用户名: 密码: 验证码:
武汉城郊菜地生态系统硝酸盐淋失机制及其调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在综述国内外相关研究的基础上,通过大型原状土柱模拟试验和田间小区试验,以武汉城郊典型菜地生态系统为研究对象,定量研究了施用氮肥对菜地土壤氮素损失的影响,深入探索了氮素在土壤中的转化过程和淋失机制,揭示了大量施用氮肥对蔬菜、土壤、地下水及大气等造成的影响,提出了有效降低城郊菜地生态系统硝态氮污染的技术和途径,为维持城郊菜地土壤的可持续生产能力、提高经济效益、确保食品和环境安全等提供了科学依据和理论指导。主要研究结果如下:
     1.利用大型原状土柱模拟系统研究了菜地生态系统中氮肥用量对蔬菜、土壤和地下水硝酸盐污染的影响。结果表明,氮素的淋失损失量和地下水中NO3--N的浓度与氮肥用量呈显著正相关,过量施用氮肥导致地下水中NO3--N含量超过安全饮用标准。施用氮肥显著增加了土壤淋失液中NO3-离子及土壤全氮、碱解氮和硝态氮的含量。随氮肥用量的增加土壤有机质含量呈现出先增加后降低的趋势,土壤的pH值则呈显著降低趋势,说明过量施用氮肥显著地影响了土壤质量和氮的淋失量。
     2.对武汉城郊菜地的定位监测数据说明,土壤剖面及土壤溶液NO3--N积累量的高低与氮肥用量、作物生长情况以及水分输入量有直接关系,NO3--N在土壤剖面的迁移量和迁移速度取决于土壤的物理性质和水分输入量。菜地生态系统中,地下水中的NO3--N含量变化与本区域的作物种植习惯和土壤质地相关。因土壤质地不同,土壤NO3--N在正常范围内且能够满足蔬菜安全生产时,地下水可能已受到严重的NO3--N污染。因此,必须严格控制氮肥的施用量来保护土壤和地下水体免受农业活动造成的氮素污染。
     3.原状土柱模拟系统和15N同位素示踪的研究表明,随着氮肥用量的增加,蔬菜体内的NO3-含量逐渐增加,土壤淋失液中NO3--N的淋失损失量和平均浓度显著地增加。土壤淋失液NO3--N的淋失损失量(Y1)和平均浓度(Y2)与N肥施用量(X)的相关关系分别为:Y1=0.2882X+33.66(R2=0.9940)和Y2=0.0114X+1.24(R2=0.9928)。说明氮肥的大量施用造成了肥料资源过度浪费,显著降低了蔬菜品质和导致土壤及地下水受到NO3--N污染。
     在城郊菜地生态系统中,蔬菜种类不同,其根系长度和生长周期长短的不同,导致氮素在土壤中的淋失速率和淋失量产生显著的差异。叶菜类蔬菜能够提高氮肥利用效率,但是叶菜类蔬菜不能利用较深土层氮素,容易造成下层土壤及地下水受到N03--N污染。茄果类蔬菜和根茎类蔬菜能够利用较深土层氮素,但其生长前期需肥量较少,容易导致NO3--N大量淋失。在菜地生态系统中,不同蔬菜轮作种植模式间氮素损失量和氮素利用效率呈显著负相关。说明蔬菜种类和种植模式能够影响养分的吸收和利用,进而影响其氮肥的利用效率。
     4.随着氮肥施用水平的增加,土壤中脲酶活性逐渐增加,蛋白酶和硝酸还原酶的活性则呈现先增加后降低的趋势。说明适宜的氮肥施用量有利于改善与氮转化过程相关的土壤酶的活性,有利于蔬菜作物对氮素的吸收利用,同时降低氮素的损失量。土壤中各种菌的数量规律是:细菌>放线菌>真菌,随着氮肥用量的增加,细菌数量和放线菌数量有先增大又急剧降低的趋势,真菌的数量则逐渐降低。从细菌数量与真菌数量比值可以看出,适宜的氮肥施用有利于提高土壤的质量,过量施肥则会造成土壤质量下降。通过BIOLOG碳素利用法对土壤微生物的研究表明,在氮肥用量不同时,土壤微生物的代谢活性整体上基本相似,微生物多样性指数变化不大。但是,从对土壤样品测定结果的主成分分析表明,土壤微生物在氮肥用量不同时利用碳源的方式和种类存在差异,其中低氮水平和高氮水平各分为一类,氮肥用量适中的土壤分为一类,说明施用氮肥显著地影响了土壤微生物的多样性。
     5.在长期不同氮肥施用水平条件下,土壤的narG、nirK、nirS、nosZ等反硝化功能基因群落被分成3—4个有差异的部分,说明氮肥的施用改变了土壤微生物的群落组成。指数分析结果表明,适量施用氮肥有利于增加narG、nirS和nosZ型的多样性,但过量施用氮肥则会降低narG、nirK、nirS和nosZ型反硝化细菌的多样性。施用氮肥使反硝化基因narG, nirK, nirS, qnorB和nosZ的拷贝数逐渐增加,显著地改变了土壤反硝化作用功能基因的数量。施用氮肥使菜地土壤中的16S rDNA的数量也呈现出增长的趋势,但是不同氮素水平处理之间的差异没有反硝化功能基因的基因拷贝数间的差异显著。同时,菜地土壤中的不同反硝化基因拷贝数差异显著,其数量顺序(narG>(nirK+nirS)> qnorB>nosZ)与反硝化过程一致。氮肥既能影响反硝化功能基因种群,也能影响整个微生物群体的变化,但是与整个微生物群体相比,反硝化功能基因种群对氮肥施用水平的不同响应更敏感。
     6.原状土柱模拟试验和田间小区试验的研究表明,在菜地生态系统中施用硝化抑制剂双氰胺(DCD)对蔬菜的产量和品质、土壤及地下水硝酸盐污染均有显著的影响。DCD能显著地增加蔬菜的产量(6.2%—43.96%),其增产效应与蔬菜的生长期长短成正比,与温度的高低呈反比。同时,DCD可以显著降低蔬菜体内的硝酸盐含量(5.3%—39.7%),降低程度则因蔬菜种类和生长季节及环境条件不同而异。施用DCD后,蔬菜干物质的氮素含量显著地提高,蔬菜从土壤中携出的氮量显著地增加(12.9%—61.23%),从而有效地提高了蔬菜的氮肥利用效率。
     施用DCD后,土壤剖面中的NH4+-N含量显著地提高,NO3--N含量显著地降低,氮素淋失量、淋失液中NO3--N的浓度以及N20的排放量显著地降低。硝化抑制剂DCD既可以提高肥料的利用效率,又能降低由氮素过量施用引起的土壤质量下降以及地下水体和大气污染,不但具有显著的经济意义,还具有一定的环境效益。
     7.通过原状土柱模拟试验和田间小区试验,研究了城郊菜地生态系统中不同蔬菜轮作种植模式中蔬菜生物产量、经济效益以及氮素的利用和损失情况。结果表明,在不同蔬菜轮作种植模式之间,蔬菜的生物产量和经济效益、土壤剖面中的NO3-含量、土壤溶液中的N03--N素含量以及氮素淋失量之间差异显著。蔬菜种类的不同,导致其对氮素的吸收和利用有一定的差异,叶菜类蔬菜能够大量地吸收利用表层土壤中氮素,肥料利用效率较高;茄果类等根系较长的蔬菜则能利用更深层土壤剖面中的氮素。根据生态位理论,在实际生产中,可以根据作物根系长短和种类的不同,通过合理搭配蔬菜的种植来增加作物的生物量和菜农经济效益,降低土壤硝酸盐的淋失量,提高氮肥利用率,减少或避免施用氮肥引起土壤和地下水环境受到的NO3--N污染。
     8.基施和喷施微量元素硼锌钼肥对提高城郊菜地生态系统中的蔬菜产量和品质、氮素含量和氮肥利用率,降低土壤溶液和土壤剖面中的NO3--N含量具有显著的影响。结果表明,基施和喷施微量元素硼锌钼肥,分别使蔬菜的产量提高了15.9%—42.4%和4.4%—16.5%,使蔬菜体内的NO3--含量降低了21.6%—31.2%和10.7%—44.3%,使蔬菜干物质的氮素含量提高了9.6%—-19.3%和0.4%——25.9%,蔬菜携出的氮素量提高了27.1%—83.7%和4.6%—9.6%,显著提高了蔬菜的产量和品质及氮肥利用率。而且,基施和喷施微量元素硼锌钼肥后土壤溶液中的NO3--N含量显著降低,喷施微量元素硼锌钼肥后土壤剖面中的NO3--N含量显著降低。本研究表明,微量元素不但显著提高了生产生态系统中的经济效益,还能对维持土壤质量及降低氮肥对环境产生的的污染起到一定的作用,具有良好的环境效益。
Vegetable production systems are one of the intensive agricultural production systems with high rates of nitrogen (N) fertilizer application and irrigation, and thus have a high potential for nitrate (NO3-) leaching and nitrous oxide (N2O) emissions. The high rates of N fertilizer applied may also affect soil microbial community structure and functions impacting on the long-term sustainability of the production systems.
