用户名: 密码: 验证码:
铝硅合金变质条件下凝固过程及模拟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铸造Al-Si合金广泛应用于铸造形状复杂的薄壁零件、航空工业承受高静载荷零件、气缸体、气缸盖等,是一种重要的工业合金。Al-Si合金的凝固过程是影响铸件质量的关键环节之一,因此有必要对其进行深入了解。本文通过试验获取数据并对试验数据进行统计分析,建立了Al-Si合金在变质条件下的过冷度预测模型和微观组织的定量模型,并研究了Al-Si合金的潜热释放规律。通过计算机数值模拟技术研究Al-Si合金的凝固过程及其微观组织的形成过程,能够起到辅助优化生产工艺,改善铸件质量,缩短研发周期的作用。
     过冷度是凝固过程中备受关注的主要问题之一。论文针对金属型条件下经过变质的Al-Si合金的凝固特点,建立了其在不同凝固阶段(初生相阶段、共晶相阶段)的过冷度预测性模型,该模型与冷却速度密切相关的。本文选取了si的质量分数在7%-17%的Al-Si合金作为试验合金,并通过设计具有不同厚度阶梯的阶梯型铸件模具,实现了Al-Si合金在不同冷却速度条件下的凝固过程。在Al-Si合金的凝固过程中,本文使用温度采集模块对各个阶梯中心部位的温度进行了测量和记录。通过计算机辅助分析冷却曲线,分析Al-Si合金凝固过程中形核过冷度与冷却速度的关系,进而建立了相关的过冷度预测性模型。
     当前合金的力学性能预测仍然基于合金的微观组织。本文通过定量分析冷却速度和金相组织,考察了在Al-Sr中间合金变质条件下亚共晶Al-Si合金和共晶Al-Si合金的初生α相的二次枝晶间距(SDAS)的变化规律,对已有的SDAS模型进行了改进,建立了Sr变质条件下的SDAS预测模型。此外,本文还考察了A1-P中间合金变质条件下过共晶Al-Si合金的初生si的形核数量,分析了不同冷速条件下的初生Si的面密度和体密度。
     所有的Al-Si合金凝固过程都要经历共晶阶段,因此,建立基于共晶团形核生长的确定性模型是十分必要的。为了使数值模拟计算既能保证一定的计算效率,又能通过微观组织模拟较好地反映凝固过程,本文在计算过程中,对初生相凝固阶段仍然采用宏观的计算方法,而对共晶相凝固阶段则建立了微观组织的确定性模型,采用宏微观结合的计算方法进行模拟计算。通过分析试验数据,确定了形核模型和生长模型需要的基本参数范围,并在模拟计算中对参数进行验证,确定了共晶组织微观模拟计算需要的较为准确的参数数据。
     凝固潜热是影响传热过程数值模拟结果准确性的重要因素。本文在分析Al-Si合金潜热释放特点的基础上,建立了根据Si含量计算Al-Si合金潜热的计算模型。本文通过两种方法研究Al-Si合金的潜热释放规律。第一种方法是计算机辅助冷却曲线分析法(CA-CCA).通过分析符合牛顿冷却条件的CA-CCA试验数据,发现CA-CCA方法虽然可以计算其潜热,然而该潜热的误差较大,因此,本文建议不采用由此计算的潜热数值进行模拟计算;但是该方法提供了固相率变化等相关信息,有助于辅助认识和分析实际的凝固过程。另一种方法是差示扫描量热法(DSC)。首先,对高纯Al-Si合金进行了大量的DSC试验研究,经过分析发现Al-Si合金的潜热值在共晶成分两侧分别呈现线性规律,由此建立了Al-Si合金的潜热计算公式。其次,对试验铸件的测温部位取样进行DSC试验,经过分析发现获得的潜热数值与高纯Al-Si合金的潜热数值存在一定差距,但其差值方面仍然具有规律性,因此,可以根据高纯Al-Si合金的潜热公式对其进行估算。
     为了解决目前宏微观模拟耦合计算中存在的耗时长的问题,本文基于上述的过冷度预测模型,建立了初生相采用宏观模拟方法和共晶相采用宏微观相结合的模拟方法,即对Al-Si合金的初生相凝固过程采用Scheil方程处理固相率的变化,而对共晶相的凝固过程则建立了相应的确定性计算模型处理相应的形核和生长问题。基于Windows XP的系统平台,本文通过Visual C++6.0编程实现了该模型对试验铸件的模拟计算。其中,共晶Al-Si合金的计算结果与试验结果具有较好的一致性;而对于拥有初生相的Al-Si合金的凝固计算,虽然其冷却速度变化与试验结果有一定差距,但总体的凝固时间上仍然具有准确性。本文根据计算的凝固时间和建立的SDAS预测模型,实现了对Al-Si合金微观组织的预测。本文采用的的部分宏观计算,部分宏微观耦合的计算方法忽略了微观组织形貌等相关问题,但其计算效率相对于宏微观完全耦合的计算模拟却得到了大幅度的提高,基于建立的SDAS预测模型对微观组织的预测结果也较为准确,从而可以更好的面向工程实际。通过计算结果与实验结果的对比,也分析了当前计算模型中存在的不足之处,提出以后工作可能的发展方向。
Aluminum silicon alloy is one of the important commercial alloys, and its castings are widely used for different purposes, especially for castings with complicated shapes, ranging from thin wall components and high static loads parts used for aviation industry to cylinder blocks and cylinder head. In order to get better casting products, it has warranted a more thorough understanding of the solidification process of aluminum silicon alloys. Based on the statistical analysis of the experimental data, the undercooling prediction models and the micro structure quantitative models of the modified aluminum silicon alloys are developed. The solidification process and micro structure evolution are studied by numerical simulation so as to optimize processing technique, improve casting quality and shorten design cycles.
