用户名: 密码: 验证码:
近空间飞行器非线性容错控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近空间飞行器(NSV)的发展关系着国家安全和对空间的开发利用能力,具有重要的战略意义和军事价值,近年来获得了世界各军事大国的高度重视和大力投入。NSV是一种新型的航空航天飞行器,在运行中表现出多工作模式、多任务、大范围高速机动等特点,对飞行安全性与可靠性提出了更高的要求,使其控制系统的可靠性设计成为一项极具挑战的前沿课题。基于此难点和挑战,本文围绕这一基础科学问题,在近空间飞行器动态建模,故障建模与分析,可靠容错控制器设计等方面展开了较为全面的研究,基于先进非线性控制理论系统而深入地研究了NSV的故障诊断与容错控制问题。
     首先,根据国内外已公开发表的文献资料建立了NSV高超声速飞行条件下6自由度12状态变量的运动学和动力学模型。该模型的高超音速特征体现在气动力、力矩系数是迎角,马赫数及气动舵面偏转角的非线性函数,飞行器的质心和惯性矩是质量的时变函数,发动机模型采用吸气式发动机和火箭发动机的组合推进形式。开环系统仿真分析表明该模型能够体现出NSV复杂非线性、强耦合性、不确定性以及快速时变性等特点,具有代表意义,可以满足对NSV飞控系统进行先进容错控制问题的理论研究及仿真验证的需要。
     然后,基于NSV动态模型研究了发生故障情况下的系统特征。根据飞控系统的特点,概括分析了其可能发生的故障类型:执行器故障,传感器及系统故障,及各种故障类型的参数表达式。针对飞行控制系统最常见和重要的执行器故障,考察了各气动舵面之间的冗余关系,分析了单故障及多故障并发模式下控制舵面的操纵问题,进而建立了NSV的故障数学模型,为故障诊断算法与容错控制器的设计奠定了基础。
     接着,基于模糊Takagi-Sugeno(T-S)逼近理论,在全面分析NSV高速巡航段纵向模型特点的基础上,确定相应的模糊规则和隶属度函数,建立了NSV纵向动态模型的模糊T-S模型。然后,考虑执行器发生故障的情况,提出了一种基于滑模观测器(SMO)思想的执行器故障诊断与容错控制方法。设计了一组滑模观测器,利用滑模观测器的输出与执行器的实际输出构造包含故障信息的残差信号用于检测故障,同时对故障估计作了进一步的研究,利用估计到的故障信息来调节故障,重构控制器。所设计的参数借助MATLAB的线性矩阵不等式(LMI)来求解,并基于Lyapunov理论证明了闭环系统所有误差信号均能以指数形式收敛到零。仿真验证结果表明,所提算法能有效地实现故障的检测、估计,并达到了容错控制的目标。
     随后,提出了一种基于自适应观测器思想的故障诊断与容错控制策略来处理近空间飞行器的执行器故障问题。基于NSV纵向模糊T-S模型设计自适应故障诊断观测器(AFDO),定义AFDO的输出和实际系统输出误差的范数作为残差来检测故障。进一步,研究了执行器失效故障,常值故障,时变故障等情况下的各种自适应故障估计算法,基于诊断到的故障信息,分别设计了容错控制器来补偿执行器故障对系统性能的影响。AFDO的增益矩阵通过求解线性矩阵不等式得到,故障估计参数采用自适应律调节,基于Lyapunov理论证明了误差系统的稳定性。最后,在NSV纵向模型平台上进行算法验证,结果表明所设计的方法不但可以及时地检测出故障,准确地估计故障,而且可以达到较好的容错控制性能。
     之后,利用神经网络(NN)对未知非线性函数的良好逼近能力,与Backstepping控制思想结合提出了一种新的鲁棒自适应容错控制结构。考虑设计Backstepping控制器,在此基础上利用径向基神经网络来逼近未知非线性不确定及故障项,设计自适应调节律来获取神经网络的参数,进而可以在Backstepping控制器中补偿不确定及故障的影响,改善系统性能。基于Lyapunov理论对自适应调节律作用下的闭环系统所有误差信号的最终有界性进行了严格地证明。上述方案在NSV再入姿态模型平台上进行了仿真验证,结果表明所设计的算法不仅可以容忍和补偿故障,而且对系统不确定性具有鲁棒性,具有非常优异的控制性能。NN逼近和补偿策略使得当前Backstepping方法获得了很大的发展,同时该方法具有广泛的适用性。
     最后,提出了一种基于滑模变结构控制技术的容错跟踪控制方法。滑模变结构控制器的不连续性特点使其能够克服被控系统的不确定性,对非线性系统的控制具有良好的控制效果。本文结合NSV再入姿态模型的特点,研究了基于奇异摄动理论构造快、慢回路并分步设计的策略,针对带有执行机构故障的快变量回路和带有不确定干扰的慢变量回路,分别构造滑模面来设计鲁棒容错控制器,使得所设计的全局控制器不但能渐近调节系统执行器故障所造成的影响,而且具有对不确定性干扰因素的不变性,即具有容错性能和鲁棒性,应用李亚普诺夫理论证明了误差系统在所设计的容错控制策略作用下的稳定性。仿真结果表明所提方法能抑制不确定,调节故障,从而准确跟踪状态轨迹和实现整体稳定,且具有较大的应用价值。
Near space vehicle (NSV) plays an important role on national military security and theexploitation of space, and it have attracted more and more attention from many countries in the world.The NSV shows some unique characteristics during its operation, such as, multi-flighing states,multi-tasking modes, large flight envelop and so on. Moreover, the especial and complex flightenvironment makes it a challenging problem to guarantee its security and reliability. Thus, the faulttolerant control design for NSV flight control system is an innovative and challenging topic. In thisdissertation, it carries on some investigations in NSV dynamical modeling and faulty modelinganalysis, and it mainly focuses on the fault diagnosis and fault tolerant control design for NSV controlsystem based on advanced nonlinear control.