     In this thesis, lysimeter and field trials were conducted to study the effects of N fertilizer use on soil properties, groundwater quality and vegetable quality in vegetable production systems in Wuhan suburbs, Central China. The amount of N leaching losses affected by N fertilizer application was quantified, and the N transformation processes in the soil was also studied. Based on these results, effective methods to reduce nitrate leaching, while at the same time, increasing farmers' income were proposed for sustainable vegetable production.
     The main research results of this thesis are as follows:
     1. Lysimeters were used to study the effects of different N fertilizer application rates on nitrate content in vegetables, in soil and in leachate. Results showed that, both N leaching losses and NO-3--N content in leachate were significantly correlated with N fertilizer application rate. High rates of N fertilizer application increased the NO3--N concentration in the leachate, exceeding the drinking water standard. With the increase of N fertilizer application rates, NO3--N concentration in leachate, and total N content, available N and NO3--N in soil increased significantly. Soil organic matter content was increased at first, then, reduced by the N fertilizer over-application. Soil pH values were significantly reduced. It is clear that excessive amounts of N fertilizer application have many harmful impacts on the soil and groundwater.
     2. In a long-term monitoring trial, NO3--N accumulation in the soil profile and in the soil solution had a direct relationship with N fertilizer application rate. The amount and rate of NO3--N leaching in soil profile were significantly influenced by the physical properties of soil and irrigation amount. With increasing N application rates, NO3-content in vegetables and leachate, amount of N leaching losses increased significantly. There were positive correlations between N fertilizer application rate (X) and NO3--N leaching losses (Y1), and average NO3--N concentration in leachate (Y2)(Y1=0.2882X+33.66(R2=0.9940) and Y2=0.0114X+1.24(R2=0.9928)). Thus, large amounts of N fertilizer application not only result in wasting of the fertilizer resources but also adversely affect the quality of vegetables and ground water.
     3. There was a significant difference in the amount of NO3--N leached and the rate between different soil profiles with different crop varieties, root systems, and growth periods of vegetables. Leaf vegetable planted could improve nitrogen utilization efficiency, but it could not absorb the N in the deeper soil profile. Solanaceous and root vegetable could absorb N which was leached to the deeper soil profile, but they also led to large amounts of NO3--N leaching losses, because little N was required at the early growth periods. In the vegetable ecosystem, the amounts of N losses and N utilization efficiency had a significant negative correlation in different vegetable rotation modes. The results indicate that the varieties of vegetables could affect the N utilization efficiency.
     4. Along with the increase of N fertilization application, soil urease activity increased gradually; protease and nitrate reductase activities were increased at first, then decreased with the amount of N application. The results showed that appropriate nitrogen application rates could improve the enzyme activity, which were related with the transformation of N in soil, and was beneficial for increasing vegetable yield and N content. Bacteria numbers were more than those of actinomyces and ray fungi. Along with the increase of nitrogen application rates, bacteria and actinomyces numbers increased first, and then decreased sharply, and fungi numbers were reduced gradually. According to the bacteria and fungi numbers, the appropriate nitrogen application would improve the qualities of soil. However, excessive fertilizer would lead to the lower soil qualities. At the same time, the results using the BIOLOG to study the soil microbial communities showed that soil metabolic activity was the same in different nitrogen fertilization conditions, and the microbial diversity index had a little change. However, there were differences of carbon utilization and soil microorganism types between different nitrogen application rates. It means that soil microorganism diversities were significantly influenced by nitrogen application.
     5. In the long-term study of nitrogen fertilizer use, the soil denitrifying community functional genes, such as narG, nirK, nirS, nosZ, were divided into3or4parts. N fertilizer application could change the soil microbial community composition. The index analysis showed that, the adequate application amounts of N fertilizer would increase the diversity of the gene narG, nirS and nosZ, but excessive amounts of N fertilizer would reduce the diversity of narG, nirK, nirS and nosZ. The copy numbers of functional genes narG, nirK, nirS, qnorB and nosZ were increased gradually with the increase of N fertilizer application, and the numbers of soil denitrification functional genes changed significantly by the N fertilizer application. The number of16S rDNA increased with the application amounts of N fertilizer, but its difference was not significant than the copy numbers of soil denitrification functional genes in different N rates. The sequence of the copy numbers of soil denitrification functional genes was:narG>(nirK+nirS)> qnorB> nosZ. Results showed that the N fertilizer application could affect denitrification functional genes and the microbial community structure, and denitrifying functional genes are more sensitive to N fertilization rates.
     6. The nitrification inhibitor DCD significantly influenced yields, qualities of vegetable and NO3--N concentrations in soil and ground water. The application of DCD significantly increased the vegetable yields by6.2-43.96%compared with control, and there was a positive correlation between the increased production and growth and a negative correlation between increased production and temperature. DCD application significantly decreased the NO3--N concentrations in vegetables by5.3-39.7%. DCD also increased N content in vegetables, the N offtake was increased by12.9%-61.23%, and N use efficiency was increased significantly.
     NH4+-N concentrations in soil profile were increased significantly, and NO3--N concentrations were decreased by the application of DCD. N leaching losses, NO3--N concentrations in the leachate and N2O emissions were significantly decreased by the application of DCD. It means that the application of DCD not only increased the fertilizer utilization efficiency, but also improved the quality of soil and ground water.
     7. Basal application of trace element fertiliazers (B, Zn and Mo) would increase the yields, qualities and N content of vegetable and N utilization efficiency, and it would decrease NO3--N concentrations in soil solutions and soil profiles. The results showed that, the vegetable yields were increased by15.9%-42.4%and4.4%-16.5%, NO3-concentrations in vegetable were decreased by21.6%-31.2%and10.7%-44.3%, N content in vegetables was increased by9.6%-19.3%and0.4%-25.9%, N offtake was increased by27.1%-83.7%and4.6%-9.6%, by the basal application of the trace element fertilizers, respectively. At the same time, the NO3--N content in soil profile and soil solution were decreased by the application of trace element fertiliazers B, Zn and Mo. Thus, trace elements not only increased the economic effectiveness in vegetable production system, but also improved the quality of soil and the environment.