     The nucleation undercooling is one of the problems paid more attention by people in the solidification process. With the study of the solidification characteristics of aluminum silicon alloys, which are modified and solidified in permanent mold, the undercooling prediction models during different solidification stages have been developed and these models are related to cooling rate. To investigate this question, the aluminum silicon alloys with silicon content from7wt%to17wt%were selected for experiment. The different cooling rates are realized by a step casting mold whose steps are in different thickness. The temperature of the center of each step was measured and recorded by a data acquisition system. The relationship between nucleation undercooling and cooling rate during the melting solidification has been analyzed with the help of computer aided cooling curve analysis technique, then the prediction models have been achieved.
     Because of the fact that the alloy performance prediction was based on the microstructure, the rules of the secondary dendrite arm spacings of hypoeutectic and eutectic aluminum silicon alloys modified by Al-Sr master alloy were studied by means of cooling rate data and metallographic quantitative analysis techniques. Meanwhile, the nucleation numbers of primary silicon phase of hypereutectic aluminum silicon alloys modified by Al-P master alloy were measured and the area density and body density of primary silicon phase with different cooling rates have been determined.
     The deterministic models for the nucleation and growth of eutectic cells have been founded for the eutectic solidification stage of aluminum silicon alloys. For the purposes of both computation efficiency and microstructure evolution during solidification process, the macro method was used for the primary phase stages and the macro method coupled with the micro deterministic method was used for the eutectic phase stage in this study. The parameters for the nucleation models and the growth models were determined by the experimental data and validated by numerical simulation.
     Latent heat has an impact on the simulation accuracy of the thermal field. A latent heat computation model of aluminum silicon alloy has been created based on the silicon content in the alloys. Two different methods were used for studying the latent heat release rules of aluminum silicon alloys. One was Computer Aided-Cooling Curve Analysis method (CA-CCA). The results of the CA-CCA experiment showed that this method gave users a latent heat value with larger relative error, which could not be used for numerical simulation. However, this method provided information about fraction of solid and so on that can help us to better understand the solidification process. The other method is Differential Scanning Calorimeter method (DSC). The high purity aluminum silicon alloys were first used for DSC experiment. It is found that there is a linear relationship for the latent heat of hypoeutectic or hypereutectic alloy and a mathematical formula has been obtained. The experimental castings were also carried out the DSC experiment for each step center. The values of them are smaller than the ones of high purity alloys but show regular variations so that it could also be estimated by the latent heat formula mentioned above.
     In order to shorten the computation time of the macro-micro coupled method, the macro method for the primary phase and the macro-micro coupled method for the eutectic phase were used for computation based on the undercooling prediction models developed in this study. Then the Scheil equation was used to deal with the fraction of solid of the primary phase solidification and the micro models of nucleation and growth developed in this study were employed for the eutectic phase solidification. The program was developed on Windows XP and the programming language was C++. The simulation results for the eutectic alloys have been verified by good consistence of calculated results with experimental ones. For the alloys with primary phase, there is a difference on the cooling rate variations but the solidification time also shows a certain degree of accuracy. With the SDAS models the values of SDAS could also be good predicted. This method neglected the problems such as micro structure patterns and improved the computation efficiency. The good prediction results could also be applied for industry application. According to the comparison of the results, the disadvantage of the models was also be analyzed and some of the future research directions have been pointed out.
引文
[1]40th Census of World Casting Production--2005:twenty-one out of 30 reporting nations indicated that 2005 casting shipments were up from previous years[J]. Modern Casting,2006.
    [2]41st Census of World Casting Production--2006:global casting production surpasses 90 million tons[J]. Modern Casting,2007.
    [3]42nd Census of World Casting Production--2007:global production on the whole grew by 4%, but some countries saw gains of 10% or more[J]. Modern Casting, 2008.
    [4]43rd Census of World Casting Production-2008:global production dipped below 2007's volume,reflecting the worldwide recession that started in the final quarter of 2008[J]. Modern Casting,2009.
    [5]44th Census of World Casting Production--2009:the global casting market experienced a marked contraction in 2009, with overall shipments decreasing 14% from 2008[J]. Modern Casting,2010.
    [6]田荣璋.铸造铝合金[M].长沙:中南大学出版社,2006.
    [7]Murray J, McAlister A. The Al-Si (Aluminum-Silicon) system[J]. Journal of Phase Equilibria,1984,5(1):74-84.
