用户名: 密码: 验证码:
高大空间火灾模拟及探测平台电液驱动系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高大空间建筑的迅猛发展和广泛应用,针对高大空间建筑场所如何防火、控火、灭火等消防安全问题展开的科学研究已成为世界各国的消防科研人员在火灾科学和消防科技领域的重要研究课题。但由于设备技术条件的限制,长期以来有关高大空间建筑的消防科学技术研究多集中于火灾的计算机数值模拟等方法而非实体火灾模型。高大空间火灾模拟及探测平台是我国“十一五”期间为了开展基于实体火灾模型的高大空间建筑的消防科学技术研究而由“十一五”国家科技支撑计划专题项目支持研制的大空间火灾科学研究设备。该设备是一个重约75吨、长宽均33.0米、高度2.2米的正放四角锥双层网架结构的大型竖直升降平台,如何驱动该升降平台在3~24m的竖直净空高度范围内实现连续同步升降和精确定位控制是该设备研制过程所面临的最关键的技术难题。论文针对该高大空间火灾模拟及探测平台几何跨度大、负载重且不均衡、升降行程长且易变形等结构特点,综合机械传动,电液控制、系统仿真、智能控制等相关技术或理论,设计研制了一套高大空间火灾模拟及探测平台的电液同步驱动系统,并围绕着该电液同步驱动系统的驱动机理、驱动结构以及同步控制策略等相关的关键技术进行了深入的理论分析、设计和试验研究,并最终实现了高大空间火灾模拟及探测平台的大范围高精度同步升降控制。论文的主要研究内容如下:
     第一章,首先从高大空间建筑存在的消防安全问题出发,阐述了目前高大空间火灾自动探测报警技术的研究现状,指出了高大空间火灾模拟及探测平台对开展消防科学研究的重要性,接着概述了目前此类大型重载升降平台的驱动系统所涉及的各种关键技术的研究现状及发展情况,并重点阐述了目前电液同步控制技术的研究和应用现状;最后概括了论文的研究意义和主要研究内容。
     第二章,针对高大空间火灾模拟及探测平台几何跨度大、负载重且不均衡、升降行程长,易变形的特点,首先通过ANSYS仿真软件对平台的驱动吊点的数量及布置方案进行了优化设计,设计提出了三点机械对重+三点柱塞缸侧置2:1顶升的电液同步驱动机理;其次对该平台电液同步驱动系统的机械结构的实现进行了详细的设计与研究,给出了平台的总体驱动结构;最后对平台的三柱塞缸电液同步驱动系统进行了原理和集成设计,并介绍了平台监测控制系统的结构原理设计以及硬件的集成设计
     第三章,以阀控柱塞缸机构的数学模型为基础,分析建立了高大空间火灾模拟及探测平台三柱塞缸电液同步驱动系统的非线性数学模型;并以建立的系统模型为基础,借助AMESim仿真软件建立了两柱塞缸电液同步控制系统的仿真模型,并对影响系统同步控制性能的因素进行了仿真分析,仿真结果表明对三柱塞缸电液同步控制系统的同步控制策略进行研究的必要性。
     第四章,主要研究高大空间火灾模拟及探测平台电液驱动系统的智能自适应同步控制策略---模型参考模糊自适应电液同步控制策略。通过对模型参考自适应控制原理、模糊逻辑控制理论的研究与分析,采用模糊逻辑控制理论设计模型参考自适应控制器的自适应律以实现三个支路对同一个期望参考模型动态和稳态输出特性的高精度实时跟踪控制,从而提高三个支路的同步控制性能。随后在AMESim/Simulink联合仿真平台上分别采用模型参考模糊自适应电液同步控制策略和单支路PID同步控制策略进行了对比仿真实验,验证了所设计的模型参考模糊自适应电液同步控制策略具有良好的动态、稳态性能以及鲁棒性。
     第五章,首先详细介绍了高大空间火灾模拟及探测平台电液同步驱动系统的PLC控制软件的结构设计以及基于WinCC组态软件的人机操作界面的设计开发;其次,分别采用传统PID控制策略和模型参考模糊自适应电液同步控制策略对平台的电液同步驱动系统进行了对比试验研究,试验结果验证了论文所提出的三点机械对重十三点柱塞缸侧置2:1顶升的电液同步驱动机理和驱动结构设计的合理性、可靠性以及工程实用性,也表明了所设计的智能同步控制策略的自适应性和鲁棒性等;最后介绍了该平台在消防科学研究中的初步应用情况。
     第六章,总结了本论文的主要研究工作和创新点,并对下一步研究工作进行了展望。
With the rapid development and wide application of large space building, some large space building fire issues, such as safety, fire control, fire fighting, have become more important cosmopolitan research topics in fire science and technology field for researchers. However, because of the poor equipment and conditions, the studies on the large space building fire technology mainly depend on the computer simulation rather than the entity fire model. As a crucial large space fire research instrument during the China's'Eleventh Five-Year Plan', a large space fire simulation&detection platform was developed to conduct large space building fire research based on entity fire model under the support of the National Science and Technology Support Program. The vertical-lifting platform is a large squared cone, double-layered grid structure with about75ton weight,33m length and33m width. The synchronous motion control and the precise positioning of the large platform in the vertical range from3to24m are key issues of the instrument. Considering some characteristics of the large space fire simulation&detection platform, such as large spatial span, heavy and unbalanced load, long stroke and large deformation, an electro-hydraulic synchronization driving system for the large space fire simulation&detection platform is designed and developed by integrating mechanical transmission, electro-hydraulic control, system simulation, intelligent control and other related theories and techniques in the dissertation. The driving principle, control method and some other related technical issues in the electro-hydraulic synchronization driving system are detailedly presented through both the theoretical analysis and the experimental studies. Results show that the high-precision synchronous lifting control for the platform in the large spatial span can be achieved successfully. The main contents of the dissertation are as follows:
     In the first chapter, starting with the large space building fire safety problems, the present automatic fire detection and alarm techniques for the large space building are discussed. The significance of the large space fire simulation and detection platform for fire research is demonstrated. Then the current application and research progress about some key technologies in the large vertical-lifting system such as electro-hydraulic synchronization motion control are described. Finally, the main research topics and the significance of this dissertation are summarized briefly.
     Chapter Ⅱ, considering the characteristics of the large space fire simulation&detection platform, such as large spatial span, heavy and unbalanced load, long stroke and large deformation, the numbers of the supporting point and the layout of the suspension system for the platform are optimized in ANSYS, and a new electro-hydraulic synchronization driving principle, namely, a driving principle with three machinery-counterweights and three plunger-cylinders, is brought forward. Meanwhile, the mechanical structures of the electro-hydraulic synchronization driving system are designed and studied detailedly, the platform's overall driving structure is proposed. Finally, the principle and integration design for three-cylinder electro-hydraulic synchronization driving system, the monitoring and the control system are presented.
     Chapter III, a nonlinear mathematical model of the three-plunger-cylinder electro-hydraulic synchronization driving system for the large space fire simulation&detection platform is established based on the mathematical model of the valve-controlled plunger-cylinder mechanism. Meanwhile, a simulation model of the two-plunger-cylinder electro-hydraulic synchronization control system is built in AMESim.Thenvarious parameters affecting synchronous control accuracy are analyzed in AMESim. The simulation results show that it is necessary to study the synchronization strategy for the three-plunger-cylinder electro-hydraulic synchronization driving system of the large space fire simulation&detection platform.
     In chapter IV, based on the studies on the model reference adaptive control theory and fuzzy logic control theory, an intelligent adaptive synchronization strategy for the electro-hydraulic driving system of the large space fire simulation&detection platform---fuzzy adaptive eletro-hydraulic synchronization strategy on the basis of ideal reference model is proposed to achieve the synchronous motion of the three cylinders. The adaptive controller is designed based on fuzzy control logic theory to make each cylinder track the high-precision real-time dynamic and steady-state output of the same reference model. Thereby, the synchronous motion control performance of the three cylinders is greatly improved. Then, with the AMESim/Simulink co-simulation, the comparison between fuzzy model reference adaptive synchronization control strategy and PID control strategy is implemented in the simulation. Simulation results verify that the proposed controller has a satisfactory static and dynamic performance and robustness.