     First, the flight motion nonlinear model of NSV with six degrees of freedom and twelve statevariables is established and analyzed. The coefficients of aerodynamic force and moment arepresented as nonlinear fuctions of Mach number, angle of attack, and control surface deflections, andthe moment of inertia and center of gravity are functions of the vehicle’s weight. The propulsiondevice uses the combination of athodyd and rocket engine. The state responses of open-loop dynamicsindicate that the presented model can describe the characteristics of NSV. Thus, the model can be usedas the theoretical analysis and simulation platform.
     Then, all the possible fault types of flight control system, including actuator fault, sensor faultand system fault, are presented and analyzed, and the characteristics of faulty models are provided inthe form of parameterized model. Otherwise, the control allocation problem of NSV dynamics isanalyzed, and actuator fault modes are also introduced. It makes a contribution to designing faultdiagnosis scheme and fault tolerant control.
     Next, a T-S fuzzy model for the nonlinear dynamics of NSV is established based on T-S fuzzymodeling technique, by selecting proper fuzzy rules and operation points. Then, a fault tolerantcontrol (FTC) strategy is proposed for NSV with actuator fault using sliding mode observer technique,and a set of sliding mode observers are designed to generate residuals which contain the faultinformation. Then, a novel fault diagnostic algorithm is given to estimate the actuator fault occurred.Utilizing the obtained on-line fault estimation information, a fault accommodation scheme isdeveloped to compensate for the effects of actuator fault. Based on Lyapunov stability theory, asufficient condition to guarantee the stability of closed-loop system is derived in terms of linearmatrix inequalities (LMIs), which can be easily solved by Matlab LMI toolbox. Finally, simulationresults are presented to demonstrate the efficiency of the proposed approach.
     Later, a fault diagnosis and active FTC approach is investigated based on adaptive methodology to deal with actuator fault problem of NSV. An adaptive fault diagnosis observer (AFDO) is firstdesigned, the residual is defined as the norm of the output error between AFDO and actual system todetect the actuator fault, and an adaptive fault estimation algorithm is proposed to estimate the fault. Afeasible adaptive algorithm is explored and it is shown that observer parameters can be obtained bysolving LMIs. An active FTC is designed by utilizing the diagnostic fault information to compensatefor the loss of actuator effectiveness. Finally, simulation results on the longitudinal model of NSV arepresented to demonstrate that the proposed approach not only can detect and estimate the faultefficiently, but also accommodate and tolerate the fault.
     Further, a FTC scheme based on backstepping and neural network (NN) methodology isproposed for NSV attitude dynamical model. The linearly parameterized radial basis function (RBF)NNs are employed to approximate unknown system faults and disturbance respectively, and thenetwork weights are adapted using adaptive on-line parameter-learning algorithms. Then an adaptivebackstepping based FTC is designed to compensate for the effect of system faults. The asymptoticalstability of the closed-loop system and uniform boundedness of the state tracking errors are provedaccording to Lyapunov theory. Finally, the designed strategy is applied to NSV attitude dynamics, andsimulation results are presented to demonstrate that the proposed approach can compensate for theeffects of both fault and uncertainties. The implantation of NN expands the applications ofbackstepping method.