引文
1. 白纲义,赵杨景,梁惠英.几种蔬菜中硝酸盐含量及食前处理.农业环境保护,1984,2:21-22
    2.曹兵,贺发云,徐秋明.南京郊区番茄地中氮肥的效应与去向.应用生态学报,2006,17(10):1839-1844
    3.曹兵,贺发云,徐秋明,等.露地种植大白菜的氮肥效应与氮素损失研究.植物营养与肥料学报,2007,13(006):1116-1122
    4.曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,2003,9(1):105-109
    5.陈钢,年夫照,徐芳森,等.硼、钼营养对甘蓝型油菜产量和品质影响的研究.植物营养与肥料学报,2005,11(2):243-247
    6.陈利军,史奕,李荣华,等.脲酶抑制剂和硝化抑制剂的协同作用对尿素氮转化和N2O排放的影响.应用生态学报,1995,6(4):368-372
    7. 陈清,张晓晟,张宏彦,等.氮素供应对露地胡萝卜生长及其氮素利用的影响.中国蔬菜,2003,1:4-6
    8.陈文新.土壤和环境微生物学.北京农业大学出版社,1990
    9. 陈哲.长期施肥对水稻土反硝化作用和反硝化功能微生物的影响机理.[博士学位论文].长沙:中国科学院研究生院,2010
    10.串丽敏,赵同科,安志装,等.土壤硝态氮淋溶及氮素利用研究进展.中国农学通报,2010,26(11):200-205
    11.崔振岭,张福锁,陈新平.我国区域配肥之路:大配方复合肥和小配方掺混肥并举.中国农资,2006,(8):44-45
    12.丁鹏.α-2b干扰素重组质粒的建立及在毕赤酵母中的表达.[博士学位论文].武汉:华中科技大学,2007
    13.董章杭,李季,孙丽梅.集约化蔬菜种植区化肥施用对地下水硝酸盐污染影响的研究—以“中国蔬菜之乡”山东省寿光市为例.农业环境科学学报,2006,24(6): 1139-1144
    14.杜应琼,王富华,李乃坚,等.广东省蔬菜硝酸盐含量的调查与分析.生态环境,2004,13(1):19-22
    15.樊晓刚,金轲,李兆君,等.不同施肥和耕作制度下土壤微生物多样性研究进展.植物营养与肥料学报,2010,16(3):744-751
    16.方玉东,封志明,胡业翠,等.基于G IS技术的中国农田氮素养分收支平衡研究.农业工程学报,2007,23(7):35-42
    17.付伟章,史衍玺.施用不同氮肥对坡耕地径流中N输出的影响.环境科学学报,2005,25(12):1676-1681
    18.葛晓光,高慧,张思平.长期施肥条件下菜田—蔬菜生态系统变化的研究(Ⅳ)蔬菜生态系统的变化.园艺学报,2004,31(5):598-602
    19.葛晓光,王晓雪.长期定位施氮条件下菜田氮素循环的研究.中国蔬菜,1999,(1):13-17
    20.韩斌,孔继君,邹晓明,等.生物固氮研究现状及展望.山西农业科学,2009,37(10):86-89
    21.郝旺林,梁银丽,朱艳丽,等.农田粮—菜轮作体系的生产效益与土壤养分特征.水土保持通报,2011,31(2):46-51
    22.何传龙,徐继平,王世祥,等.大棚土壤障碍因子形成及调控技术的研究进展.安徽农业科学,2003,31(6):1040-1042
    23.何述尧,胡学铭,杨万安.广州蔬菜硝酸盐污染与残留条件的调查研究.广东农业科学,1986,38(2):38-41
    24.何绪生,李素霞,李旭辉,等.控效肥料的研究进展.植物营养与肥料学报,1998,4(2):97-106
    25.贺发云,尹斌,金雪霞,等.南京两种菜地土壤氨挥发的研究.土壤学报,2005,42(2):253-259
    26.胡承孝,邓波儿,刘同仇.施用氮肥对小白菜、番茄中硝酸盐积累的影响.华中农业大学学报,1992,(3):239-243
    27.胡春胜,程一松,于贵瑞.华北平原施氮对农田土壤溶液中硝态氮含量的影响.资源科学.2001,23(6):46-48
    28.胡田田,李生秀.土壤供氮能力测试方法的研究—Ⅱ.几种测氮方法的测定值与作物吸氮量的关系.干旱地区农业研究,1993,(S1):62-67
    29.华建峰,蒋倩,施春健,等.脲酶/硝化抑制剂对土壤脲酶活性、有效态氮及春小麦产量的影响.土壤通报,2008,39(1):94-99
    30.黄东风,王果,李卫华,等.不同施肥模式对蔬菜生长、氮肥利用及菜地氮流失的影响.应用生态学报,2009,20(3):631-638
    31.黄满湘,章申,唐以剑,等.模拟降雨条件下农田径流中氮的流失过程.土壤与环境,2001,10(1):6-10
    32.黄益宗,冯宗炜,王效科,等.硝化抑制剂在农业上应用的研究进展.土壤通报,2002,33(4):310-315
    33.黄玉霞,李俊华,褚贵新,等.施肥对菜地土壤微生物和土壤酶活性的影响.石河子大学学报(自然科学版),2007,(5):552-557
    34.吉艳芝.填闲作物阻控设施蔬菜土壤硝态氮累积和淋失的研究.[博士学位论文].保定:河北农业大学,2010
    35.贾继文,李文庆,陈宝成,等.山东省蔬菜大棚土壤养分状况与施肥现状的调查研究.菜园土壤肥力与蔬菜合理施肥,1997,73:75
    36.金梁,胡克林,李保国,等.作物生长与土壤水氮运移联合模拟的研究Ⅱ—模型验证与应用.水利学报,2007,38(8):972-980
    37.金雪霞,范晓晖,蔡贵信,等.菜地土壤氮素矿化和硝化作用的特征.土壤(Soils), 2004,36 (4):382-386
    38.金雪霞,范晓晖,蔡贵信,等.菜地土壤N20排放及其氮素反硝化损失.农业环境科学学报,2004,23(5):861-865
    39.金雪霞,范晓晖,蔡贵信.菜地土氮素的主要转化过程及其损失.土壤(Soils), 2005,37 (5):492-499
    40.金赞芳,王飞儿,陈英旭.城市地下水硝酸盐污染及其成因分析.土壤学报,2004,41(2):252-258
    41.巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作体系中土壤氮素矿化及预测.应用生态学报,2003,14(12):2241-2245
    42.隽英华,陈利军,武志杰,等.脲酶/硝化抑制剂在土壤N转化过程中的作用.土壤通报,2007,38(4):773-780
    43.寇长林,巨晓棠,张福锁.三种集约化种植体系氮素平衡及其对地下水硝酸盐含量的影响.应用生态学报,2005,16(4):660-667
    44.黎林.生物固氮的研究现状初探.韶关学院学报,2009,30(3):88-91
    45.黎宁,李华兴,朱凤娇,等.菜园土壤的理化性质和微生物生态特征与种植年限的关系.生态环境,2005,14(6):925-929
    46.李翠萍,续勇波,李永梅,等.滇池湖滨带设施蔬菜、花卉的农田养分平衡.云南农业大学学报,2005,20(6):804-809
    47.李辉信,胡锋,刘满强,等.红壤氮素的矿化和硝化作用特征,土壤(Soils), 2000, (4):194-197
    48.李俊良,陈新平,李晓林,等.大白菜氮肥施用的产量效应、品质效应和环境效应.土壤学报,2003,40(2):261-266
    49.李俊良,朱建华,张晓晟,等.保护地番茄养分利用及土壤氮素淋失.应用与环境生物学报,2001,7(2):126-129
    50.李庆逵.我国土壤科学发展与展望.土壤学报,1989,26(3):207-216
    51.李庆逵.中国农业持续发展中的肥料问题.南昌:江西科学技术出版社,1997,38-51
    52.李生秀,张志华,高亚军,等.矿质氮在土壤剖面中的分布.干旱地区农业研究,1993,(11):141-145
    53.李文学.小麦/玉米/蚕豆间作系统中氮、磷吸收利用特点及其环境效应.[博士学位论文].北京:中国农业大学,2001
    54.李志博,王起超,陈静.农业生态系统的氮素循环研究进展.土壤与环境,2002,11(4):417-421
    55.梁东丽.黄土性土壤剖面中N2O排放的研究初报.土壤学报,2002,39(6):802-809
    56.廖育林,荣湘民,刘强,等.氮肥施用量与莴苣产量和品质及氮肥利用率的关系.湖南农业大学学报(自然科学版),2005,31(1):47-49
    57.廖宗文.环境、资源和持续农业—土壤科学的新兴研究领域.见:张福锁,龚元石,李晓林.土壤与植物营养研究新动态(第三卷).北京:中国农业出版社,1995:111-120
    58.刘刚,周爱凤,赵荷仙,等.大棚土壤酸化和盐渍化形成原因及防治措施.农业科技通讯,2012,1:110-111
    59.刘晓宏,郝明德.添加无机氮磷与有机肥对土壤有机氮矿化的影响.中国生态农业学报,2002,1:58-60
    60.刘义,陈劲松,刘庆,等.土壤硝化和反硝化作用及影响因素研究进展.四川林业科技,2006,27(2):36-41
    61.陆安祥,赵云龙,王纪华,等.不同土地利用类型下氮、磷在土壤剖面中的分布特征.生态学报,2007,27(9):3923-3929
    62.陆欣,王申贵,王海洪,等.新型脲酶抑制剂的试验研究.土壤学报,1997,34(4):461-466
    63.吕殿青,同延安.氮肥施用对环境污染影响的研究.植物营养与肥料学报,1998,4(1):8-15
    64.吕殿青,杨学云,张航,等.陕西搂土中硝态氮运移特点及影响因素.植物营养与肥料学报,1996,2(4):289-296
    65.马文奇,毛达如,张福锁.山东省蔬菜大棚养分积累状况.磷肥与复肥,2000,15(3):65-67
    66.闵炬.太湖地区大棚蔬菜地化肥氮利用和损失及氮素优化管理研究.西北农林科技大学,2007
    67.闵炬,施卫明.不同施氮量对太湖地区大棚蔬菜产量、氮肥利用率及品质的影响.植物营养与肥料学报,2009,15(1):151-157
    68.倪秀菊,李玉中,徐春英,等.土壤脲酶抑制剂和硝化抑制剂的研究进展.中国农学通报,2009,25(12):145-149
    69.聂艳,周勇,于婧,等.土壤基础生态位适宜度模型在耕地土壤肥力综合评价中的应用.长江流域资源与环境,2006,15(002):223-227
    70.聂兆君,胡承孝,孙学成,等.钼对小白菜叶色,营养品质及硝酸盐含量的影响.中国蔬菜,2008,(8):7-10
    71.聂兆君,胡承孝,孙学成,等.钼对小白菜抗坏血酸氧化还原的影响.植物营养与肥料学报,2008,14(5):976-981
    72.彭奎,欧阳华,朱波.农林复合生态系统氮素生物地球化学循环及其环境影响研究.中国生态农业学报,2005,13(1):111-115
    73.齐玉春,董云社.土壤氧化亚氮产生、排放及其影响因素.地理学报,1999,54(6):534-542
    74.秦遂初.作物营养障碍的诊断及其防治.杭州:浙江科学技术出版社,1988
    75.邱炜红.菜地土壤温室气体氧化亚氮排放及其控制研究.[博士学位论文].武汉:华中农业大学图书馆,2011
    76.邱炜红,刘金山,胡承孝,等.不同施氮水平对菜地土壤N2O排放的影响.农业环境科学学报,2010,29(11):2238-2243
    77.邱炜红,刘金山,胡承孝,等.菜地系统土壤氧化亚氮排放的日变化.华中农业大学学报,2011,30(2):210-213
    78.史奕,徐星凯,周礼恺,等.抑制剂及其组合对尿素15N在小麦土壤系统中的行为和归宿的影响.应用生态学报,1998,9(2):168-170
    79.宋储君.施肥结构对茶园土壤氮素的影响.[博士学位论文].南京:南京农业大学,2009
    80.孙绍娟.RNA干扰技术沉默STAT3基因对人肺腺癌A549细胞的生长抑制作用的研究.[硕士学位论文].泸州:泸州医学院,2006
    81.王朝辉,宗志强,李生秀.菜地和一般农田土壤主要养分累积的差异.应用生态学报,2002,13(9):1091-1094
    82.王朝辉,宗志强,李生秀,等.蔬菜的硝态氮累积及菜地土壤的硝态氮残留.环境科学,2002,23(3):79-83
    83.王春光,叶水根.流域降雨量和土壤氮含量对流域出口氮污染负荷的影响.灌溉排水学报,2006,24(6):15-18
    84.王慧先,郭俊云,徐卫红,等.不同白菜品种对锌的响应及锌利用效率研究.植物营养与肥料学报,2011,(1):154-159
    85.王家玉,王胜佳,陈义,等.稻田土壤中N的渗漏损失研究.应用生态学报,1995,6:62-66
    86.王金辉,柳勇,蒙辉远,等.集约化露天菜地表层土壤盐分累积特征及消长规律.生态环境,2008,17(4):1624-1629
    87.王金辉,柳勇,徐润生,等.不同施肥水平对耕层土壤盐分迁移和分布的影响.中国土壤与肥料,2009,(4):25-30
    88.王维金.关于不同籼稻品种和施肥时期稻株对15N的吸收及其分配的研究.作物学报,1994,(04):476-480
    89.王小彬,Grantca B L D.关于几种土壤脲酶抑制剂的作用条件.植物营养与肥料学报,1998,4(3):211-218
    90.王晓丽,李隆,江荣风,等.玉米/空心菜间作降低土壤及蔬菜中硝酸盐含量的研究.环境科学学报,2003,23(4):463-467
    91.王晓燕.非点源污染过程机理与控制管理.北京:海洋出版,1993,45-58