     In Chapter V, the development for the PLC control system and the man-machine interface software based on WinCC for the electro-hydraulic synchronization driving system of the large space fire simulation&detection platform are introduced firstly. Then, the comparison between the conventional PID control strategy and model reference fuzzy adaptive electro-hydraulic synchronization control strategy are carried out based on the electro-hydraulic synchronization driving system in the experiment. The experimental results verify the rationality, reliability and practice of the driving principle and structure proposed in the dissertation. Meanwhile, the adaptability and robustness of the proposed control method are also verified. The preliminary application of this fire research platform is presented.
     Chapter Ⅵ, main research work and the innovation of the dissertation are summarized and future research work is prospected.
引文
[1]沈世钊.大跨空间结构的发展——回顾与展望.土木工程学报,1998,31(3):5-14.
    [2]Shen S.Z., Lan T.T. A review of the development of spatial structures in China.International Journal of Space Structures,2001,16(3):157-172.
    [3]胡仁茂.大空间建筑设计研究:[博士学位论文].上海:同济大学,2006.
    [4]李章盛.我国高层建筑消防技术的发展.消防科学与技术,1999,1:18-20.
    [5]郭铁男.我国火灾形势与消防科学技术的发展.消防科学与技术,2005,23(6):663-673.
    [6]孙斌园.走近火灾科学的最高殿堂.消防科学与技术,2003,22(4).
    [7]谢颖峰.浅谈大空间火灾探测技术.科技信息,2011,12:142,144.
    [8]卢兆明,陆君安,黄崇超,等.高层建筑火灾风险综合评估,CSIAM第五届年会论文集.北京:北京大学出版社,2000.
    [9]吴启鸿.火灾形势的严峻性与学科建设的迫切性.消防技术与产品信息.2005,3:3-7.
    [10]李力.火灾探测技术的现状及发展趋势http://119.china.com.cn,2010.
    [11]邱增照.高大空间火灾探测技术展望http://www.anquan.com.cn,2008
    [12]Tanaka T., Yamana T. Smoke control in large scale spaces, part1. Fire Science & Technology,1985,5(1):31-40.
    [13]Jun F., Ji J., Yuan H.Y. Early fire smoke movements and detection in high large volume spaces. Building and Environment,2006,41:1482-1493.
    [14]袁宏永,赵建华,苏国锋.图像型大空间建筑早期火灾智能探测报警技术.消防技术与产品信息,2001,2:30-32.
    [15]张向阳,吕振纲,刘炳海,等.高大空间火灾探测设计技术.消防技术与产品信息,2010,2:45-48.
    [16]高春莹.大空间建筑火灾探测技术的探讨.建筑设计,2010,27(8):54-55.
    [17]李玉臻,聂品,刘炳海.大空间场所火灾早期预报和自动灭火技术应用.消防设备研究,2005,24(2):202-204.
    [18]邱祥,高宇.高大空间火灾探测及灭火新技术的应用前景.房材与应用,2004,32(5):43-44.
    [19]白宇,李宏文,杜翠凤,等.高大空间早期火灾试验的火源选择研究.科技导报(北京),2008,26(15):50-54.
    [20]高兰瑞.大型火灾燃烧试验馆设计.南方建筑,1994,2:43-44.
    [21]http://www.ul.com/
    [22]http://www.fmglobal.com/
    [23]石刚.大型重载消防试验吊顶液压升降机械系统设计:[硕士学位论文].杭州:浙江大学,2007.
    [24]牟善峰.大跨度钢桁架结构整体提升施工技术探讨.建筑,2010,12:62-64.
    [25]赵明.起重机卷扬系统的使用与维修.工程机械与维修.2008,6:171-173.
    [26]廖乐康,于庆奎,吴小宁.钢丝绳卷扬垂直升船机设备布置设计与研究.人民长江,2009,40(23):61-64.
    [27]王云飞.大型结构整体提升计算机控制技术.施工技术,2002,31(12):19-20.
    [28]丁立强.曳引电梯动态特性研究及其仿真平台开发:[博士学位论文].杭州:浙江大学,2005.
    [29]刚宪约.曳引电梯系统动态理论及动力学参数优化方法研究:[博士学位论文].杭州:浙江大学,2006.
    [30]余一韩,蔡勋勇,苗玉彬,等.大跨度温室遮阳保温系统齿轮齿条传动装置的研发.农业工程技术(温室园艺),2008,1:15-16.