     Finally, a robust tracking FTC scheme based on adaptive sliding mode technique is proposed. Amodified sliding model tracking control approach, using a continuous strategy of integral slidingmode control (SMC), is designed to improve the position tracking precision. This scheme can solvethe chattering problem without loss of robustness and control accuracy. The SMC is robust tounmeasurable uncertainties and disturbances, and the actuator fault is compensated for by an integralaction term. The stability of the closed-loop system is proved according to Lyapunov theory. To verifythe effectiveness and application value of the proposed control scheme, a numerical simulation isperformed on NSV attitude system in re-entry mode. Simulation results demonstrate that the systemhas good tracking performance in spite of the actuator fault and system disturbances.
引文
[1]国家自然科学基金委.国家自然科学基金重大研究计划“近空间飞行器的关键基础科学问题”.2009年度学术交流文集.
    [2]崔尔杰.近空间飞行器研究发展现状及关键技术问题[J].力学进展,2009,39(6):658-673.
    [3] Marcel M J, Baker J. Interdisciplinary Design of a Near Space vehicle [C]. Southeastcon,Proceedings of IEEE,2007:421-426.
    [4] Wallace C, Byrd W, Hauber E. Stratolink Giving Students of all Ages Access to Near Space [C].Space2004Conference and Exhibit, San Diego, CA,2004:1-7.
    [5] Schmidt D K. Modeling and near-space stationkeeping control of a large high-altitude airship [J].Journal of Guidance, Control and Dynamic,2007,30(2):540-547.
    [6] Young M, Keith S. An overview of advanced concepts for near-space systems [C]. The45thAIAA/ASME/SAE/ASEE Jiont Propulsion Conference&Exhibit, Colprado, USA, AIAA2009-4805:1-18.
    [7]王亚飞,安永旺,杨继何.临近空间飞行器的现状及发展趋势[J].国防技术基础,2010,1:33-37.
    [8]王彦广,李健全,李勇等.近空间飞行器的特点及其应用前景[J].航天器工程,2007(1).
    [9]尹志忠,李强.近空间飞行器及其军事应用分析[J].装备指挥技术学院学报,2006(5).
    [10]李焱,才满瑞,佟艳春.临近空间飞行器的种类及军事应用[J].中国航天,2007,10:39-44.
    [11]李怡勇,沈怀荣.发展近空间飞行器系统的关键技术[J].装备指挥技术学院学报,2006,17(5):52-55.
    [12] Shaughnessy J D, Pinckney S Z, McMinn J D, et al. Hypersonic vehicle simulation model:winged-cone configuration [R]. Langley Research Center,1990, NASA TM-102610.
    [13] Gregory Irene M, Chowdhry Rajiv S, Mcminn John D, Shaughnessy John D. Hypersonicvehicle model and control law development using H(infinity) and micron synthesis [R]. LangleyResearch Center,1994, NASA-TM-4562.
    [14]王鑫,阎杰,于云峰.高超声速天地往返飞行器研究[J].测控技术,2006,25(7):83-86.
    [15] Chavez F R, Schmidt D K. Analytical aeropropulsive/aeroelastic hypersonic vehicle model withdynamic analysis [J]. Journal of Guidance, Control, and Dynamics,1994,17(6):1308-1319.
    [16] Clark A, Wu C, Mirmirani M, et al. Development of an airframe propulsion integrated generichypersonic vehicle model [C]. Proceed2ings of AIAA Aerospace Sciences Meeting and Exhibit,Reno, Nevada,2006.
    [17] Buschek H, Calise A J. Uncertainty modeling and fixed-order controller design for a hypersonicvehicle model [J]. Journal of Guidance, Control, and Dynamics,1997,20(1):42-48.
    [18]吴宏鑫,孟斌.高超声速飞行器控制研究综述[J].力学进展,2009,39(6):756-765.
    [19]朱云骥,史忠科.高超声速飞行器飞行特性和控制的若干问题[J].飞行力学,2005,23(3):5-8.
    [20] Veillette R J, Medanic J V, Perkins W R. Design of reliable control systems [J]. IEEE Trans. OnAutomatic Control,1992,37(3):290–300.
    [21] Dhayagude N, Gao Z Q. Novel approach to reconfigurable control systems design [J]. JournalGuidance, Engineering Notes,1996,19(4):963-967.
    [22] Yang Y, Yang G H, Soh Y C. Reliable control of discrete-time systems with actuator failure [J].IEE Proc. Control Theory and Applications,2000,147(4):428-432.
    [23] Banda S. Special issue on reconfigurable flight control [J]. International Journal of Robust andNonlinear control,1999,9(14):997-1115.
    [24] Huzmezan M, Maciejowski J M. Reconfigurable flight control during actuator failures usingpredictive control [C]. Proceedings of the14th Triennial World Congress of IFAC. Beijing, China,1999.