    92.王鑫,徐秋明,曹兵,等.包膜控释尿素对保护地菜地土壤肥力及酶活性的影响.水土保持学报,2005,19(5):77-80
    93.王艳,王小波,卢树昌,等.植物源杀菌包膜复合肥对番茄生长,氮肥利用率及病害的影响.中国生态农业学报,2011,19(3):597-601
    94.王智超.农田土壤硝态氮累积及干湿交替过程影响.[博士学位论文].北京:中国农业大学,2006
    95.文帮勇,杨忠芳,侯青叶,等.江西鄱阳湖地区土壤酸化与人为源氮的关系.现代地质,2011,(3):562-568
    96.吴琼,杜连凤,赵同科,等.菜地硝酸盐累积现状、影响及其解决出路.中国农学通报,2009,25(2):118-122
    97.武志杰,周健民.我国缓释、控释肥料发展现状、趋势及对策.中国农业科技导报,2001,3(1):73-76
    98.奚振邦,施秀珠,黄伟祥,等.应用微气象学方法测定尿素的氨挥发损失.上海农业学报,1987,3(4):47-56
    99.徐华,鹤田治雄.土壤质地对小麦和棉花田N20排放的影响.农业环境保护,2000,19(1):1-3
    100.徐仁扣.某些农业措施对土壤酸化的影响.农业环境保护,2002,21(5):385-388
    101.徐文彬,刘维屏.温度对焊田土壤N20排放的影响研究.土壤学报,2002,39(1):1-8
    102.许仙菊,高豫汝,张永春,等.硫包衣尿素对辣椒产量、品质及氮肥利用率的影响研究.土壤(Soils),2010,42 (4):50574-50578
    103.许仙菊,武淑霞,张维理,等.上海郊区农田氮养分平衡及其对土壤速效氮含量的影响.中国土壤与肥料,2007,(3):24-28
    104.薛继澄,毕德义.保护地栽培蔬菜生理障碍的土壤因子与对策.土壤肥料,1994,1:4-9
    105.闫湘,金继运,何萍,等.提高肥料利用率技术研究进展.中国农业科学,2008,41(2):450-459
    106.杨大群.天山冷环境中微生物系统多样性及分布特征的研究.[博士学位论文].兰州:兰州大学,2008
    107.杨祯奎,胡保林,环保总局,等.水域的富营养化及其防治对策.中国环境科学出版社,1987
    108.于红梅,李子忠,龚元石.不同水氮管理对蔬菜地硝态氮淋洗的影响.中国农业科学,2005,38(9):1849-1855
    109.余海英,李廷轩,周健民.设施土壤盐分的累积、迁移及离子组成变化特征.植物营养与肥料学报,2007,13(4):642-650
    110.俞慎,李振高.稻田生态系统生物硝化—反硝化作用与氮素损失.应用生态学报,1999,5:630-634
    111.喻敏,胡承孝,王运华.缺钼对冬小麦不同品种叶绿素含量和叶绿体超微结构的影响.华中农业大学学报,2005,5:43-47
    112.袁东海,王兆骞,陈欣,等.不同农作方式红壤坡耕地土壤氮素流失特征.应用生态学报,2002,13(7):863-866
    113.张炳运,介晓磊,刘芳,等.微量元素配施对土壤及紫花苜蓿中微量元素的影响.土壤通报,2009,40(1):144-149
    114.张福锁,巨晓堂.对我国持续农业发展中氮肥管理与环境问题的几点认识.见:《氮素循环与农业和环境》专辑—氮素循环与农业和环境学术讨论会论文集.厦门,2001,41-42
    115.张光旭,胡娟,郑元红,等.缓释复肥在玉米上的应用研究.贵州农业科学,2007,35(4):76-78
    116.张慧.不同利用方式对红壤坡地硝化功能微生物多样性的影响.[博士学位论文].长沙:湖南农业大学,2011
    117.张金波,宋长春.土壤氮素转化研究进展.吉林农业科学.2004,29(1):38-43
    118.张丽红,符建平,王铁臣,等.日光温室不同蔬菜轮作体系对土壤环境影响的初步研究.见:园艺学进展(第八辑)—中国园艺学会第八届青年学术讨论会暨现代园艺论坛论文集.2008,315-319
    119.张丽娟,巨晓棠,高强,等.两种作物对土壤不同层次标记硝态氮利用的差异.中国农业科学,2005,38(2):333-340
    120.张乃明,张玉娟,陈建军,等.滇池流域农田土壤氮污染负荷影响因素研究.中国农学通报,2004,20(5):148-150
    121.张涛.从氮肥的诸多反思看低碳经济:政府应该引导农民合理用肥.中国农资,2010,3:19-20
    122.张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1(2):80-87
    123.张维理,徐爱国,冀宏杰.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在问题分析.中国农业科学.2004,37(7):1026-1033
    124.张学军.节水控氮对宁夏不同土壤—蔬菜体系中氮素平衡及NO3--N淋失的影响.[博士学位论文].武汉:华中农业大学图书馆,2008
    125.张学军,赵营,陈晓群,等.氮肥施用量对设施番茄氮素利用及土壤NO3-N累积的影响.生态学报,2007,(9):3761-3768
    126.张亚丽,李怀恩,张兴昌,等.坡度对坡面土壤矿质氮素水蚀流失负荷的影响.水土保持通报,2007,27(2):14-17
    127.张炎,史军辉,李磐,等.农田土壤氮素损失与环境污染.新疆农业科学,2004,1:57-60
    128.张颖,刘学军,张福锁,等.华北平原大气氮素沉降的时空变异.生态学报,2006,26(6):1633-1639
    129.张真和.蔬菜产业可持续发展对策.中国蔬菜,2004,(1):6-8
    130.张志明,毕庶春,李继云,等.长效碳酸氢铵理化特性及增产机理的研究.中国科学(B辑),1996,26(5):452-459
    131.赵静,白清云.钼对降低蔬菜硝酸盐积累的效应研究.农业环境保护,2001,20(4):238-239
    132.赵略,孙庆元,于英梅,等.脲酶抑制剂nBPT对土壤脲酶活性和脲酶产生菌的影响.大连轻工业学院学报,2007,26(1):24-27
    133.赵其国.现代生态农业与农业安全.科技与经济,2004,17(1):58-64
    134.赵同科,张成军,杜连凤,等.环渤海七省(市)地下水硝酸盐含量调查.农业环境科学学报,2007,26(2):779-783
    135.赵长盛.武汉城郊菜地土壤氮素的转化与淋失研究.[博士学位论文].武汉:华中农业大学图书馆,2009
    136.钟茜,巨晓棠,张福锁.华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析.植物营养与肥料学报,2006,12(3):285-293
    137.周静,崔键,王国强,等.红壤旱地湿沉降氮特征及其对马唐—冬萝卜连作系统氮素平衡的贡献.生态环境,2007,(6):1714-1718
    138.周礼恺,赵晓燕,李荣华.脲酶抑制剂氢醌对土壤尿素氮转化的影响.应用生态学报,1992,3(1):36-41
    139.朱凤林.钼、硼对花椰菜产量及品质的影响.园艺学报,2005,32(2):310-313
    140.朱建华.蔬菜保护地氮素去向及其利用研究.[博士学位论文].北京:中国农业大学,2002
    141.朱兆良.我国土壤供氮和化肥氮去向研究的进展.土壤,1985,17(1):2-9
    142.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6
    143.左海军,张奇,徐力刚,等.农田土壤氮素径流损失的影响因素及其防治措施研究.灌溉排水学报,2009,28(6):64-67
    144.朱兆良,文启孝.中国土壤氮素.南京:江苏科学技术出版社,1992
    145.Aelion C M and Shaw J N. Denitrification in south carolina (USA) coastal plain aquatic sediments. J Environ Qual.2000,29 (5):1696-1703
    146.Altom W, Rogers J L, Raun W R, et al. Long-term rye-wheat-ryegrass forage yields as affected by rate and date of applied nitrogen. J Prod Agric,1996,9 (4):510-516
    147.Amberger A. Research on dicyandiamide as a nitrification inhibitor and future outlook. Commun Soil Sci Plant Anal,1989,20 (19-20):1933-1955
    148.Asad A, Blarney F and Edwards D G. Effects of boron foliar applications on vegetative and reproductive growth of sunflower. Ann Bot (Lond),2003,92 (4): 565-570
    149.Avidano L, Gamalero E, Cossa G P, et al. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl Soil Ecol,2005,30 (1): 21-33
    150.Bellaloui N, Reddy K N, Gillen A M, et al. Nitrogen metabolism and seed composition as influenced by foliar boron application in soybean. Plant Soil,2010, 336(1):143-155
    151.Blackmer A M and Bremner J M. Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms. Soil Biol Biochem,1978,10 (3):187-191
    152.Bradshaw J, Davis D, Grodzinsky G, et al. Observed distributions of nitrogen oxides in the remote free troposphere from the NASA global tropospheric experiment programs. Rev Geophys,2000,38 (1):61-116
    153.Brasseur G P, Orlando J J and Tyndall G S. Atmospheric chemistry and global change. Oxford University Press,1999
    154.Breschini S J and Hartz T K. Presidedress soil nitrate testing reduces nitrogen fertilizer use and nitrate leaching hazard in lettuce production. Hortscience,2002,37 (7):1061-1064
    155.Breuer L, Kiese R and Butterbach-Bahl K. Temperature and moisture effects on nitrification rates in tropical rain-forest soils. Soil Sci Soc Am J,2002,66 (3): 834-844
    156.Broadbent F E and Carlton A B. Field trials with isotopically labeled nitrogen fertilizer. Nitrogen in the Environment,1978,1:1-41
    157.Brown P H, Bellaloui N, Wimmer M A, et al. Boron in plant biology. Plant Biol, 2002,4 (2):205-223
    158.Bucks D A. Historical development in microirrigation.1995. Proceedings Orlando, 1995:1-5
    159.Bucks D A, Nakayama F S and Warrick A W. Principles, practices, and potentialities of trickle (drip) irrigation. Adv irrig,1982,1:219-298
    160.Bundy L G and Bremner J M. Inhibition of nitrification in soils. Soil Sci Soc Am J, 1973,37 (3):396-398
    161.Byrnes B H. Environmental effects of n fertilizer use—an overview. Nutr Cycl Agroecosys,1990,26 (1):209-215