    [31]王春行主编.液压控制系统.北京:机械工业出版社,1999.
    [32]乌建中,徐鸣谦.液压同步提升技术回顾与展望.同济大学学报,1997,25(2):230-233.
    [33]张绍九.液压同步系统.北京:化学工业出版社,2010.3.
    [34]乌建中,卞永明,徐鸣谦.液压同步提升的控制系统和控制策略.建筑机械,1995,11:32-35.
    [35]潘柳萍.液压连续升降系统关键技术研究:[博士学位论文].上海:同济大学,2006.
    [36]蒋海明.升降机液压动力系统建模仿真及计算:[硕士学位论文].哈尔滨:哈尔滨工程大学,2007.
    [37]李洪人.液压控制系统.北京:国防工业出版社,1981.
    [38]成大先主编.机械设计手册.北京:化学工业出版社,2002.
    [39]路甬祥主编.液压气动技术手册.北京:机械工业出版社,2002.
    [40]吴根茂,邱敏秀,王庆丰,等.实用电液比例技术.杭州:浙江大学出版社,1993.
    [41]Merritt H.E. Hydraulic control systems. John Wiley & Sons, Inc., New York, 1967.
    [42]梅志松.双液压缸驱动系统的鲁棒同步控制:[硕士学位论文].秦皇岛:燕山 大学,2010.
    [43]廖义德,孟湘波.多缸同步跟踪随动系统在卷板机中的应用.锻压机械,1996,31(1):27-29.
    [44]刘俭,许忠华,郭颖.液压缸同步控制的应用研究.自动化技术与应用,2002,21(4):13-14.
    [45]李长春,孟亚东,刘晓东,等.电液伺服系统的同步控制研究.兵工学报,2007,28(6):765-768.
    [46]江小霞.地震模拟平台液压系统同步控制的研究.中国机械工程,2009,20(15):1179-1783.
    [47]尹平林,瞿坦.模型参考自适应解耦控制研究.华中理工大学学报,1994,22(8):74-77.
    [48]韩波,王庆丰,路甬祥.电液比例位置同步控制系统的控制结构研究.机床与液压,1997,1:7-9.
    [49]倪敬,项占琴,潘晓弘,等.多缸同步提升电液系统建模和控制.机械工程学报,2006,42(11):81-87.
    [50]倪敬.钢管包装电液伺服系统控制策略及其应用研究:[博士学位论文].杭州:浙江大学,2006.
    [51]李军伟.仿真转台电液伺服系统及其中框同步控制技术的研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2003.
    [52]Sun H. Motion synchronization of multi-cylinder electro-hydraulic lift systems: [Ph.D. Dissertation], Purdue University,2001.
    [53]Burrows C.R., Hongan P. Hydraulic flow division and ram synchronization in a high density baler. Journal of Agriculture Research,1992,53:278-283.
    [54]Hogan P., Burrows C.R. Synchronizing unevenly-loaded hydraulic cylinders. Proceedings of the ASME Conference on Fluid Power and Systems Technology, Chicago, IL,1994,1:75-80.
    [55]Sun H., Chiu T.C.Motion synchronization for dual-cylinder electro-hydraulic lift systems. IEEL/ASME Trans. Mechatronics,2002,7(2):171-181.
    [56]Sun H., Chiu T.C. Equalization of multi-cylinder electro-hydraulic systems. Proceedings of the American Control Conference, Chicago, IL,2000:4134-4138.
    [57]Sun H., Chiu T.C. Motion synchronization for multi-cylinder electro-hydraulic system. Proceeding of the IEEL/ASME International Conference on Advanced Intelligent Mechatronics.Como, Italy,2001:636-641.
    [58]Li J.Y., Yi M.L., Wang Y., et al. High-accuracy synchronization control with hybrid neural networks. Chinese Journal of mechanical engineering,2005, 18(1):127-131.
    [59]Xiong Y., Lequoc S., Cheng R.M. Adaptive control of synchronizing servo-system.SAE Technical Paper Series,1992:1-5
    [60]刘立强.不平衡双液压缸系统之同步运动控制:[硕士学位论文].台湾:国立中山大学.2002.