    [25] Steinberg M. Historical overview of research in reconfigurable flight control [C]. Proceedings ofthe Institution of Mechanical Engineers, Part G (Journal of Aerospace Engineering),2005,219(4):263-275.
    [26] Liao F, Wang J L, Yang G H. Reliable robust flight tracking control: An LMI approach [J]. IEEETransactions on Control Systems Technology,2002,10(1):76-89.
    [27] Patton R.et al. Fault diagnosis in dynamic systems [M]. New York: Prentice Hall,1989.
    [28] Blanke M, Kinnaert M, Lunze J, et al. Diagnosis and fault-tolerant control [M]. Springer-VerlagBerlin Heidelberg,2006.
    [29]周东华,孙优贤,控制系统的故障检测与诊断技术[M],清华大学出版社,1994.
    [30]姜斌,冒泽慧,杨浩,张友民.控制系统的故障诊断与故障调节[M].北京:国防工业出版社,2009.
    [31]邢琰,吴宏鑫,王晓磊,李智斌.航天器故障诊断与容错控制技术综述[J].宇航学报,2003,24(3):221-226.
    [32]闻新,张洪钺,周露.控制系统的故障诊断和容错控制[M].北京:机械工业出版社,1998.
    [33]张登峰王执铨孙金生.控制系统故障诊断的理论与技术[J].数据采集与处理,2002,17(3):293-299.
    [34] Jiang Bin, Staroswiecki Marcel, Cocquempot Vincent. Fault Diagnosis Based on AdaptiveObserver for a Class of Nonlinear Systems with Unknown parameters [J]. Int. J. Control,2004,77(4):415-426.
    [35] Mehra R.K., Peschon J. An innovation approach of fault detection and diagnosis in dynamics [J].Automatica,1971,7(5):637-640.
    [36] Hammouri H, Kinnaert M, and Yaagoubi E.H.E. Observer based approach to fault detection andisolation for nonlinear systems [J]. IEEE Trans. On Automatic Control,1999,44:1879-1884.
    [37] Staroswiecki M, Comtet-Varga G. Analytical redundancy relations for fault detection and isolationin algebraic dynamic systems [J]. Automatica,2001,37:687-699.
    [38] Chen Wen, Saif Mehrdad. Observer-Based Fault Diagnosis of Satellite Systems Subject toTime-Varying Thruster Faults [J]. Transactions of the ASME,2007,129:352-356.
    [39] Chen W, Saif M. Observer-based strategies for actuator fault detection, isolation and estimationfor certain class of uncertain nonlinear systems [J]. IET Control Theory Application,2007,1,(6):1672–1680.
    [40] Chen W, Saif M. A Variable Structure Adaptive Observer Approach for Actuator Fault Detectionand Diagnosis in Uncertain Nonlinear Systems [C]. Proc. of Amer. Contr. Conference, Chicago,2000:2674–2678.
    [41] Chen W, Saif M. Fault Detection and Accommodation in Nonlinear Time-Delay Systems [C].Proc. of American Control Conference, Omnipress, Madison,2003,5:4255–4260.
    [42] Chen Weitian, Saif Mehrdad. Novel Sliding Mode Observers for a Class of Uncertain Systems [C].Proceedings of the2006American Control Conference, Minneapolis, Minnesota, USA,2006,pp.2622-2627.
    [43] Edwards C, Spurgeon S K, Patton R J. Sliding Mode Observer for Fault Detection and Isolation[J]. Automatica,2000,36(4):541-553.
    [44] Edwards C, Spurgeon S K, Patton RJ. Sliding Mode Observers for Fault Detection and Isolation[J]. Automatica,2000,36:541-553.
    [45] Edwards C, Spurgeon S K. On the Development of Discontinuous Observers [J]. InternationalJournal of Control,1994,59:1211-1229.
    [46] Isermann R. Model-based fault-detection and diagnosis-Status and applications [J]. AnnualReviews in Control,2005,29(1):71–85.
    [47] Gertler J J. Survey of model-based failure detection and isolation in complex plants [J]. IEEEControl Systems Magazine,1998,8:3-11.
    [48] Marcos A, Ganguli S, Balas G J. An application of H∞fault detection and isolation to a transportaircraft [J]. Control Engineering Practice,2005,13:105-119.
    [49] Guo Y Y, Jiang B, Zhang Y M, Wang J F. Novel robust fault diagnosis method for flight controlsystems [J]. Journal of Systmes Engineering and Electronics,2008,19(5):1017-1023.
    [50] Deyst J J, Harrison J V, Gai E, et al. Fault detection, identification and reconfiguration forspacecraft systems [J]. Journal of the Astronautical Sciences,1981,29:113-26.