    162.Cakmak I and Romheld V. Boron deficiency-induced impairments of cellular functions in plants. Plant Soil,1997,193 (1):71-83
    163.Cakmak I, Yilmaz A, Kalayci M, et al. Zinc deficiency as a critical problem in wheat production in central anatolia. Plant Soil,1996,180 (2):165-172
    164.Cao Z H, Huang J F, Zhang C S, et al. Soil quality evolution after land use change from paddy soil to vegetable land. Environ Geochem Hlth,2004,26 (2):97-103
    165.Chen Z, Luo X Q, Hu R G, et al. Impact of Long-Term Fertilization on the Composition of Denitrifier Communities Based on Nitrite Reductase Analyses in a Paddy Soil. Microb Ecol,2010,60 (4):850-861
    166.Chen Z, Liu J B, Wu M N, et al. Differentiated Response of Denitrifying Communities to Fertilization Regime in Paddy Soil. Microb Ecol,2010,63 (2): 446-459
    167.Chen X, Zhang F, Romheld V, et al. Synchronizing N supply from soil and fertilizer and N demand of winter wheat by an improved Nmin method. Nutr Cycl Agroecosys, 2006,74 (2):91-98
    168.Chuan L, An Z, Du L, et al. Effects of urease/nitrification inhibitor on soil nitrogen leaching loss in loamy fluvo-aquic soil. Sci Sin,2011,2011:19
    169.Conrad R. Metabolism of nitric oxide in soil and soil microorganisms and regulation of flux into the atmosphere. NATO ASI SERIES I GLOBAL ENVIRONMENTAL CHANGE.1996,39:167-204
    170.Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev,1996,60 (4):609-640
    171.Cornforth I S and Chesney H A D. Nitrification inhibitors and ammonia volatilization. Plant Soil,1971,34(1):497-501
    172.Cregan P D and Scott B J. Soil acidification-an agricultural and environmental problem. Agri enviro imper,1998:98-128
    173.Cui M, Sun X, Hu C, et al. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide. J Soils Sediments.2011, (11):722-730
    174.Das K, Dang R, Shivananda T N, Sur P. Interaction between phosphorus and zinc on the biomass yield and yield attributes of the medicinal plant stevia (stevia rebaudiana). Sci World J,2005,5:390-395
    175.De B W, Tietema A, Gunnewiek P, et al. The chemolithotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to ph-dependent nitrifying activity. Soil Biology and Biochemistry,1992,24 (3):229-234
    176.Deiglmayr K, Philippot L, Hartwig U A, et al. Structure and activity of the nitrate-reducing community in the rhizosphere of lolium perenne and trifolium repens under long-term elevated atmospheric pCO2. Fems Microbiol Ecol,2004,49 (3): 445-454
    177.Delgado J A and Mosier A R. Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux. J Environ Qual, 1996,25(5):1105-1111
    178.Di H J and Cameron K C. Calculating nitrogen leaching losses and critical nitrogen application rates in dairy pasture systems using a semi-empirical model. New Zeal J Agr Res,2000,43(1):139-147
    179.Di H J and Cameron K C. The use of a nitrification inhibitor, dicyandiamide (dcd), to decrease nitrate leaching and nitrous oxide emissions in a simulated grazed and irrigated grassland. Soil Use Manage,2002,18 (4):395-403
    180.Di H J and Cameron K C. Mitigation of nitrous oxide emissions in spray-irrigated grazed grassland by treating the soil with dicyandiamide, a nitrification inhibitor. Soil Use Manage,2003,19 (4):284-290
    181.Di H J and Cameron K C. Reducing environmental impacts of agriculture by using a fine particle suspension nitrification inhibitor to decrease nitrate leaching from grazed pastures. Agric Ecosyst Environ,2005,109 (3):202-212
    182.Di H J and Cameron K C. Nitrate leaching losses and pasture yields as affected by different rates of animal urine nitrogen returns and application of a nitrification inhibitor-a lysimeter study. Nutr Cycl Agroecosys,2007,79 (3):281-290
    183.Dobbie K E, Mctaggart I P and Smith K A. Nitrous oxide emissions from intensive agricultural systems:variations between crops and seasons, key driving variables, and mean emission factors. J Geophys Res,1999,104 (D21):26891-26899
    184.Dordas C. Foliar boron application improves seed set, seed yield, and seed quality of alfalfa. Agron J,2006,98 (4):907-913
    185.Dordas C. Apostolides G E and Goundra O. Boron application affects seed yield and seed quality of sugar beets. Neth J Agric Sci,2007,145 (4):377
    186.Duggin J A, Voigt G K and Bormann F H. Autotrophic and heterotrophic nitrification in response to clear-cutting northern hardwood forest. Soil Biology and Biochemistry, 1991,23 (8):779-787
    187.Ehdaie B, Merhaut D J, Ahmadian S, et al. Root system size influences water-utrient uptake and nitrate leaching potential in wheat. J Agron Crop Sci,2010,196 (6): 455-466
    188.Enwall K, Philippot L and Hallin S. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microb,2005,71 (12):8335-8343
    189.Fang Y, Wang L, Xin Z, et al. Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China. J Agr Food Chem,2008,56 (6):2079-2084
    190.FAO. Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land. Rome:published by InternationalFertilizer Industry Association,2001:1-84
    191.Ferm M. Atmospheric ammonia and ammonium transport in europe and critical loads: a review. Nutr CyclAgroecosys,1998,51 (1):5-17
    192.Fink M and Scharpf H C. N-expert-a decision support system for vegetable fertilization in the field. ISHSActa Horticulturae,1992,67-74
    193.Firestone M K, Davidson E A, Andreae M O, et al. Microbiological basis of no and N2O production and consumption in soil. In:Exchange of trace gases between terrestrial ecosystems and the atmosphere.1989,7-21
    194.Flipse Jr W J, Katz B G, Lindner J B, et al. Sources of nitrate in ground water in a sewered housing development, central long island, New York. Ground Water,1984, 22 (4):418-426
    195.Foreman J K and Goodhead K, The formation and analysis of N—nitrosamines. J Sci Food Agr,1975,26(11):1771-1783
    196.Frye W W, Graetz D A, Locascio S J, et al. Dicyandiamide as a nitrification inhibitor in crop production in the southeastern USA. Commun Soil Sci Plant Anal,1989,20 (19-20):1969-1999