    [8]刘先兰,张文玉,苏广才.高强度高耐磨性铝硅合金的实验研究[J].铸造技术,2007,28(2):215-217.
    [9]胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社,2006.
    [10]Mohanty PS, Gruzleski JE. Mechanism of grain refinement in aluminium[J]. Acta Metallurgica et Materialia,1995,43(5):2001-2012.
    [11]Mohanty PS, Gruzleski JE. Grain refinement mechanisms of hypoeutectic Al-Si alloys[J]. Acta Materialia,1996.44(9):3749-3760.
    [12]孙淑红,张家涛,彭著刚等.复合变质对过共晶铝硅合金晶体形貌的影响[J].昆明理工大学学报(理工版),2005,30(1):22-24.
    [13]胥锴,刘徽平.袁帮谊等.过共晶铝硅合金变质处理的研究进展[J].热加工工艺,2009,38(3):32-35.
    [14]姜云峰.铸造Al-Si合金中共晶团的细化及机理的研究[D].南京:东南大学,2006.
    [15]武玉英.几种含硅合金中富硅相形核与生长机制的研究[D].济南:山东大学,2008.
    [16]Ding D, Sun Z, Chen Z. Characteristics of rapidly solidified Al-22Si alloy powders[J]. Journal of Central South University of Technology,1995,26(1): 92-96.
    [17]坚增运,杨根仓,周尧和.Al—18%Si合金的温度处理[J].中国有色金属学报,1995,5(4):141-144.
    [18]Ohmi T, Matsuura K, Kudoh M, et al. Undercooling and primary solidification behavior in mixture of hypereutectic and another Al-Si alloy melts[J]. Journal of Japan Institute of Light Metals,1998,48(1):42-47.
    [19]Presnyakova O, Pivkina O, Shinyaev A. Structural Transformations in Hypereutectic Alloy Al--Si During Crystallization under High Pressure[J]. Metallofizika,1987,9(4):34-39.
    [20]Al'tman M, Eskin G, Gotsev I. A complex method of silumin modification legirovanie obrabotka legkikh splavov[J]. Alloying and Treatment of Light Alloys,1981:30-35.
    [21]武玉英,刘相法,戴勇等.硅相形态及含量对Al-Si合金线膨胀系数的影响[J].中国有色金属学报,2007,17(5):688-692.
    [22]徐振湖.对旋转磁场作用下的Al-Si合金的研究[J].铸造,2000,49(2):115-117.
    [23]毛卫民,李树索,赵爱民等.电磁搅拌对过共晶Al-Si合金初生Si长大过程和形貌的影响[J].材料科学与工艺,2001,9(2):117-121.
    [24]张国志,于溪凤,王向阳等.超高压凝固Al-Si合金的非平衡组织[J].金属学报,1999,35(3):285-288.
    [25]齐丕骥.挤压铸造[M].北京:国防工业出版社,1984.
    [26]钟声,苗忠,曹占义.稀土在铝硅合金中细化和变质作用微观机制[J].长春大学学报,2001,11(4):9-11.
    [27]姚书芳,毛卫民,赵爱民等.过共晶铝硅合金细化变质剂的研究[J].特种铸造及有色合金,2000,(5):1-3.
    [28]张金山,许春香,韩富银.复合变质对过共晶高硅铝合金组织和性能的影响[J].中国有色金属学报,2002,12(z1):107-110.
    [29]董光明,孙国雄,廖恒成.共晶硅的变质[J].铸造,2005,54(1):1-5.
    [30]彭学仕,郭梦周.铸造Al-Si合金熔体处理新技术[J].轻合金加工技术,1993,(2):16-18+28.
    [31]《铸造有色合金及其熔炼》编写组.铸造有色合金及其熔炼[M].北京:国防工业出版社,1980.
    [32]Shamsuzzoha M, Hogan L. The crystal morphology of fibrous silicon in strontium-modified Al-Si eutectic[J]. Philosophical Magazine A, Physics of Condensed Matter Defects and Mechanical Properties,1986,54(4):459-477.
    [33]郑来苏.铸造合金及其熔炼[M].西安:西北工业大学出版社,1994.
    [34]席晓.近共晶铸造Al-Si合金共晶凝固过程的研究[D].南京:东南大学,2007.
    [35]Lu SZ, Hellawell A. The mechanism of silicon modification in aluminum-silicon alloys:impurity induced twinning[J]. Metallurgical and Materials Transactions A,1987,18(10):1721-1733.
    [36]黄良余.铝硅合金变质机理的新发展和新观点(上)[J].特种铸造及有色合金,1995,(4):30-32.
    [37]黄良余.铝硅合金变质机理的新发展和新观点(下)[J].特种铸造及有色合金,1995,(5):19-22.
    [38]孙伟成,侯爱芹,张淑荣.稀土在铝合金中的行为[M].北京:兵器工业出版社,1992.
    [39]Stefan J. High temperature microscope investigations on strontium modified aluminum silicon alloys[J]. Giesserei forschung,1975,27(4):141-143.