    [51] Isermann R. Fault-diagnosis systems, an introduction from fault detection to fault tolerance [M].Springer-Verlag, Berlin Heidelberg,2006.
    [52] Jiang B, Wang J L, Soh Y C. Robust fault diagnosis for a class of linear systems with uncertainty[J]. Journal of Guidance, Control and Dynamics,1999,22:736-740.
    [53]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
    [54] Frank P.M., Fault diagnosis in dynamic systems using analytical and knowledge-bases redundancy:A survey and some new results [J]. Automatica,1990,26(3):459-474.
    [55] M. M. Polycarpou and A. T. Vemuri. Learning methodology for failure detection andaccommodation [J]. IEEE Control System Magazine,1995,15(3):16-24.
    [56] Polycarpou M M. Fault accommodation of a class of multivariable nonlinear dynamical systemsusing a learning approach [J]. IEEE Transactions on Automatic Control,2001,46(5):736-742.
    [57]赵瑾,顾幸生,申忠宇.基于观测器的故障诊断技术的鲁棒性[J].控制与决策,2005,20(8):939-942.
    [58] Isermann R, Balle P. Trends in the application of model-based fault detection and diagnosis oftechnical processes [J]. Control Engineering Practice,1997,5:709-719.
    [59] Chen J, Patton R J. Robust Model-based Fault Diagnosis for Dynamic Systems [M]. Boston, MA:Kluwer Academic Publishers,1999.
    [60] Hao Yang, Bin Jiang, Vincent Cocquempot. Fault tolerant control design for hybrid systems [M].Paris: Springer Verlag,2010.
    [61] Blanke M, Kinnaert M, Lunze J, Staroswiecki M. Diagnosis and fault-tolerant control [M].Springer, Verlag, Berlin,2006.
    [62] Yen G G, Ho L W. Online multiple-model-based fault diagnosis and accommodation [J]. IEEETrans. Industrial Electronics,2003,50(2):296-312.
    [63] Marcel Staroswiecki, Hao Yang, and Bin Jiang, Active fault tolerant control based on progressiveaccommodation [J]. Automatica,2007,43(12),2070-2076.
    [64] Jiang Bin, Wang Jianliang, Soh Yengchai. An adaptive technique for robust diagnosis of faultswith independent effect on system outputs [J]. Int. J. of Control,2002,75(11),792-802.
    [65] Jiang Bin, Zhang Ke, Shi Peng. Integrated Fault Estimation and Accommodation Design forDiscrete-Time Takagi-Sugeno Fuzzy Systems with Actuator Faults [J]. IEEE Trans. On FuzzySystems,2010, accepted for publication (regular paper)
    [66] Jiang Bin, Chowdhury Fahmida. Fault estimation and accommodation for linear MIMOdiscrete-time Systems [J]. IEEE Trans. On Control Systems Technology,2005,13(3):493-499.
    [67] Zhou Kemin. A new approach to robust and fault tolerant control [J]. ACTA AUTOMATICASINICA,2005,31(1):43-55.
    [68] Blanke M, Staroswiecki M, Wu N.E. Concepts and methods in fault-tolerant control (Tutorial)[C].Proc.of ACC, Arlington, USA,2001.
    [69] Jiang B, Staroswiecki M, Cocquempot V. Fault Accommodation for Nonlinear Dynamic Systems[J]. IEEE Transactions on Automatic Control,2006,51(9):1578-1583.
    [70] Beard R V. Failure accommodation in linear systems through self-reorganization. ReportMVT-71-1, Man Vehicle Lab, MIT, Cambridge, Massachusetts,1971.
    [71] Xiaodong Zhang, Marios M. Polycarpou, Roger Xu, Chiman Kwan. Actuator Fault Diagnosis andAccommodation for Improved Flight Safety[C]. Proceeding of the2005IEEE InternationalSymposium on Intelligent Control, Limassol, Cyprus,2005:640-645.
    [72] Chen W, Jiang J. Fault-tolerant control against stuck actuator faults [J]. IEE Proceedings: ControlTheory and Applications,2005,152:138-146.
    [73] Zhang Y M, Jiang J. Active fault tolerant control system against partial actuator failures [J]. IEEProc. Control Theory Appl.,2002,149(1):95-104.
    [74] Bo kovi J D, Prasanth R K, Mehra R K. Reconfigurable fault-tolerant flight control: Ahgorithms,implementation and metrics [C]. AIAA Guidance, Navigation and Control Conference andExihibit, Keystone, Colorado,2006:1-24.
    [75] Cieslak J, Henry D, Zolghadri A. Development of an active fault-tolerant flight control strategy [J].Journal of Guidance, Control, and Dynamics,2008,31(1):135-147.
