低于普通磨头30%以上,证明了热管技术用于磨削弧区强化换热的可行性。
     2、提出了环形热管砂轮的全新构想,并建立了其简化传热模型。通过求解模型,得到了环形热管砂轮内外壁温度的计算公式。在一定的初始条件下对不同热流密度下的内外壁温度进行了计算,并将计算结果与不带热管的普通砂轮对比,发现环形热管砂轮可以在很大磨削弧区热流密度条件下将其内外壁温度控制在很低水平,这一结果从理论计算上证明了环形热管砂轮的换热潜力。
     3、设计了环形热管砂轮的基体结构并加工制作,搭建了能定量模拟磨削弧区发热并准确测定弧区温度的模拟热管砂轮传热特性试验平台。对环形热管砂轮基体进行模拟弧区加热试验,最后对比普通砂轮基体的试验结果,证实了其换热优势。
     4、使用电镀CBN环形热管砂轮和普通电镀CBN砂轮进行了45钢缓进给干磨和往复干磨对比测温试验。试验结果表明,在没有磨削液参与的干磨条件下,环形热管砂轮可以直接疏导磨削热,大幅降低磨削温度。最后进行了一组有磨削液的钛合金TC4缓磨测温试验,结果发现在普通砂轮发生烧伤的工艺参数条件下,使用环形热管砂轮磨削不会出现烧伤,这一结果证明了环形热管砂轮可以依靠其优异的换热能力提高磨削弧区临界热流密度,防止磨削液成膜沸腾造成的烧伤,进而提高磨削材料去除率。
One of the bottlenecks which impose restrictions on high efficicency grinding’s furtherdevelopment is high grinding temperature and the burn of the workpiece surface caused by the heataccumulaiton in the grinding contact zone. The traditional point considers that leading a large quantityof coolant into the grinding contact zone can insure the effect on heat exchange is a kind ofmisconception actually. During the grinding process, once the coolant is being film boiling state, thevapor film on the workpiece surface will make the coolant difficult to play a role of heat exchange,consequently, it is no use of much more coolant entering into the grinding contact zone under thecondition of high heat flux exceeding its critial value. So, the workpiece surface will burnimmediately if there is no measure to be carried into effect at this time. Furthermore, abundant use ofcoolant is intradiciton with the trend of green manufacturing at present.
     Based on the present status mentioned above and green manufacturing conception, a brand-newidea about enhancing heat transfer in grinding zone based on heat pipe technology is put forward inthis paper which will hopfully breakthrough the bottleneck of the heat exchange int the gringdingcontact zone. The kernel of the idea is to use some structures and processes based on rotating heatpipe principle to lead the heat in the grinding contact zone to the vapor section of the heat pipe thus tobe transferred to the circumstance, so that the cooling focal point will move from workpiece togrinding wheel in order to enhance heat transfer in grinding contact zone and decrease the grindingtemperature. According to this idea, some works have been done in this paper:
     1. A platform for making heat pipe was developed and a heat pipe grinding head was made on it.The transfer characteristics of the heat pipe grinding head were test and the milling-grinding titaniumalloy experiment with it was conducted. The results of the expeirment indicate that, the grindingtemperature of the heat pipe grinding head is30%lower than normal grinding head and it proves thefeasibility of using heat pipe to enhance the heat transfer of grinding contact zone.
     2. An tentative idea of Loop Heat Pipe Grinding Wheel (LHPGW) was put forward and it’ssimplified model was established by the way of mathematical modeling. According to solving themodel, calculating formulas of external wall temperature and internal wall temperature of theLHPGW were obtained. The temperature of LHPGW’s external and internal wall were calculated withthe formulas then cmpared with the normal grinding wheel without heat pipe.The results indicate thatthe LHPGW could take the internal and external wall temperauture on a very low level under the condition of a very high heat flux from the grinding contact zone. This result proves that the loop heatpipe in the LHPGW has great potential on heat transfer.
     3. The LHPGW matrix’s structure was designed whereafter was produced. The simulating heattransfer characteristics of LHPGW platform was developed to simulate the heating condition of thegrinding contact zone quantitatively and measure the grinding temperature accurately. On the basis ofthe platform, a simulating heating expeirment of LHPGW was conducted. The experiment resultsprove that the LHPGW’s superiority in heating transfer contrast with the normal grinding wheel.