    197.Fu B J, Meng Q H, Qiu Y, et al. Effects of land use on soil erosion and nitrogen loss in the hilly area of the loess plateau, China. Land Degrad Dev,2004,15 (1):87-96
    198.Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles:past, present, and future. Biogeochemistry,2004,70 (2):153-226
    199.Gasche R, Papen H, Butterbach-Bahl K, et al. Barometric process separation:new method for quantifying nitrification, denitrification, and nitrous oxide sources in soils. Soil Sci Soc Am J,1999,63 (1):117-128
    200.Gioacchini P, Nastri A, Marzadori C, et al. Influence of urease and nitrification inhibitors on n losses from soils fertilized with urea. Biol Fert Soils,2002,36 (2): 129-135
    201.Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major chinese croplands. Science,2010,327 (5968):1008-1010
    202.Gupta A P. Micronutrient status and fertilizer use scenario in india. J Trace Elem Med Bio,2005,18 (4):325-331
    203.Gustafson A, Fleischer S and Joelsson A. A catchment-oriented and cost-effective policy for water protection. Ecol Eng,2000,14 (4):419-427
    204.Haack S K, Garchow H, Klug M J, et al. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl Environ Microb,1995,61 (4):1458-1468
    205.Hagin J and Lowengart A. Fertigation, state of the art. Proceeding No429. International Fertillier Society York, U K:International Fertilizer Society, 1999:1-23
    206.Hankinson T R and Schmidt E L. An acidophilic and a neutrophilic nitrobacter strain isolated from the numerically predominant nitrite-oxidizing population of an acid forest soil. Appl Environ Microb,988,54 (6):1536-1540
    207.Hartz T K, Bendixen W E and Wierdsma L. The value of presidedress soil nitrate testing as a nitrogen management tool in irrigated vegetable production. Hortscience, 2000,35 (4):651-656
    208.He F, Jiang R, Chen Q, et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in northern China. Environ Pollut,2009,157 (5):1666-1672
    209.Heckman J R, Morris T, Sims J T, et al. Pre-sidedress soil nitrate test is effective for fall cabbage. Hortscience,2002,37 (1):113-117
    210.Hills FJ, Broadbent FE, Lorenz OA. Fertilizer nitrogen utilization by corn,tomato or sugarbeet. Agron J,1983,75:423-426
    211.Hou A, Akiyama H, Nakajima Y, et al. Effects of urea form and soil moisture on N2O and no emissions from japanese andosols. Chemosphere-Global Change Science, 2000,2 (3-4):321-327
    212.Hou, Q S. and Zhang, Y D. Study on effects of magnesium, zinc, and boron in the production of fluo-cured tobacco. Soils (in Chinese),1997,30 (3):149-151
    213.Huang S, Pant H K and Lu J. Effects of water regimes on nitrous oxide emission from soils. Ecol Eng,2007,31 (1):9-15
    214.Hu H F, Hu C X, Jie X L, et al. Effects of selenium on herbage yield, selenium nutrition and quality of alfalfa. J Food Agric Environ,2010,8 (2):792-795
    215.IPCC. Climate Change 2001:the Scientific Basis. Chap 4. Atmospheric Chemistry and Greenhouse Gases. Bracknell:IPCC.2001
    216.IPCC. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In:Climate Change 2007:The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.2007
    217.Irigoyen I, Muro J, Azpilikueta M, et al. Ammonium oxidation kinetics in the presence of nitrification inhibitors dcd and dmpp at various temperatures. Soil Research,2003,41 (6):1177-1183
    218.Isermann K. Agriculture's share in the emission of trace gases affecting the climate and some cause-oriented proposals for sufficiently reducing this share. Environ Pollut, 1994,83 (1-2):95-111
    219.Iwai H, Hokura A, Oishi M, et al. The gene responsible for borate cross-linking of pectin rhamnogalacturonan-ii is required for plant reproductive tissue development and fertilization. Proc Natl Acad Sci India Sect B (Biol Sci),2006,103 (44): 16592-16597
    220. Jackson L E. Fates and losses of nitrogen from a nitrogen-15-labeled cover crop in an intensively managed vegetable system. Soil Sci Soc Am J,2000,64 (4):1404-1412
    221.Jego G, Martinez M, Antigiiedad I, et al. Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the stics soil—crop model. Sci Total Environ,2008,394 (2):207-221
    222.Ju X T, Kou C L, Christie P, et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the north China plain. Environ Pollut,2007,145 (2):497-506
    223.Kaiser B N, Gridley K L, Brady J N, et al. The role of molybdenum in agricultural plant production. Ann Bot-London,2005,96 (5):745-754
    224.Kaiser E A, Kohrs K, Kucke M, et al. Nitrous oxide release from arable soil: importance of N-fertilization, crops and temporal variation. Soil Biology and Biochemistry.1998,30(12):1553-1563
    225.Karaman M R T, Saltali K, Ersahin S, et al. Modeling nitrogen uptake and potential nitrate leaching under different irrigation programs in nitrogen-fertilized tomato using the computer program nleap. Environ Monit Assess,2005,101(1):249-259
    226.Klar A E, Fonseca I C B, Banderalli M et al. Fertigation in lettuce-use of soil fertilizer residue by maize. Hagin J. Dah lia greidinger international sympo sium on fertigation. Haifa, Israel:Technion 2HT,1995:297-302
    227.Krupa S V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation:a review. Environ Pollut,2003,124 (2):179-221
    228.Krusekopf H H, Mitchell J P, Hartz T K, et al. Pre-sidedress soil nitrate testing identifies processing tomato fields not requiring sidedress N fertilizer. Hortscience, 2002,37 (3):520-524
    229.Kusa K, Sawamoto T and Hatano R. Nitrous oxide emissions for 6 years from a gray lowland soil cultivated with onions in hokkaido, japan. Nutr Cycl Agroecosys,2002, 63 (2):239-247
    230.Lal R. Soil erosion on alfisols in western nigeria::iv. Nutrient element losses in runoff and eroded sediments. Geoderma,1976,16(5):403-417
    231.Langdale G W, Giddens J E and Harper L A. Nitrogen cycling in a wheat crop:soil, plant, and aerial nitrogen transport. Agron J,1987,79(6):965-973