    [76] Chen W, Jiang J. Fault-tolerant control against stuck actuator faults [J]. IEE Proc.-Control TheoryApplication,2005,152(2):138-146.
    [77]孙富春,顾文锦.线性调节器鲁棒设计法[J].宇航学报,1991,1:41-49.
    [78] Nichols R A, Reichert R T, Rugh W J. Gain scheduling for H-infinity controllers: a flight controlexample [J]. IEEE Transactions on Control Systems Technology,1993,1(2):69-79.
    [79] Apkarian P, Adams R J. Advanced gain scheduling techniques for uncertain systems [J]. IEEETransactions on Control Systems Technology,1998,6(1):21-32.
    [80] Stilwell D J. State-space interpolation for a gain-scheduled autopilot [J]. Journal of Guidance,Control, and Dynamics,2001,24(3):460-465.
    [81] Huzmezan M, Maciejowski J M. Reconfiguration and scheduling in flight using quasi-LPVhigh-fidelity models and MBPC control [C]. Proceedings of the American Control Conference.Philadelphia, USA,1998.
    [82] Ashari A E, Sedigh A K, Yazdanpanah M J. Reconfigurable control system design usingeigenstructure assignment: static, dynamic and robust approaches [J]. International Journal ofControl,2005,78(13):1005-1016.
    [83] Jiang J. Design of reconfigurable control systems using eigenstructure assignments [J].International Journal of Control,1994,59(2):395-410.
    [84] Lohsoonthorn P, Jonckheere E, Dalzell S. Eigenstructure vs constrained H∞design for hypersonicwinged cone [J]. Journal of Guidance, Control, and Dynamics,2001,24(4):648-658.
    [85] Konstantopoulos I, Antsaklis P. An eigenstructure assignment approach to control reconfiguration
    [C]. Proceedings of4th IEEE Mediterranean Symposium on Control and Automation. Greece,1996.
    [86] Zhang Y Y, Jiang J. Design of integrated fault detection, diagnosis and reconfigurable controlsystems [C]. Proceedings of the38th IEEE Conference on Decision and Control (CDC’99).Phoenix, Arizona, USA,1999.
    [87] Ye D, Yang G H. Adaptive fault-tolerant tracking control against actuator faults with applicationto flight control [J]. IEEE Transactions on Control Systems Technology,2006,14(6):1088-1096.
    [88] Zhang X D, Parisini T, Marios M P. Adaptive fault-tolerant control of nonlinear uncertain systems:an information-based diagnostic approach [J]. IEEE Trans. Automatic Control,2004,49(8):1259-1274.
    [89] Tang X T, Tao G, Joshi S M. Adaptive actuator failure compensation for parametric strictfeedback systems and an aircraft application [J]. Automatica,2003,39:1975-1982.
    [90] Schwager M, Annaswamy A M, Lavretsky E. Adaptation-based reconfiguration in the presence ofactuator failures and saturation [C]. Proceedings of American Control Conference, Portland, OR,USA, June8-10,2005:2640-2645.
    [91] Kuipers M, Mirmirani M, Ioannou P, Huo Y. Adaptive control of an aeroelastic air-breathinghypersonic cruise vehicle [C]. AIAA Guidance, Navigation and Control Conference and Exhibit,Hilton Head, South Carolina,2007.
    [92] Tao G, Joshi S M, Ma X L. Adaptive state feedback and tracking control of systems with actuatorfailures [J]. IEEE Transactions on Automatic Control,2001,46(1):78-95.
    [93] Tao G, Chen S H, Joshi S M. An adaptive actuator failure compensation controller using outputfeedback [J]. IEEE Transactions on Automatic Control,2002,47(3):506-511.
    [94] Kim K. S, Lee K J, Kim Y. Reconfigurable flight control system design using direct adaptivemethod [J]. Journal of Guidance, Control, and Dynamics,2003,26(4):543-550.
    [95] Zhang Y, Jiang J. Integrated active fault-tolerant control using IMM approach [J]. IEEETransactions on Aerospace and Electronic Systems,2001,37:1221-1235.
    [96] Zhang Y M, Jiang J. Active fault-tolerant control system against partial actuator failures [J]. IEEProceedings: Control Theory and Applications,2002,149:95-104.
    [97] Bodson M, Groszkiewicz J E. Multivariable adaptive algorithms for reconfigurable flight control[J]. IEEE Transactions on Control Systems Technology,1997,5(2):217-229.
    [98] J. D. Bo kovi and R. K. Mehra. A multiple model-based reconfigurable flight control systemdesign [C]. In Proceedings of the37th IEEE Conference on Decision and Control,1998:4503-4508.
    [99]胡剑波,庄开宇著.高级变结构控制理论及应用[M].西安:西北工业大学出版社,2008.