    [40]Shamsuzzoha M, Hogan L, Berry J. Effects of modifying agents on crystallography and growth of silicon phase in Al-Si casting alloys[J]. Transactions-American Foundrymen's Society,1993,101:999-1005.
    [41]Dowling J, Corbett J, Kerr H. Growth mechanisms of modified eutectic silicon[J]. Journal of Materials Science,1987,22(12):4504-4513.
    [42]Makhlouf M, Guthy H. The aluminum-silicon eutectic reaction:mechanisms and crystallography[J]. Journal of Light Metals,2001,1(4):199-218.
    [43]McDonald SD, Nogita K, Dahle AK. Eutectic nucleation in Al-Si alloys[J]. Acta Materialia,2004,52(14):4273-4280.
    [44]廖恒成,吴振平,董光明等.Sr,,B添加对Al-15.5%Si合金中共晶团尺寸的影响[J].金属学报,2005,41(10):1047-1052.
    [45]吴振平,廖恒成,姜云峰等.Sr对Al-15.5Si合金共晶团大小的影响[J].特种铸造及有色合金,2005,25(4):193-195.
    [46]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社,1998.
    [47]安阁英.铸件形成理论[M].北京:机械工业出版社,1989.
    [48]Wei B, Herlach D, Sommer F, et al. Rapid dendritic and eutectic solidification of undercooled Co---Mo alloys[J]. Materials Science and Engineering:A, 1994,181-182:1150-1155.
    [49]Volmer M, Weber A. Nucleus formation in supersaturated systems[J]. International Journal of Research in Physical Chemistry and Chemical Physics, 1926,119(3-4):277-301.
    [50]魏炳波.液态镍基合金的净化、深过冷与快速凝固[D].西安:西北工业大学,1989.
    [51]Turnbull D, Fisher J. Rate of nucleation in condensed systems[J]. The Journal of Chemical Physics,1949,17(1):71-73.
    [52]周晶.金属的固/液界面能与形核过冷度研究[D].西安:西安工业大学,2009.
    [53]Kurz W, Fisher DJ凝固原理[M].李建国,胡侨丹译.北京:高等教育出版社,2010.
    [54]Flemings MC. Solidification Processing[M]北京:冶金工业出版社,1985.
    [55]李庆春.铸件形成理论基础[M].北京:机械工业出版社,1982.
    [56]胡汉起.金属凝固原理[M].北京:机械工业出版社,1992.
    [57]Crosley PB, Mondoflo LF. The modification of aluminum-silicon alloys[J]. AFS transactions,1966,74:53-64.
    [58]Nogita K, Dahle AK. Eutectic growth mode in strontium, antimony and phosphorus modified hypoeutectic Al-Si foundry alloys[J]. Materials transactions-JIM,2001,42(3):393-396.
    [59]Nogita K, Knuutinen A, McDonald S, et al. Mechanisms of eutectic solidification in Al-Si alloys modified with Ba, Ca, Y and Yb[J]. Journal of Light Metals, 2001,1(4):219-228.
    [60]Heiberg G, Nogita K, Dahle A, et al. Columnar to equiaxed transition of eutectic in hypoeutectic aluminium-silicon alloys[J]. Acta Materialia,2002,50(10): 2537-2546.
    [61]Nogita K, McDonald S, Dahle A. Solidification mechanisms of unmodified and strontium-modified hypereutectic aluminium"Csilicon alloys[J]. Philosophical Magazine,2004,84(17):1683-1696.
    [62]Dahle A, Nogita K, McDonald S, et al. Eutectic nucleation and growth in hypoeutectic Al-Si alloys at different strontium levels[J]. Metallurgical and Materials Transactions A,2001,32(4):949-960.
    [63]Nogita K, Yasuda H, Yoshida K, et al. Determination of strontium segregation in modified hypoeutectic Al-Si alloy by micro X-ray fluorescence analysis[J]. Scripta Materialia,2006,55(9):787-790.
    [64]Nogita K, Dahle A. Eutectic solidification in hypoeutectic Al-Si alloys:electron backscatter diffraction analysis[J]. Materials Characterization.2001,46(4): 305-310.
    [65]Nogita K, McDonald SD, Zindel JW, et al. Eutectic solidification mode in sodium modified Al-7 mass% Si-3.5 mass% Cu-0.2 mass% Mg casting alloys[J]. Materials transactions-JIM,2001,42(9):1981-1986.
    [66]Pehlke RD. Computer simulation of solidification processes-The evolution of a techno logy [J]. Metallurgical and Materials Transactions B,2002,33(4):519-541.
    [67]Henzel JG, Keverian J. Comparison of calculated and measured solidification patterns in a variety of steel castings[J]. International Journal of Cast Metals Research,1965,1(1):19-36.
    [68]郑洪亮.基于宏-微观模型的球墨铸铁凝固过程数值模拟[D].济南:山东大学,2007.
    [69]赵维民.球墨铸铁凝固过程微观组织及缩孔缩松形成的数值模拟研究[D].天津:河北工业大学,2006.
    [70]孙逊,安阁英,苏仕方等.铸件充型凝固过程数值模拟发展现状[J].铸造,2000,(02):84-89.