    [61]王海波,王庆丰.一种新型拖体收放电液比例系统及其同步控制策略研究.兵工学报,2008,29(12):1527-1531.
    [62]张轲,金鑫,涂宝新,等.250t船尾液压工作平台升降的同步控制方法.船舶工程,2008,30(3):37-40.
    [63]陈宝萍,李从心Fuzzy控制与电液同步控制技术研究.华中理工大学学报,1997,25(5):44-47.
    [64]邱士浩,芮丰,胡大邦,等PID、Fuzzy及Fuzzy-PID算法在液压同步系统中的应用比较.重庆科技学院学报(自然科学版),2007,9(3):134-136.
    [65]Wu B.H., Xiao T.B., Zou D.P., etal. Detection and control of synchro-operation of long stroke cylinders in a deep ocean mining heave compensation system. Key Engineering Materials,2005,295-296:367-374.
    [66]Liu G.P., Daley S. Optimal-tuning nonlinear PID control of hydraulic system. Control Engineering Practice,2000,8(9):1045-1053
    [67]Huang S.N., Tan K. K., Lee T.H. A combined PID/adaptive controller for a class of nonlinear systems. Automatica,2001,37(4):611-618.
    [68]Astrom K.J., Hagglund T. The future of PID control. Control Engineering Practice,2001,9(11):1163-1175.
    [69]Astrom K.J., Albertos P., Quevedo J. PID Control. Control Engineering Practice 2001,9(11):1159-1161.
    [70]Lengare M.J., Chile R.H., Waghmare L.M., et al.Auto tuning of PID controller for MIMO Process. Proceedings of World Academy of Science, Engineering and Technology.2008,35(11):306-309.
    [71]Tan W., Liu J.Z., Chen T.W. Comparison of some well-known PID tuning formulas. Computers & Chemical Engineering,2006,30(9):1416-1423.
    [72]Carvajal J., Chen G., Ogmen H. Fuzzy PID controller:Design, performance evaluation, and stability analysis. Information Sciences,2000,123(3-4):249-270.
    [73]Li K., Mannan M.A., Xu M.Q., et al. Electro-hydraulic proportional control of twin-cylinder hydraulic elevators. Control Engineering Practice,2001,9(4): 367-373.
    [74]D'Errico G.E. Fuzzy control systems with application to machining processes. Journal of Materials Processing Technology,2001,109(1-2):38-43.
    [75]Jeong S.K., You S. S. Precise position synchronous control of multi-axis servo system. Mechatronics,2008,18(3):129-140.
    [76]Yao B., Bu F.P., Reedy J., et al. Adapptive robust motion control of single-rod hydraulic actuators:theory and experiments. Proceedings of the American Control Conference, San Diego, C.A,1999:759-763.
    [77]丁崇生,刘白雁.模型跟随自适应控制新方法理论研究与工程应用.西安交通大学学报,1990,24(4):51-58.
    [78]Sun D. Position synchronization of multiple motion axes with adaptive coupling control. Automatica,2003,39(6):997-1005
    [79]陈永新.精校机电液位置伺服系统的研究:[博士学位论文].合肥:合肥工业大学,2004.
    [80]王占林.近代电气液压伺服控制.北京:北京航空航天大学出版社,2002.
    [81]博世力士乐公司.电液比例阀技术资料.
    [82]李士勇.模糊控制·神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1998.9.
    [83]李国勇.智能控制及其MATLAB实现.北京:电工工业出版社,2005.
    [84]谢新民,丁锋.自适应控制系统.北京:清华大学出版社,2002:108-110.
    [85]朱笑丛.气动肌肉并联关节高精度位姿控制研究:[博士学位论文].杭州:浙江大学,2007.
    [86]管成.非线性系统的滑模自适应控制及其在电液控制系统中的应用:[博士学位论文].杭州:浙江大学,2005.
    [87]陶永华.新型PID控制及其应用.北京:机械工业出版社,2002.
    [88]胡国良.盾构模拟试验平台电液控制系统关键技术研究:[博士学位论文].杭州:浙江大学,2006.
    [89]徐鸣谦,郦科,萧子渊,等.双缸液压电梯的同步控制.同济大学学报(自然科学版,1999,27(5):545-548.