    [100] Xu H J, Mirmirani M. Robust adaptive sliding control for a class of MIMO nonlinear systems
    [C]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal,2001,Canada, AIAA2001-4168.
    [101] Ahn C, Kim Y, Kim H J. Adaptive sliding mode controller design for fault tolerant flightcontrol system [C]. Proc. of AIAA Guidance, Navigation, and Control Conference, Colorado,2006:1-8.
    [102] Iyer A, Singh S N. Variable structure slewing control and vibration damping of flexiblespacecraft [J]. Acta Astronautica,1991, Vol.25, No.1, pp.1-9.
    [103] Ru J, Li X R. Variable-structure multiple-model approach to fault detection, identification,and estimation [J]. IEEE Transactions on Control Systems Technology,2008,16(5):1029-1038.
    [104] Cheng C C, Chien S H. Adaptive sliding mode controller design based on T-S fuzzy systemmodels [J]. Automatic,2006,42:1005-1010.
    [105] Xu H J, IOANNOU P A, MIRMIRANI M. Adaptive sliding mode control design for ahypersonic flight vehicle [J]. Journal of Guidance, Control and Dynamic,2004,25(5):829-838.
    [106] Kim D, Kim Y. Robust variable structure controller design for fault tolerant flight control [J].Journal of Guidance, Control, and Dynamics,2000,23(3):430-437.
    [107] Tan Chee Pin, Edwards C. Sliding mode observers for reconstruction of simultaneouslyactuator and sensor faults [C]. Proceedings of the CDC, Maui, Hawaii USA,2003, pp.1455-1460.
    [108] Chen W T, Saif M. Actuator fault diagnosis for uncertain linear systems using a high-ordersliding-mode robust differentiator (HOSMRD)[J]. International Journal Robust Nonlinear Control,2008,18:413-426.
    [109] Jiang B, Staroswiecki M, Cocquempot V. Fault Estimation in Nonlinear Uncertain SystemsUsing Robust/Sliding–Mode Observers [J]. IEE Proc.Control Theory Appl,2004,151:29-37.
    [110] Tournes C, Landrum D B, Shtessel Y, Hawk C W. Ramjet-Powered Reusable LaunchVehicle Control by Sliding Modes [J]. Journal of Guidance, Control, and Dynamics,1998,21(3):409–415.
    [111] Snell S A. Nonlinear dynamic-inversion flight control of super-maneuverable aircraft [D].University of Minnesota,1991.
    [112] Jiang Y, Hu Q, Ma G. Adaptive backstepping fault-tolerant control for flexible spacecraftwith unknown bounded disturbances and actuator failures [J]. ISA Transactions,2009, pp.1-13.
    [113] Singh S N, Yim W. Nonlinear adaptive backstepping design for spacecraft attitude controlusing solar radiation pressure[C]. Proc. of41st IEEE conf. decision control,2002, pp.1239-44.
    [114]高道祥,孙增圻,罗熊,杜天容.基于Backstepping的高超声速飞行器模糊自适应控制[J].控制理论与应用,2008,25(5):805-810.
    [115]刘燕斌,陆宇平.基于反步法的高超音速飞机纵向逆飞行控制[J].控制与决策,2007,22(3):313-317.
    [116]石辛民,郝整清.模糊控制及其MATLAB仿真[M].北京:清华大学出版社,2008.
    [117] Spooner J T, Passino K M. Stable adaptive control using fuzzy systems and neural networks[J]. IEEE Transactions Fuzzy Systems,1996,4(3):339-359.
    [118] Zhao Yan, Lam James, Gao Huijun. Fault detection for fuzzy systems with intermittentmeasurements [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS,2009,17(2):398-410.
    [119] Lin C, Wang Q G, T. H. Lee. Fuzzy descriptor systems and nonlinear model followingcontrol [J]. IEEE Transactions on Fuzzy Systems,2006,14(4):542-551.
    [120] Wang D, Huang J. Neural network-based adaptive dynamic surface control for a class ofuncertain nonlinear systems in strict-feedback form [J]. IEEE Transactions on Neural Networks,2005,16(1):195-202.
    [121] W. Liu. An on-line expert system-based fault-tolerant control system [J]. Expert Systemswith Applications,1996,11(1):59-64.
    [122] H. Rauch. Intelligent fault diagnosis and control reconfiguration [J]. IEEE Control SystemsMagazine,1994,14(3):6-12.
    [123]田亮,吴金荣,孙富春.基于遗传算法的飞行器多航迹规划[J].计算机工程与应用,2006,31:216-219.