    [71]http://www.jscast.com.cn
    [72]陈立亮,刘瑞祥,林汉同.我国铸造行业计算机应用的回顾与展望[J].铸造,2002,(02):63-67.
    [73]柳百成,荆涛.铸造工程的模拟仿真与质量控制[M].北京:机械工业出版社,2001.
    [74]李斌,王恩刚,张红伟等.金属凝固微观组织数值模拟研究进展[J].材料与冶金学报,2002,1(2):95-101.
    [75]Oldfield W. A Quantitative Approach to Casting Solidification:Freezing of Cast Iron[J]. Transaction of ASM,1966,59(4):945-961.
    [76]Hunt J. Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering,1984,65(1):75-83.
    [77]Thevoz P, Desbiolles J, Rappaz M. Modeling of equiaxed microstructure formation in casting[J]. Metallurgical and Materials Transactions A,1989,20(2): 311-322.
    [78]柳百成,荆涛.铸造工程的模拟仿真与控制[M].北京:机械工业出版社,2001.
    [79]Wang C, Beckermann C. A unified solute diffusion model for columnar and equiaxed dendritic alloy solidification[J]. Materials Science and Engineering:A, 1993,171(1-2):199-211.
    [80]Maxwell I, Hellawell A. A simple model for grain refinement during solidification[J]. Acta Metallurgica,1975,23(2):229-237.
    [81]Wang C, Beckermann C. Equiaxed dendritic solidification with convection:Part 1. Multiscale/multiphase modeling[J]. Metallurgical and Materials Transactions A, 1996.27(9):2754-2764.
    [82]Stefanescu DM, Upadhya G, Bandyopadhyay D. Heat transfer-solidification kinetics modeling of solidification of castings[J]. Metallurgical and Materials Transactions A,1990,21(3):997-1005.
    [83]Jackson K, Hunt J. Lamellar and rod eutectic growth[J]. Transactions of the Metallurgical Society of Aime,1966,236(8):1129-1142.
    [84]Fisher DJ, Kurz W. A theory of branching limited growth of irregular eutectics[J]. Acta Metallurgica,1980,28(6):777-794.
    [85]Rappaz M, Thevoz P. Solute diffusion model for equiaxed dendritic growth[J]. Acta Metallurgica,1987,35(7):1487-1497.
    [86]Rappaz M, Thevoz P. Solute diffusion model for equiaxed dendritic growth: analytical solution[J]. Acta Metallurgica,1987,35(12):2929-2933.
    [87]Lipton J, Glicksman M, Kurz W. Equiaxed dendrite growth in alloys at small supercooling[J]. Metallurgical and Materials Transactions A,1987,18(3): 341-345.
    [88]Lipton J, Glicksman M, Kurz W. Dendritic growth into undercooled alloy metals[J]. Materials Science and Engineering,1984,65(1):57-63.
    [89]Kurz W, Giovanola B, Trivedi R. Theory of micro structural development during rapid solidification[J]. Acta Metallurgica,1986,34(5):823-830.
    [90]Wang C, Beckermann C. Prediction of columnar to equiaxed transition during diffusion-controlled dendritic alloy solidification[J]. Metallurgical and Materials Transactions A,1994,25(5):1081-1093.
    [91]Wang C, Beckermann C. Equiaxed dendritic solidification with convection:Part Ⅱ. Numerical simulations for an Al-4 wt pet Cu alloy[J]. Metallurgical and Materials Transactions A,1996,27(9):2765-2783.
    [92]陈舜麟.计算材料科学[M].北京:化学工业出版社,2005.
    [93]张跃,谷景华,尚家香等.计算材料学基础[M].北京:北京航空航天大学出版社.2007.
    [94]张继祥.基于Monte Carlo方法的材料退火过程模拟模型及计算机仿真关键技术研究[D],2006.
    [95]Srolovitz D, Anderson M, Grest G, et al. Grain growth in two dimensions[J]. Scripta Metallurgica,1983,17(2):241-246.
    [96]Anderson MP, Srolovitz DJ, Grest GS, et al. Computer simulation of grain growth—Ⅰ. Kinetics[J]. Acta Metallurgica,1984,32(5):783-791.
    [97]Srolovitz DJ, Anderson MP, Grest GS, et al. Computer simulation of grain growth-Ⅲ. Influence of a particle dispersion[J]. Acta Metallurgica,1984,32(9): 1429-1438.
    [98]Srolovitz DJ, Anderson MP, Sahni PS, et al. Computer simulation of grain growth—Ⅱ. Grain size distribution, topology, and local dynamics[J]. Acta Metallurgica,1984,32(5):793-802.
    [99]Spittle J, Brown S. Computer simulation of the effects of alloy variables on the grain structures of castings[J]. Acta Metallurgica,1989,37(7):1803-1810.
    [100]Zhu P, Smith R. Dynamic simulation of crystal growth by Monte Carlo method-Ⅱ. Ingot microstructures[J]. Acta Metallurgica et Materialia, 1992,40(12):3369-3379.
    [101]Zhu P, Smith R. Dynamic simulation of crystal growth by Monte Carlo method—Ⅰ. Model description and kinetics[J]. Acta Metallurgica et Materialia, 1992,40(4):683-692.