    232.Liu H E, Hu C X, Sun X C, et al. Interactive effects of molybdenum and phosphorus fertilizers on photosynthetic characteristics of seedlings and grain yield of Brassica napus. Plant Soil,2010,326 (1-2):345-353
    233.Locascio S J, Smajstria A G. Fertilizer timing and panevapo ration scheduling for drip irrigated tomato. Lamm F R. Proceedings of the fifth international micro irrigation congress, Florida, USA:The Fifth International Microirrigation Congress.1995, 175-180
    234.Lorenz H P, Strohmeyer K and Rheinland-Pfalz. Ministerium Fur Landwirtschaft WUF. OrdnungsgemaBe stickstoffversorgung im freiland gemusebau nach dem kultur begleitenden nmin-sollwerte-(KNS)-system:kns-daten fur 38 gemusearten-145 anbauverfahren. Ministerium fur Landwirtschaft, Weinbau und Forsten Rheinland-Pfalz,1989
    235.Lu R K. The Principle of Soil-Plant Nutrition and Fertilization (in Chinese). Chemical Industrial Press, Beijing.1998
    236.Lund L J and Ryden J C. Nature and extent of directly measured denitrification losses from some irrigated vegetable crop production units. Soil Sci Soc Am J.1980,44 (3): 505-511
    237.Mack U D, Feger K H, Gong Y, et al. Soil water balance and nitrate leaching in winter wheat-summer maize double—cropping systems with different irrigation and n fertilization in the north China plain. J Plant Nutr Soil Sci,2005,168 (4):454-460
    238.Mahmood B. Analysis of a leachn-based management technique in predictive mode. Agr Water Manage,2005,75 (1):25-37
    239.Malzer G L, Kelling K A, Schmitt M A, et al. Performance of dicyandiamide in the north central states. Commun Soil Sci Plant Anal,1989,20 (19-20):2001-2022
    240.Martikainen P J and De B W. Nitrous oxide production and nitrification in acidic soil from a dutch coniferous forest. Soil Bio Bioche,1993,25 (3):343-347
    241.Mcswiney C P and Robertson G P. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (zea mays 1.) Cropping system. Global Change Biol,2005,11 (10):1712-1719
    242.Mendel R R and Hansch R. Molybdoenzymes and molybdenum cofactor in plants. J Exp Bot,2002,53 (375):1689-1698
    243.Mentzer J L, Goodman R M and Balser T C. Microbial response over time to hydrologic and fertilization treatments in a simulated wet prairie. Plant Soil,2006, 284(1):85-100
    244.Miller L G, Coutlakis M D, Oremland R S, et al. Selective inhibition of ammonium oxidation and nitrification-linked N2O formation by methyl fluoride and dimethyl ether. Appl Environ Microb,1993,59 (8):2457-2464
    245.Mishra S, Di H J, Cameron K C, et al. Gross nitrogen mineralisation rates in pastural soils and their relationships with organic nitrogen fractions, microbial biomass and protease activity under glasshouse conditions. Biol Fert Soils,2005,42 (1):45-53
    246.Montzka S A, Fraser P J and Butler J H. Controlled substances and other source gases. In:Scientific assessment of ozone depletion:2002. World Meteorological Organization, Geneva,2003:1.1-1.83
    247.Mummey D L, Smith J L and Bluhm G. Assessment of alternative soil management practices on N2O emissions from us agriculture. Agric Ecosyst Environ,1998,70 (1): 79-87
    248.Nabi G, Rafique E and Salim M. Boron nutrition of four sweet pepper cultivars grown in boron-deficient soil. J Plant Nutr,2006,29 (4):717-725
    249.Nagele W and Conrad R. Influence of soil ph on the nitrate-reducing microbial populations and their potential to reduce nitrate to no and N2O. Fems Microbiol Lett, 1990,74 (1):49-57
    250.Nie Z J, Hu C X, Sun X C, et al. Effects of molybdenum on ascorbate-glutathione cycle metabolism in chinese cabbage (brassica campestris 1. Ssp. Pekinensis). Plant Soil,2007,295(1):13-21
    251.Noordwijk M, Lawson G, Soumare A, et al. Root distribution of trees and crops: competition and/or complementarity. Tree-crop interaction:A physiological approach. 1996:319-364
    252.OECD. Developing a set of OECD agri-environmental indicators. Paris.1995,24
    253.Pandey N, Pathak G C and Sharma C P. Zinc is critically required for pollen function and fertilisation in lentil.J Trace Elem Med Bio,2006,20 (2):89-96
    254.Parris K. Agricultural nutrient balances as agri-environmental indicators:an oecd perspective. Environ Pollut,1998,102 (1):219-225
    255.Paul E A. Soil microbiology, ecology, and biochemistry. Academic Press,2007
    256.Ramaswamy V, Boucher O, Haigh J, et al. Radiative forcing of climate change.In: Climate Change 2001:The Scientific Basis. Contribution of Working Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton, J.T., et al. (eds.)), Cambridge University Press, New York, NY, United States (US).2001,349-416
    257.Rengel Z and Graham R D. Importance of seed zn content for wheat growth on zn-deficient soil. Plant Soil,1995,173 (2):259-266
    258.Rowe E C, Hairiah K, Giller K E, et al. Testing the safety-net role of hedgerow tree roots by 15 n placement at different soil depths. Agroforest Syst,1998,43 (1):81-93
    259.Ryden J C. Denitrification loss from a grassland soil in the field receiving different rates of nitrogen as ammonium nitrate. J Soil Sci,1983,34 (2):355-365
    260. Schroder J J, Aarts H, Ten B H, et al. An evaluation of whole-farm nitrogen balances and related indices for efficient nitrogen use. Eur J Agron,2003,20 (1-2):33-44
    261.Schwarz G and Mendel R R. Molybdenum cofactor biosynthesis and molybdenum enzymes. Annu Rev Plant Biol,2006,57:623-647
    262.Smith K A and Conen F. Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manage,2004,20 (2):255-263
    263.Song X Z, Zhao C X, Wang X L, et al. Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in northern China. C R Biol,2009,332 (4):385-392
    264.Stallmeyer B, Nerlich A, Schiemann J, et al. Molybdenum co-factor biosynthesis:the arabidopsis thaliana cdna cnxl encodes a multifunctional two-domain protein homologous to a mammalian neuroprotein, the insect protein cinnamon and three escherichia coli proteins. The Plant Journal.1995,8 (5):751-762