    [90]李俊明,张晓丽,周淑辉,等.重载举升多缸同步液压系统的非连续控制.吉林大学学报(工学版)2003,33(1):60-63.
    [91]李长春,刘晓东,孟亚东.电液伺服系统的模型跟随控制研究.兵工学报,2007,28(5):630-633.
    [92]Cao K. Design of a model reference adaptive controller for object tracking. Fifth International Conference on Fuzzy Systems and Knowledge Discovery, 2008:65-69.
    [93]张永呆,胡文伟,熊宇飞.参考模型自适应控制在同步系统中的应用.上 海交通大学学报,1990,21(1):57-64.
    [94]潘永平,王钦若,严兴华.液压伺服系统的模型参考自适应模糊控制新方法.电气传动自动化,2007,29(2):5-7,28.
    [95]刘国荣.模型参考模糊自适应控制.控制理论与应用,1996,13(1):92-97.
    [96]王秋敏.伺服阀控非对称液压缸同步控制系统仿真研究:[硕士学位论文].济南:山东大学,2005.
    [97]肖聚亮,宋伟科,王国栋,等.水轮机筒阀电液同步控制系统数学建模与仿真.天津大学学报,2009,42(2):105-112.
    [98]陈宗雨,王有庆,李从心.基于模型参考自适应滑模控制的直线电机速度环研究.电机与控制学报,2006,10(2):174-178.
    [99]汤青波,何学文,黄迅.电液伺服系统的模型参考滑模自适应控制.机床与液压.2006,5:153-154,176.
    [100]Moore P.R., C. Chen M. Fuzzy logic coupling and synchronised control of multiple independent servo-drives. Control Engineering Practice,1995,3(12): 1697-1708.
    [101]Choi B.J., Kwak S.W., Kim B.K. Design of a single-input fuzzy logic controller and its properties. Fuzzy Sets and Systems,1999,106(3):299-308.
    [102]Van der Wal A.J., Application of fuzzy logic control in industry. Fuzzy Sets and Systems,1995,74(1):33-41.
    [103]Vasiliu N., Calinoiu C., Valsiliu D., et al. Digital control systems for synchronizing hydraulic servo cylinders. The 6th International Conference on Hydraulic Machninery and Hydrodynamics Timisoara, Romania, October 21-22, 2004:411-416.
    [104]Cho H.J., Cho K.B., Wang B.H. Fuzzy-PID hybrid control:Automatic rule generation using genetic algorithms. Fuzzy Sets and Systems,1997,92(3): 305-316.
    [105]Li W., Chang X.G., Wahl F.M., et al.Tracking control of a manipulator under uncertainty by FUZZY P+ID controller. Fuzzy Sets and Systems,2001,122(1): 125-137.
    [106]Misir D., Malki H.A., Chen G.R. Design and analysis of a fuzzy proportional-integral-derivative controller. Fuzzy Sets and Systems,1996,79(3):297-314.
    [107]Chen C.L., Chen P. C., Chen C.K. Analysis and design of fuzzy control system. Fuzzy Sets and Systems,1993,57(2):125-140.
    [108]Emami M. R., Goldenberg A. A., Turksen I.B. Fuzzy-logic control of dynamic systems:from modeling to design. Engineering Applications of Artificial Intelligence,2000,13(1):47-69.
    [109]Gao X., Feng Z. J. Design study of an adaptive Fuzzy-PD controller for pneumatic servo system. Control Engineering Practice,2005,13(1):55-65.
    [110]He S.Z., Tan S.H., Xu F.L., et al. Fuzzy self-tuning of PID controllers. Fuzzy Sets and Systems,1993,56(1):37-46.
    [111]Eker I., Torun Y. Fuzzy logic control to be conventional method. Energy Conversion and Management,2006,47(4):377-394.
    [112]Sun H., Liu L.A linear output structure for fuzzy logic controllers. Fuzzy Sets Systems,2002,131(2):265-270.
    [113]Li H.X., Gathland H.B. Conventional fuzzy logic control and its enchancement. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,1996, 26 (5):791-797.
    [114]Li K., Chen J., Xiao Z.Y., et al. An electrohydraulic system for synchronized roof erection. Automation in Construction,2003,12(1):29-42.