     4. The electroplating CBN LHPGW and normal electroplating CBN grinding wheel without heatpipe were respectively used to conduct dry creep feed grinding and dry traverse grinding on45steel.The experiment results prove that the LHPGW can remove the grinding heat directly and decrease thegrinding temperature greatly. Finally, a creep feed grinding experiment with grinding liquid of TC4titanium alloy was conducted. The experiment results show that the workpiece was not to be burnedusing LHPGW on the procesing parameter values which the workpicece was burned with normalgrinding wheel without heat pipe. This proved that the LHPGW could increase the critical heat flux ofthe grinding contact zone and prevent the burn due to the film boiling, thus increase the materialremoval rate of the grinding.
引文
[1]张幼桢.金属切削理论.北京:航空工业出版社,1988
    [2] S.马尔金(美)著,蔡光启,巩亚东等译.磨削技术理论与应用.沈阳:东北大学出版社,2002
    [3] Andrew, C., Howes, T.D. and Pearce, T.R.A..Creep-feed Grinding,Holt,Rinehart,andWinston,London,1985
    [4] Werner, G. and Schlingensiepen, R..Creep feed-an Effective Method to Reduce WorkSurface Temperature in High Efficiency Grinding,Proceedings,Eighth North AmericanManufacturing Research Conference,SME,1980,p.312
    [5] Salje, E..Creep Feed Grinding.Proceedings of the5thInternational Conference onProduction Engineering,JSPE Tokyo,1984,p.37
    [6] TaWakoli T.High efficiency deep grinding.VDI-Verlag and Mechanical EngineeringPublications Limited(MEP),1993
    [7] TaWakoli T.志津野嘉定讷.高能率重研削法(HEDG).应用机械工学,1991(11):134-140
    [8] Werner G,TaWakoli T.High efficiency deep grinding with CBN.IDR,1988(3):124-128
    [9]徐鸿钧,浦学峰等.缓进深磨时弧区温度分布及工件烧伤机理.机械工程学报,1990,26(6):74-79
    [10]徐鸿钧,浦学峰等.The Workpiece Temperature Distritbution in Contact Zone and BurnMechanism during Creep Feed Grinding.Chinese Journal of Mechanical Engineering,1990,3(1):58-63
    [11]徐鸿钧,徐西鹏等.缓磨时工件烧伤过程计算机仿真研究.南京航空航天大学学报,1994,26(5):642-650
    [12]徐鸿钧,徐西鹏等.缓磨时工件表层温度分布的计算机仿真研究.应用科学学报,1996,14(2):199-207
    [13]徐鸿钧,李迎等.缓磨烧伤过程的计算机仿真研究.航空学报,1996,17(4):503-507
    [14]孙方宏,傅玉灿,徐鸿钧.磨削弧区射流冲击强化换热机理及其潜力初探──基于射流冲击强化换热的高效磨削基础研究(一).金刚石与磨料砂轮工程,1999,109(1):16~18
    [15]孙方宏,傅玉灿,徐鸿钧.断续缓磨射流冲击强化磨削弧区换热的实验研究.航空精密制造技术,1999,1:25~27
    [16]孙方宏,陈明,徐鸿钧,傅玉灿.磨削弧区采用径向射流冲击强化换热的试验研究.工具技术,1999,33(10):3~6
    [17]傅玉灿,孙方宏,徐鸿钧.缓进给断续磨削时射流冲击强化磨削弧区换热的实验研究.南京航空航天大学学报,1999,31(2):151~155
    [18]傅玉灿.关于进一步开发高效磨削潜力的基础研究,[博士学位论文],南京:南京航空航天大学,1999