    265.Stevenson F J. Nitrogen in agricultural soils. American Society of Agronomy,1982
    266.Stevenson F J and Cole M A. The phosphorus cycle. Cycles of soil carbon, nitrogen, phosphorus, sulfur micronutrients.1986,250
    267.Stevenson F J and Cole M A. Cycles of soil:carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley Sons Inc,1999
    268.Stout W L. Effect of urine volume on nitrate leaching in the northeast USA. Nutr Cycl Agroecosys.2003,67 (2):197-203
    269.Stuelpnagel R. Intercropping of faba beans (vicia faba 1.) With oats or spring wheat. 1992,44
    270.Taber H G. Petiole sap nitrate sufficiency values for fresh market tomato production. J Plant Nutr,2001,24 (6):945-959
    271.Thorup-Kristensen K. Effect of deep and shallow root systems on the dynamics of soil inorganic n during 3-year crop rotations. Plant Soil,2006,288(1):233-248
    272.Thorup-Kristensen K, Magid J and Jensen L S. Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron,2003,79: 227-302
    273.Tickes B R, Ottman M J and Husman S H. Nitrogen-15 and bromide tracers of nitrogen fertilizer movement in irrigated wheat production. J Environ Qual,2000, 29(5):1500-1508
    274.Van Beek C L, Brouwer L and Oenema O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutr Cycl Agroecosys,2003,67(3):233-244
    275.Van Egmond K, Bresser T and Bouwman L. The european nitrogen case. AMBIO:A Journal of the Human Environment,2002,31(2):72-78
    276.Vos J and Van Der Putten P. Field observations on nitrogen catch crops. Ⅰ. Potential and actual growth and nitrogen accumulation in relation to sowing date and crop species. Plant Soil,1997,195(2):299-309
    277.Vos J, Van Der P P, Hassan H M, et al. Field observations on nitrogen catch crops. Plant Soil,1998,201(1):149-155
    278.Wallenstein M D, Myrold D D, Firestone M, et al. Environmental controls on denitrifying communities and denitrification rates:insights from molecular methods. Ecol Appl,2006,16(6):2143-2152
    279. Wang Y, Xue M, Zheng X, et al. Effects of environmental factors on N2O emission from and ch4 uptake by the typical grasslands in the inner mongolia. Chemosphere, 2005,58(2):205-215
    280.Wehrmann J V and Scharpf H C. Mineral nitrogen in soil as an indicator for nitrogen fertilizer requirements (Nmin-method). Plant Soil,1979,52(1):109-126
    281.Weier K L, Macrae I C and Myers R. Denitrification in a clay soil under pasture and annual crop:estimation of potential losses using intact soil cores. Soil Biology and Biochemistry,1993,25(8):991-997
    282.Wolfe A H and Patz J A. Reactive nitrogen and human health:acute and long-term implications. AMBIO:A Journal of the Human Environment,2002,31(2):120-125
    283.Wyland L J, Jackson L E and Schulbach K F. Soil-plant nitrogen dynamics following incorporation of a mature rye cover crop in a lettuce production system. J Agric Sci, 1995,124:17
    284.Xi Z B. Approach to slow release nitrogen fertilizer and its agrochemical evaluation. Phosphate and Compound Fertilizer,2003,18(5):1-5
    285.Xing G X and Zhu Z L. Regional nitrogen budgets for China and its major watersheds. Biogeochemistry,2002,57(1):405-427
    286.Xu X, Zhou L, Van Cleemput O, et al. Fate of urea-15N in a soil-wheat system as influenced by urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide. Plant Soil,2000,220(1):261-270
    287.Yang M, Shi L, Xu F S, et al. Effects of b, mo, zn, and their interactions on seed yield of rapeseed (brassica napus 1.). Pedosphere,2009,19(1):53-59
    288.Yu C L, Luo S G, Peng X L, et al. Effects of boron, zinc, and iron on the gentiopicroside content and yield of gentian. Pedosphere,2006,16(2):210-214
    289.Yu H, Li Z, Gong Y, et al. Water drainage and nitrate leaching under traditional and improved management of vegetable—cropping systems in the north China plain. J Plant Nutr Soil Sci,2006,169 (1):47-51
    290.Zaman M and Blennerhassett J D. Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system. Agric Ecosyst Environ,2010,136 (3):236-246
    291.Zerulla W, Barth T, Dressel J, et al.3,4-dimethylpyrazole phosphate (dmpp)-a new nitrification inhibitor for agriculture and horticulture. Biol Fert Soils,2001,34 (2): 79-84
    292.Zhang H H, He P J and Shao L M. Ammonia volatilization, N2O and CO2 emissions from landfill leachate-irrigated soils. Waste Manage,2010,30 (1):119-124
    293.Zhang M, Wang L and He Z. Spatial and temporal variation of nitrogen exported by runoff from sandy agricultural soils. J Environ Sci (China),2007,19 (9):1086-1092
    294.Zhao C, Hu C, Huang W, et al. A lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetable production systems in central China. J Soils Sediments,2010,10(1):9-17
    295.Zhao X M, Chandra F M and Kaluli J. Corn yield and fertilizer n recovery in water-table-controlled corn-rye-grass. Eur JAgron,2000,12:83-92
    296.Zheng X, Fu C, Xu X, et al. The asian nitrogen cycle case study. AMBIO:A Journal of the Human Environment,2002,31(2):79-87
    297.Zheng X, Han S, Huang Y, et al. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from chinese croplands. Global Biogeochem Cycles,2004,18(2):B2018
    298.Zhu A, Zhang J, Zhao B, et al. Water balance and nitrate leaching losses under intensive crop production with ochric aquic cambosols in north China plain. Environ Int,2005,31(6):904-912
    299.Zhu D W, Huang Y, Jin Z Q, et al. Nitrogen management evaluated by models combined with gis-a case study of jiangsu croplands in 2000.Sci Sin,2008,41(5): 1373-1382
    300.Zhu J H, Li X L, Christie P, et al. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (capsicum frutescens 1.) Cropping systems. Agric Ecosyst Environ,2005,111(1-4):70-80
    301.Zhu Z L and Chen D L. Nitrogen fertilizer use in China—contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosys,2002,63(2):117-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700