    [115]Chen, C.Y., Liu L.Q., Chen C.C., etal. Fuzzy controller design for synchronous motion in a dual-cylinder electro-hydraulic system. Control Engineering Practice 2008,16(6):658-673.
    [116]Yang Y.S, Zhou C.J., Ren J.S. Model reference adaptive robust fuzzy control for ship steering autopilot with uncertain nonlinear systems. Applied Soft Computing,2003,3(4):305-316.
    [117]Xiao Y., Zhu K., Liaw H.C. Generalized synchronization control of multi-axis motion systems. Control Engineering Practice,2005,13(7):809-819.
    [118]Feng L., Koren Y., Borenstein J. C. Cross-coupling motion controller for mobile robots. IEEL Control System,1993,13:35-43.
    [119]Passino K.M., Yurkovich S. Fuzzy Control. Addison Wesley Longman, Inc. 1998.
    [120]杨华勇,徐兵.液压电梯长行程液压缸介绍.中国电梯,1998,(5):30-34.
    [121]徐兵.采用蓄能器的液压电梯变频节能控制系统研究:[博士学位论文].杭州:浙江大学,2001.
    [122]马飞翔,李长锁,肖花.海洋工程用吊点的参数化建模分析.中国钢结构协会五届三次理事会扩大会议暨2009全国钢结构学术年会,成都,2009.
    [123]张冰.大跨度空间结构建造过程中吊点和支撑位置合理性研究:[硕士学位论文].杭州:浙江大学,2006
    [124]娄荣.空间钢结构施工力学及其优化控制的研究:[博士学位论文].杭州:浙江大学,2009
    [125]李娜.空间网格结构几何形态研究与实现:[博士学位论文].杭州:浙江大学,2009
    [126]刘又午,王建明.作大范围运动的空间桁架结构动力分析.振动工程学报,1998,11(1):18-23.
    [127]孔晓武.带长管道的负载敏感系统研究:[博士学位论文].杭州:浙江大学,2003.
    [128]丁崇生,汤清明.柱塞缸电液伺服系统与控制策略.机床与液压,1990,4:2-5,14.
    [129]付永领,祈小野AMESim建模与仿真.北京:北京航空航天大学出版社,2006
    [130]许益民.电液比例控制系统分析与设计.北京:机械工业出版社,2005.
    [131]苏东海,孙占文AMESim仿真技术在电液位置同步系统中的应用.液压气动与密封,2007,6:13-15.
    [132]付永领,朱承建.基于AMESim软件的大负载电液位置伺服系统分析及仿真.机床与液压,2007,35(8):210-212.
    [133]高海龙.基于AMESim的长管道伺服液压定位系统仿真分析.铜业工程,2008,2:37-39.
    [134]田树军,张宏.液压管路动态特性的Simulink仿真研究.系统仿真学报,2006,18(5):1136-1138.
    [135]Fung R.F., Yang R.T. Motion control of an electrohydraulic actuated toggle mechanism. Mechatronics,2001,11(7):939-946.
    [136]王纪森,钟丹华.基于MRAC的电液伺服作动器同步控制.控制工程,2006,13(5):506-508.
    [137]Kovacic Z., Bogdan S. Model reference adaptive fuzzy control of high-order systems. Engineering Applications of Artificial Intelligence,1994,7(5):501-511.
    [138]Guan C., Pan S.X. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters. Control Engineering Practice,2008,16(11): 1275-1284.
    [139]Yeh Z.M. Adaptive multivariable fuzzy logic controller. Fuzzy Sets and Systems,1997,86(l):43-60.
    [140]苏永清,萧蕴诗,赵克定.模糊自适应在负载仿真台同步补偿中应用研究.机械工程学报,2001,37(7):15-17.
    [141]吴振顺,郑慧奇,于华艳.基于误差多项式的模型参考自适应控制在阀控非对称缸系统中的应用.机械工程学报,2006,42(8):56-60.
    [142]Tang K., Lee G. Fuzzy model reference adaptive control.IEEE Trans.Fuzzy Syst,2003,1(2):146-155.
    [143]郑维敏.用模糊集理论设计模型参考自适应系统.信息与控制,1982,3:15-21.
    [144]丁崇生,刘白雁.模型跟随自适应控制新方法理论研究与工程应用.西安交通大学学报199 0,24(4):51-58.