    [102]Crespo D, Pradell T, Clavaguera N, et al. Kinetic theory of micro structural evolution in nucleation and growth processes[J]. Materials Science and Engineering A,1997,238(1):160-165.
    [103]Moron C, Mora M, Garcia A. Computer simulation of grain growth kinetics[J]. Journal Of Magnetism And Magnetic Materials,2000,215-216:153-155.
    [104]Wang L, Clancy P. Kinetic Monte Carlo simulation of the growth of polycrystalline Cu films[J]. Surface Science,2001,473(1-2):25-38.
    [105]金俊泽,王宗廷,郑贤淑等.金属凝固组织形成的仿真研究[J].金属学报,1998,(09):928-932.
    [106]丁雨田,王海南,许广济等Monte Carlo方法在定向凝固模拟中的应用[J].特种铸造及有色合金,2001,(2):83-85.
    [107]郭靖原,洪泽恺,陈民等.金属凝固与晶体生长过程的蒙特卡罗模拟[J]. 工程热物理学报,2001,22(6):725-728.
    [108]许庆彦,柳百成.铸造合金凝固组织的计算机模拟与预测[J].稀有金属材料与工程,2003,32(6):401-406.
    [109]Hesselbarth HW, Gobel IR. Simulation of recrystallization by cellular automata[J]. Acta Metallurgica et Materialia,1991,39(9):2135-2143.
    [110]熊守美,许庆彦,康进武.铸造过程模拟仿真技术[M].北京:机械工业出版社,2004.
    [111]Gandin CA, Rappaz M, Tintillier R.3-Dimensional simulation of the grain formation in investment castings[J]. Metallurgical and Materials Transactions A, 1994,25(3):629-635.
    [112]Geiger J, Roosz A, Barkoczy P. Simulation of grain coarsening in two dimensions by cellular-automaton[J]. Acta Materialia,2001,49(4):623-629.
    [113]许庆彦,柳百成.采用Cellular Automaton法模拟铝合金的微观组织[J].中国机械工程,2001,12(3):328-331.
    [114]余亮,顾斌,李绍铭等.枝晶生长的元胞自动机模拟[J].安徽工业大学学报(自然科学版),2002,19(1):10-12.
    [115]朱鸣芳,于金,洪俊杓.金属凝固显微组织的计算机模拟[J].中国工程科学,2004,6(5):10.
    [116]Lee PD, Chirazi A, Atwood RC, et al. Multiscale modelling of solidification microstructures, including microsegregation and microporosity, in an Al-Si-Cu alloy[J]. Materials Science and Engineering a-Structural Materials Properties Micro structure and Processing,2004,365(1-2):57-65.
    [117]郝志强,卢艳玲,刘汉武等.铸件微观组织数值模拟的研究进展[J].铸造,2005,54(10):953-958.
    [118]张光跃,荆涛,柳百成.相场方法原理及在微观组织模拟中的应用[J].机械工程学报,2003.39(5):4.
    [119]田卫星,郑洪亮,詹成伟等.相场法凝固数值模拟的研究进展[J].中国铸造装备与技术,2005,(4):1-4.
    [120]Collins JB, Levine H. Diffuse interface model of diffusion-limited crystal growth[J]. Physical Review B,1985,31(9):6119-6122.
    [121]Caginalp G, Fife PC. Dynamics of layered interfaces arising from phase boundaries[J]. Siam Journal on Applied Mathematics,1988:506-518.
    [122]Caginalp G. Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations[J]. Physical Review A,1989,39(11):5887-5896.
    [123]Fife PC, Gill G. Phase-transition mechanisms for the phase-field model under internal heating[J]. Physical Review A,1991,43(2):843-851.
    [124]Kobayashi R. Modeling and numerical simulations of dendritic crystal growth[J]. Physica D:Nonlinear Phenomena,1993,63(3-4):410-423.
    [125]Wheeler A, Boettinger W, McFadden G. Phase-field model for isothermal phase transitions in binary alloys[J]. Physical Review A,1992,45(10):7424-7439.
    [126]Karma A, Rappel WJ. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J]. Physical Review E, 1996,53(4):3017-3020.
    [127]Kim SG, Kim WT, Suzuki T. Phase-field model for binary alloys[J]. Physical Review E,1999,60(6):7186-7197.
    [128]Tong X, Beckermann C, Karma A. Velocity and shape selection of dendritic crystals in a forced flow[J]. Physical Review E,2000,61(1):R49-R52.
    [129]Ode M, Kim SG, Kim WT, et al. Numerical simulation of Ostwald ripening using the phase-field model[J]. Second International Conference on Processing Materials for Properties,2000:1065-1068,+1137.
    [130]张国伟,侯华,徐宏.铸件凝固组织数值模拟研究进展[J].材料导报,2004,18(10):6-9.
    [131]侯卫周,曹新国,徐宏.铸件凝固过程微观组织模拟研究状况[J].铸造,2006,155(10):1047-1051.