    [19]傅玉灿,徐鸿钧.开槽砂轮缓磨时射流冲击强化换热的研究.航空学报,2001,22(3):222~226
    [20]徐鸿钧,傅玉灿,孙方宏.高效磨削时弧区热作用机理与强化弧区换热的基础研究.中国科学(E辑),2002,32(3):296~306
    [21]武志斌,徐鸿钧,姚正军等.Ni-Cr合金钎焊单层金刚石砂轮界面结构的研究.应用科学学报,2002,20(1):10-13
    [22]肖冰,武志斌,徐鸿钧等.AgCuTi合金钎焊单层立方氮化硼砂轮.焊接学报,2002,23(2):29-33
    [23]武志斌,徐鸿钧,肖冰.钎焊单层金刚石砂轮的实验研究.中国机械工程,2001,12(12):1423-1425
    [24]肖冰,徐鸿钧,武志斌.钎焊单层金刚石砂轮关键问题的研究.中国机械工程,2002,13(13):1147-1150
    [25]美国卓越制造协会.绿色制造(赵道致,纪芳译).北京:人民邮电出版社,2010
    [26]刘飞,曹华军,张华.绿色制造理论与技术.北京:科学出版社,2005
    [27] IS014001: Environmental management systems--Specification with guidance for use,1996
    [28] IS014040: Environmental management--Life cycle assessment--Principles and framework,1997
    [29] M. Rahman, A.S. Kumar, M.U. Salam. Experimental evaluation on the effect of minimalquantities of lubricant in milling, International Journal of Machine Tools&Manufacture2002,42(5):539~547
    [30] J. Kaminski, B. Alvelid. Temperature reduction in the cutting zone in water-jet assisted turning,Journal of Materials Processing Technology,2000,106(1):68~73
    [31]陈德成,铃木康夫,酒井克彦.微量润滑油润滑和冷风冷却加工法对高硅铝合金切削面的影响,机械工程学报,2000,36(11):70~74
    [32]陈德成,铃木康夫,酒井克彦.复合喷雾加工法在切削加工过程中的冷却和润滑效果,中国机械工程,2000,11(9):1035~1038
    [33]中西重康,石谷清幹,越智敏明,等.二次元水喷流にょゐ高温面の冷却,日本机械学会论文集(B编),1980,46(404)(昭55-4):714~724
    [34]马重芳.微电子元件的液体浸没冷却和射流冲击冷却,工程热物理学报,1985,6(4):355~359
    [35]俞坚,马重芳,雷道亨,等.射流冲击下高温壁面在淬冷过程中的传热特性的实验研究,工程热物理学报,1990,11(3):299~303
    [36]者江,孙晗,李现昌等.水喷射淬冷高温壁面的传热实验研究,工程热物理学报,1997,18(5):629~633
    [37]安庆龙.低温喷雾射流冷却技术及其在钛合金机械加工中的应用,[博士学位论文].南京,南京航空航天大学,2006
    [38]赵炳祯.金属切削技术及刀具发展现状,工具技术,1997,31(增):49~57
    [39] M.F. DeVries, S.F. Murray, Tribology at the cutting edge: cuttingand grinding fluids, ASMETribology Symposium61(1994):23~33.
    [40]王西彬.绿色切削加工技术的研究.机械工程学报,2000,36(8):6~10
    [41]庄骏,徐通明,石寿椿.热管与热管换热器,上海:上海交通大学出版社,1989
    [42]庄骏,张红.热管技术及其工程应用,北京:化学工业出版社,2000
    [43] P.D.邓恩,D.A.雷伊.热管(周海云译).北京:国防工业出版社,1982
    [44]池田义雄,伊藤谨司,槌田昭.实用热管技术(商政宋,李鹏龄译).北京:化学工业出版社,1988
    [45]马同泽,侯增祺,吴文铣.热管.北京:科学出版社,1985
    [46]李亭寒,华诚生等.热管设计与应用.北京:化学工业出版社,1987
    [47] Gaugler R.S. Heat transfer device,US Patent2350348,1944
    [48] G.M.Grover. Evaporation-condensation heat transfer device. US patent3229759,1966
    [49] Deverall, J.E., and Kemme, J.E. Satellite heat pipe. USAEC Report LA-3278, contractW-7405-eng-36. Los Alamos Scientific Laboratory, University of California, Sept.,1970.