    [145]高强,王力,钱林方.自适应模糊滑模控制在火箭炮电液伺服系统中的应用.兵工学报,2007,28(9):1148-1152.
    [146]Fung R.F., Yang R.T. Application of VSC in position control of a nonlinear electrohydraulic servo system. Computers & Structures,1998,66(4):365-372.
    [147]陈柏金,黄树槐,高俊峰,等.自由锻造液压机控制策略.机械工程学报,2008,44(10):304-308
    [148]王幼民,刘有余.电液位置伺服系统的自适应控制.农业机械学报.2006,37(12):160-163.
    [149]Sepehri N., Corbet T., Lawrence P.D. Fuzzy position control of hydraulic robots with valve deadbands. Mechatronics,1995,5(6):623-643.
    [150]Lin J., Chen C.H. Positioning and tracking of a linear motion stage with friction compensation by fuzzy logic approach. ISA Transactions,2007,46(3): 327-342.
    [151]Shih M.C., Tsai C. P. Servohydraulic cylinder position control using a neuro-fuz zy controller. Mechatronics 1995,5(5):497-512.
    [152]Pourboghrat F., Vlastos G. Model reference adaptive sliding control for linear systems. Computers & Electrical Engineering,2002,28(5):361-374.
    [153]Eryilmaz B.,Wilson B.H.Improved tracking control of hydraulic systems.Journal of Dynamic Systems,Measurement,and Control,2001,123 (9):457-462
    [154]Zames G., Fellow IEEE. Feedback and optimal sensitivity model reference transformations, multiplicative seminorms and approximate inverses.IEEE Transactions on Automatic Control,1981,26(2):301-320.
    [155]董朝阳,吴振辉,陈宇,等.直接力导弹的模型参考自适应滑模控制器设计.系统仿真学报,2008,20(13):3500-3503.
    [156]段锁林,王明智.自学习模糊滑模控制及其在电液伺服系统中的应用.机械工程学报,2004,40(3):162-167.
    [157]冯亮,马晓军,闫之峰,等.坦克炮控系统自适应模糊滑模控制方法.电机与控制学报,2007,11(1):66-70.
    [158]石辛民,郝整清.模糊控制及其MATLAB仿真.北京:清华大学出版社,北京交通大学出版社,2008.
    [159]Tewari A.Modern control design with matlab and simulink.John Wiley & Sons Ltd,2002.
    [160]Ellis G.Control system design guide:a practical guide.Elsevier Inc.2004.
    [161]黄永安,马路,刘慧敏MATLAB 7.0/Simulink 6.0建模仿真开发与高级工程应用.北京:清华大学出版社,2005.
    [162]张静,马俊丽,岳境,等MATLAB在控制系统中的应用.北京:电子工业出版社,2007.
    [163]夏玮,李朝晖,常春藤,等.MATLAB控制系统仿真与实例详解.北京:人民邮电出版社,2008.
    [164]西门子(中国)有限公司自动化与驱动集团.深入浅出西门子WinCC V6北京:北京航空航天大学出版社,2004.
    [165]胡学林.基于OPC技术的S7PLC-WinCC监控网络的开发.微计算机信息,2010,26(8-1):62-63.
    [166]梁飞,何黎明,田作华.基于WinCC和OPC的远程监控配料生产系统.微型电脑应用,2010,26(11):51-54.
    [167]龚仲华.S7-200/300/400 PLC应用技术-通用篇.北京:人民邮电出版社,2007.
    [168]Song Y.M., Bi Z.W.,Liu K. The PLC system of egg powder treatment based on fuzzy control algorithm. Fourth International Conference on Fuzzy Systems and Knowledge Discovery, Haikou,2007:530-534.
    [169]Sun T., Song Y.M., Feng G.C. The application of the fuzzy controller based on PLC in sewage disposal system. Internationl Conference on Artificial Intelligence and Computational Intelligence, Shanghai,2009:154-158.
    [170]Graham A.M., Etezadi-Amoli M. Design, implementation, and simulation of a PLC based speed controller using fuzzy logic.Proceedings of the Power Engineering Society Summer Meeting IEEE, Seattle, WA,2000:2475-2480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700