    [132]Steinbach I, Pezzolla F, Nestler B, et al. A phase field concept for multiphase systems[J]. Physica D:Nonlinear Phenomena,1996,94(3):135-147.
    [133]Nestler B, Wheeler AA. A multi-phase-field model of eutectic and peritectic alloys:numerical simulation of growth structures[J]. Physica D:Nonlinear Phenomena.2000.138(1-2):114-133.
    [134]Nestler B, Wheeler AA. Anisotropic multi-phase-field model:Interfaces and junctions[J]. Physical Review E,1998,57(3):2602-2609.
    [135]张玉妥,李殿中,李依依等.用相场方法模拟纯物质等轴枝晶生长[J].金属学报,2000,36(6):589-591.
    [136]金俊泽,王宗廷,郑贤淑等.金属凝固组织形成的仿真研究[J].金属学报,1998,34(9):928-932.
    [137]于艳梅,杨根仓,赵达文等.过冷熔体中枝晶生长的相场法数值模拟[J].物理学报,2001,50(12):2423-2428.
    [138]荆涛.凝固过程数值模拟[M].北京:电子工业出版社,2002.
    [139]张光跃,荆涛,柳百成Dendritic Morphology Simulation Using the Phase Field Method[J]清华大学学报(英文版),2003,8(1):4.
    [140]张光跃,荆涛,柳百成等.铝合金枝晶生长形貌数值模拟研究[J].铸造,2002,51(12):3.
    [141]张光跃,荆涛,柳百成.用相场方法模拟铝合金枝晶生长形貌[J].中国有色金属学报,2002,12(5):3.
    [142]李文珍.铸件凝固过程微观组织及缩孔缩松形成的数值模拟研究[D]:清华大学,1995.
    [143]王同敏.金属凝固过程微观模拟研究[D]:大连理工大学,2000.
    [144]于伯龄,姜胶东.实用热分析[M].北京:纺织工业出版社,1990:68-89.
    [145]Rappaz M. Modelling of micro structure formation in solidification processes[J]. International Materials Reviews,1989,34(1):93-124.
    [146]Gandin CA. From constrained to unconstrained growth during directional solidification[J]. Acta Materialia.2000,48(10):2483-2501.
    [147]胡汉起.金属凝固原理[M].北京:机械工业出版社,2001.
    [148]Lim CS, Clegg AJ. Loh NL. The reduction of dendrite ARM spacing using a novel pressure-assisted investment casting approach[J]. Journal of Materials Processing Technology,1997,70(1-3):99-102.
    [149]李晨希,郭太明,李荣德等.二次枝晶臂间距的研究[J].铸造,2004,53(12):1011-1014.
    [150]Rappaz M, Gandin CA. Probabilistic modelling of microstructure formation in solidification processes[J]. Acta Metallurgica et Materialia,1993,41(2): 345-360.
    [151]Hernandez FCR, Djurdjevic MB, Kierkus WT, et al. Calculation of the liquidus temperature for hypo and hypereutectic aluminum silicon alloys[J]. Materials Science and Engineering:A,2005,396(1-2):271-276.
    [152]Hunt J, Lu S. Numerical modeling of cellular/dendritic array growth:spacing and structure predictions[J]. Metallurgical and Materials Transactions A, 1996,27(3):611-623.
    [153]Bouchard D, Kirkaldy J. Prediction of dendrite arm spacings in unsteady-and steady-state heat flow of unidirectionally solidified binary alloys[J]. Metallurgical and Materials Transactions B,1997,28(4):651-663.
    [154]Peres MD, Siqueira CA, Garcia A. Macrostructural and micro structural development in Al-Si alloys directionally solidified under unsteady-state conditions[J]. Journal Of Alloys And Compounds,2004,381(1-2):168-181.
    [155]Spinelli JE, Peres MD, Garcia A. Thermosolutal convective effects on dendritic array spacings in downward transient directional solidification of Al-Si alloys[J]. Journal Of Alloys And Compounds,2005,403(1-2):228-238.
    [156]Kurz W, Fisher DJ. Dendrite growth at the limit of stability:tip radius and spacing[J].Acta Metallurgica,1981,29(1):11-20.
    [157]Kurz W, Fisher DJ. Fundamentals of solidification[M]. Switzerland:Trans Tech Publications,1984:6-8.
    [158]Trivedi R. Interdendritic Spacing:Part Ⅱ. A Comparison of Theory and Experiment[J]. Metallurgical and Materials Transactions A,1984,15(6): 977-982.
    [159]Kirkaldy JS, Liu LX, Kroupa A. Thin film forced velocity cells and cellular dendrites—Ⅱ. Analysis of data[J]. Acta Metallurgica et Materialia,1995,43(8): 2905-2915.
    [160]Kirkwood DH. A simple model for dendrite arm coarsening during solidification[J]. Materials Science and Engineering,1985,73:L1-L4.
    [161]Rocha OL, Siqueira CA, Garcia A. Heat flow parameters affecting dendrite spacings during unsteady-state solidification of Sn-Pb and Al-Cu alloys[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2003,34A(4):995-1006.