    [50] Anand D K. Heat pipe application to a gravity gradient satellite. Proc. of ASME Annual Aviationand Space Conference, Beverley Hills, California, June16-19,1968
    [51] Cotter, T.P. Theory of Heat Pipes, USAEC Report LA-3246. Contract W7405-eng-36. LosAlamos Scientific Laboratory, University of California, Sept.,1965
    [52] Cotter T.P. Priciples and Prospects of Micro heat pipes. Proc.5thInt. Heat Pipe Conf.. Tsukuba,Japan:1984
    [53] Cheung, H. A critical review of heat pipe theory and applications. USAEC Report UCRL-50453.Lawrence Radiation Laboratory, University of California,1968
    [54] Tien C L, Sun K H. Minimum meniscus radius of heat pipe wicking materials. Int. J. Heat MassTransfer.1971,14(11)
    [55] Feldman K T, Whiting G H. Application of the heat pipe, Mech. Engng, Vol90,No.11,1968
    [56] Eastman G Y. The heat pipe. Scient. American, Vol218, No.5,1968
    [57] Levy, E K. Theoretical investigation of heat pipes operating at low vapor pressures, J. Eng. Ind.Vol.90, No.4,1968
    [58] Katzoff S. Heat pipes and vapor chambers for thermal control of spacecraft. AIAAThermophysics Specialist Conference, AIAA Paper67-310,1972
    [59] Littwin D A, Mccurley J. Proc.4thInt. Heat Pipe Conf..1981:213~224
    [60] Ma T Z, Jiang Z Y. Heat Pipe Reasearch and Development in China. Proc.5thInt. Heat pipeConf.. Tsukuba, Japan,1984
    [61]徐先满,虞斌.热管技术在金属模具均温散热上的应用.低温与超导,2009,37(10):76~80
    [62]王军.热管技术在化学反应器中的应用研究,[博士学位论文].南京:南京工业大学,2004
    [63]方彬,王凤兰.镍基钎焊热管换热器的特点及其应用.节能技术,2004,22(5):63~64
    [64]王兴春,施明恒.热管喷射式制冷的研究.东南大学学报(自然科学版),2002,32(4):634~637
    [65]张加迅,侯增祺. CPL技术在空间飞行器上的应用.工程热物理学报,2001,22(3):340~343
    [66]余小章.热管辐射器热分析.南京航天航空大学学报,1995,27(2):180~185
    [67]陆金南,郭宏新.热管技术在烧结余热回收中的应用.烧结球团,1994(3):25~28
    [68]金岩,刘泉兴.鞍钢9号高炉热管空气换热器的改造.冶金能源,1994,13(3):40~43.
    [69]庄琛,顾平道,李英娜.热管换热器在宾馆排风能量回收中的经济性分析.制冷与空调,2004(3):79~82.
    [70]赵继豪,吴士玉.北京工体海底世界暖通空调设计.暖通空调HV&AC,1998,2(86):59261.
    [71]范春利,曲伟,杨立,等.电子器件冷却用微型热管的蒸发传热分析.电子器件,2003,26(3):260~263.
    [72]范春利,曲伟,孙丰瑞等.微小型热管的研究现状与进展.电子器件,2004,27(1):211~216.
    [73]山本格.日本的热管技术及其应用.能源工程,1996,(3):39~41.
    [74]谢鸣.国外加固多年冻土地基的新方法—热管技术的应用.施工技术,1994(6):51~53.
    [75]张红,陶汉中,郭宏新.热管技术在青藏铁路永冻层路基中的应用研究.第六届国际多年冻土工程会议,2004
    [76]郭宏新,原思成,张鲁新.青藏铁路低温热管应用的能量基础条件.东南大学学报(自然科学版),2009,39(5):967~972
    [77]马辉,刘建坤,张弥,郭大华.青藏铁路建设中的冻土工程问题及其应对措施.土木工程学报,2006,39(2):85~92,106
    [78] Yiding.Cao, Won S.Chang, Charles D.MacArthur. Analytical study of turbine disksincorporating radially rotating heat pipes. American Society of Mechanical Engineers, HeatTransfer Division,(Publication) HTD,1998,361(3):103~110
    [79] J.Ling, Y.Cao, W.S.Chang. Analyses of radially rotating high-temperature heat pipes forturbomachinery applications. Journal of Engineering for Gas Turbines and Power, Transactionsof the ASME Abbreviated serial title: J Eng Gas Turbines Power Trans ASME,1999,121(2):306~312
    [80] J.Ling. Radially rotating miniature heat pipes for turbine blade cooling applications(PHDdissertation),1999, FLORIDA INTERNATIONAL UNIVERSITY
    [81] R.L.Judd, H.S.MacKenzie, M.A.Eibestawi. Investigation of a heat pipe cooling system for use inturning on a lathe. Int J Adv Manuf Technol,1995,10:357~366