    [162]Sa F, Rocha OL, Siqueira CA, et al. The effect of solidification variables on tertiary dendrite arm spacing in unsteady-state directional solidification of Sn-Pb and Al-Cu alloys[J]. Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2004,373(1-2):131-138.
    [163]Trivedi R, Kurz W. Dendritic growth[J]. International Materials Reviews, 1994,39(2):49-74.
    [164]Kaya H, Cadirli E, Gunduz M. Dendritic Growth in an Aluminum-Silicon Alloy[J]. Journal Of Materials Engineering And Performance,2007,16(1): 12-21.
    [165]张士佼,边秀房,孟庆格.压铸条件下过共晶铝硅合金P变质的必要性[J].特种铸造及有色合金,2005,,(11):46-47+46.
    [166]乔进国,刘相法,刘相俊等.Al-P中间合金的变质特性及变质机理探讨[J].内燃机配件,2003,,(05):18-22.
    [167]Crepeau P, Gokhale A, Meyers C. Quantitative analysis of cast microstructures[J]. JOM Journal of the Minerals, Metals and Materials Society, 1989,41(2):16-21.
    [168]Khajeh E, Maijer DM. Inverse Analysis of Eutectic Nucleation and Growth Kinetics in Hypoeutectic Al-Cu Alloys[J]. Metallurgical and Materials Transactions A,2010,42(1):158-169.
    [169]Cui C, Schulz A, Matthaei-Schulz E. et al. Characterization of silicon phases in spray-formed and extruded hypereutectic Al-Si alloys by image analysis[J]. Journal of Materials Science,2009,44(18):4814-4826.
    [170]Robles Hernandez F, Sokolowski J. Novel image analysis to determine the si modification for hypoeutectic and hypereutectic Al-Si alloys[J]. JOM Journal of the Minerals. Metals and Materials Society,2005.57(11):48-53.
    [171]Takahashi J. Suito H. Evaluation of the accuracy of the three-dimensional size distribution estimated from the schwartz-saltykov method[J]. Metallurgical and Materials Transactions A,2003,34(1):171-181.
    [172]祁美兰,贺红亮.延性金属材料中损伤分布的统计方法[J].武汉理工大学学报,2008,(08):23-26.
    [173]Liang D, Bayraktar Y, Jones H. Formation and segregation of primary silicon in Bridgman solidified Al-18.3 wt% Si alloy[J]. Acta Metallurgica et Materialia, 1995,43(2):579-585.
    [174]Liang D, Bayraktar Y, Moir SA, et al. Primary silicon segregation during isothermal holding of hypereutectic Al-18.3 wt%Si alloy in the freezing range[J]. Scripta Metallurgica et Materialia.1994,31(4):363-367.
    [175]Kyffin W, Rainforth W, Jones H. Effect of phosphorus additions on the spacing between primary silicon particles in a Bridgman solidified hypereutectic Al-Si alloy[J]. Journal of Materials Science,2001,36(11):2667-2672.
    [176]McDonald SD, Dahle AK, Taylor JA, et al. Eutectic grains in unmodified and strontium-modified hypoeutectic aluminum-silicon alloys[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2004,35A(6):1829-1837.
    [177]El-Mahallawy N, Taha MA, El-Kharbotly AK, et al. Solidification Simulation of Equiaxed Grains in Al-Si Eutectic Alloys:proceedings of the 5th International Conference on Aluminium Alloys,1996[C]. Trans Tech Publications.
    [178]张云鹏,苏俊义,陈铮.工业灰铸铁凝固组织形成过程的数值模拟[J].金属学报,2000,(07):761-764.
    [179]郑洪亮.基于宏—微观模型的球墨铸铁凝固过程数值模拟[D]:山东大学,2007.
    [180]Upadhya K, Stefanescu D, Lieu K, et al. Computer-aided cooling curve analysis: principles and applications in metal casting:proceedings of the 93rd AFS Casting Congress, San Antonio,1989[C].
    [181]Hu J, Pan E. Determination of latent heat and changes in solid fraction during solidification of Al-Si alloys by the CA-CCA method[J]. International Journal of Cast Metals Research,1998.10:307-320.
    [182]周婷嫣,周尚祥,华勤等.铸造热分析的新发展[J].铸造技术,2003,24(6):482-484.
    [183]Fras E, Kapturkiewicz W, Burbielko A, et al. Anew concept in thermal analysis of cast ings [J]. Transactions of the American Foundrymen's Society,1993,101: 505-511.
    [184]Callister WD. Fundamentals of materials science and engineering:An Interactive e. Text[M]. New York:Wiley,2000:288-291.
    [185]Lide DR. CRC handbook of chemistry and physics, Internet version 2007[M]. BocaRaton, FL:Taylor and Francis,2007:681-1002.
    [186]Gui MC, Jia J, Song GC, et al. Structure of liquid Al-Si alloys[J]金属学报英文版,1994,7(1):49-53.
    [187]王伟民Al-Si合金熔体的微观结构及Si原子集团的演变行为[D].济南:山东工业大学,1998.
    [188]柳百成.铸造技术与计算机模拟发展趋势[J].铸造技术,2005,(07):611-617.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700