    [82] R.L.Judd, K.Aftab, M.A.Elbestawi. Investigation of the use of heat pipes for machine toolspindle bearing cooling. International Journal of Machine Tools&Manufacture,1994, v34:1031~1042
    [83] Richard Y. Chiou, Jim S J.Chen, Lin Lu, Mark T.North. The Effect Of An Embedded Heat PipeIn A Cutting Tool On Temperature And Wear.2003ASME International Mechanical EngineeringCongress&Exposition, November15~21,2003
    [84]石秉三.热管技术在制冷领域中的应用.制冷,1990,(4):61~65
    [85]石秉三.在机械制造业中推广应用热管新技术(I).机械工程,1990,(3):37~38
    [86]刘金声.EEN-400型车床主轴热管冷却系统的设计计算.机械设计,1994(2):45~49
    [87]卢争,庄有土,张伯霖.低温差半壁热管的研制及其在机床上的应用.机床,1988,(22):20~22
    [88]张伯霖,李易平.热管技术及其在机床上的应用.制造技术与机床,1989(11):16~21
    [89]张伯霖,宋文佛,庄有土等.用环形热管减少机床的热变形.机械工程学报,1995,(03):32~38
    [90]叶伟昌.干切削刀具及其应用.机械工程师,2006,(6):5~7
    [91]邓定瀛,陈世平.干式切削加工技术的现状与未来.机械设计与制造工程,2002,3(4):30~31
    [92]陈光杰.自备冷却系统的刀具,机械工程师,1994.3:41
    [93] Gray V H. The rotating heat pipe, a wickless hollow shaft for transfer-ring high heat fluxes.ASME Paper No.69-HT-19.1969
    [94] Plasek F. Cooling of a.c. motor by heat pipe. Proc.1st International heat pipe Conference,Stuggart,1973
    [95] Groll M, Kraus G, Kreel H, Zimmerman. Industrial applications of low temperature heat pipe.
    [96] Marto, P J. Performance characteristics of rotating, wickless heat pipes. Porc2nd InternationalHeat Pipe Conference, Bologna, ESA Report SP112,1976
    [97] Vasiliev L, Khrolenok V. Centrifugal coaxial heat pipes. Proc2ndInt. Heat Pipe Conf. Bonogna:1976:293~302
    [98] T.C.Jen,G.Gutierrez,S.Eapen, etc. Investigation of heat pipe cooling in drilling applications. PartI: preliminary numerical analysis and verification. International Journal of Machine Tools&Manufacture,2002,(42):643~652
    [99] Jorge Gustavo Gutierrez. Investigation of heat pipes for drilling applications (A DissertationSubmitted in Partial Fulfillment of the Requirements for the degree of PHD). The University ofWisconsin-Milwaukee,2002
    [100]任承钦,李念平,杨靖.碳钢一水热管热真空制作技术研究与分析.工业加热,1999,6:16~18
    [101]刘玉魁.真空系统设计原理.北京:新时代出版社,1988
    [102]王晓东,真空技术,北京:冶金工业出版社,2006
    [103]孟昭智.真空技术手册.哈尔滨:黑龙江科学技术出版社,1986
    [104]樊丽秋.真空设备设计.上海:上海科学技术出版社,1990
    [105]朱武,干蜀毅.真空测量与控制.合肥,合肥工业大学出版社,2009
    [106]秦叔经,叶文邦.换热器.北京:化学工业出版社,2003
    [107] F.Song, D. Ewing, C.Y.Ching. Heat transfer in the evaporator of moderate-speed rotating heatpipes. International Journal of Heat and Mass Transfer,51(2008):1542~1550
    [108]邹中杰,陈斌.高速旋转转子温度测量的实验研究.计量与测试技术,1997,(2):17~20
    [109]凌善康,李湜然.温度测量基础.北京:中国标准出版社,1997
    [110]吴永生.热工测量及仪表.北京:电力工业出版社,1981
    [111]任敬心.磨削原理.西安:西北工业大学出版社,1988
    [112]金滩.高效深切磨削技术的基础研究,[博士学位论文].沈阳:东北大学,1999
    [113]刘承平.数学建模方法.北京:高等教育出版社,2002
    [114]陈理荣.数学建模导论.北京:北京邮电大学出版社,1999
    [115]侯镇兵,何绍杰,李恕先.固体热传导.上海:上海科学技术出版社,1984
    [116]安娜.玛丽亚.比安什.传热学(王晓东译).大连:大连理工大学出版社,2008
    [117]赵镇南.传热学.北京:高等教育出版社,2008
    [118] H.A. Kishawy, J. Wilcox. Tool wear and chip formation during hard turning with self-propelledrotary tools, International Journal of Machine Tools&Manufacture,2003,43:433~439

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700