    [124] Reiman S E, Dillon C H, Lee H P, Youssef H M. Robust Adaptive Reconfigurable Controlfor a Hypersonic Cruise Vehicle[C]. AIAA Guidance, Navigation and Control Conference andExhibit,2009, AIAA2009-6185:1-10.
    [125] Cai W, Xiao X, Song Y. Indirect robust adaptive fault-tolerant control for attitude tracking ofspacecraft [J]. Journal of Guidance, Control and Dynamics,2008,31(5):1456-1463.
    [126] Lisa Fiorentini, Andrea Serrani. Nonlinear Robust Adaptive Control of FlexibleAir-Breathing Hypersonic Vehicles [J]. Journal of Guidance, Control, and Dynamics,2009,32(2):401-416.
    [127] Fiorentini L, Serrani A, Bolender M, Doman, D. Nonlinear Robust Adaptive ControllerDesign for an Air-Breathing Hypersonic Vehicle Model [C]. AIAA Guidance, Navigation, andControl conference and Exhibit,2007, AIAA2007-6329.
    [128] Shtessel Y, McDuffie J, Jackson M et all. Sliding mode control of the X-33vehicle in launchand re-entry modes [C]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit,Reston,1998, AIAA-1998, pp.1352-1362.
    [129]王玉慧等.基于模糊前馈的空天飞行器再入姿态的模糊鲁棒跟踪控制[J].宇航学报,2008,29(1):150-155.
    [130] Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft [C]. In: AIAAGuidance, Navigation, and Control Conference and Exhibit. Portland, OR,1999, AIAA99-4000.
    [131] Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft [J]. Journal ofGuidance, Control, and Dynamics,2000,23(4):577-585.
    [132]刘燕斌,陆宇平,何真.高超声速飞机纵向通道的多级模糊逻辑控制[J].南京航空航天大学学报,2007,39(6):716-721.
    [133] Xu H J, Mirmirani M, Ioannou P A. Robust neural adaptive control of a hypersonic aircraft
    [C]. In: AIAA Guidance, Navigation, and Control conference and Exhibit,2003, Austin, AIAA2003-5641.
    [134] Liu Y B, Lu Y P, He Z. Research on Robust Adaptive Control for Hypersonic Vehicle [J].Journal of Astronautics,2006,27(4):620-624.
    [135] Poulain F, Lahanier H P, Serre L. Nonlinear control of a airbreathing hypersonic vehicle [C].16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and TechnologiesConferenc, AIAA2009-7290:1-14.
    [136] Marrison C I, Stengel R F. Design of robust control systems for a hypersonic aircraft [J].Journal of guidance, control and dynamics,1998,21(1):58-63.
    [137] Huo Y. Altitude and Velocity Tracking Control for an Air-breathing Hypersonic CruiseVehicle[C]. AIAA Guidance Navigation and Control Conference and Exhibit,2006, calorado,AIAA2006-6695:1-10.
    [138] Wang J L, Sundararajan N. A nonlinear flight controller design for aircraft [J]. Control Eng.Practice,1995,3(6):813-825.
    [139] Liu Yanbin,Lu Yuping. Application of Nonlinear Dynamic Inversion Control in FlightControl of Hypersonic Vehicle [J]. Journal of Applied Sciences,2006,24(6):613-617.
    [140] Mooij E. Direct model reference adaptive control of a winged reentry vehicle [C]. In:AIAA9thInternational space planes and hupersonic systems and Tecnologies Conference, Norfolk:AIAA,99-45484.
    [141] Vaddi S S, Sengupta P. Controller Design for Hypersonic Vehicles AccommodatingNonlinear State and Control Constraints [C]. AIAA Guidance, Navigation and Control Conferenceand Exhibit,2009, AIAA2009-6286:1-19.
    [142] Hall C E, Shtessel Y B. Sliding mode disturbance observer-based control for a reusablelaunch vehicle [C]. AIAA Guidance Navigation and Control Conference and Exhibit, Reston:AIAA,2005:1-26.
    [143] Liu Yanbin,Lu Yuping. Longitudinal Inversion Flight Control Based on Variable StructureTheory for Hypersonic Vehicle [J]. Information and Control,2006,35(3):388-392.
    [144] Lind R. Linear parameter varying modeling and control of structural dynamics with aerothermoelastic effects [J]. Journal of Guidance, Control, and Dynamics,2002,25(4):733-739.
    [145] Alberto Isidori著,王奔,庄圣贤译.非线性控制系统[M].北京:电子工业出版社,2005.
    [146]高为柄,程勉,夏小华.非线性控制系统的发展[J].自动化学报,1991,17(5):513-524.
    [147]程代展,秦化淑,洪奕光.非线性系统研究动态与展望[J].控制与决策,1991,6(5):394-400.
    [148] Gao Z Q, Antsaklis P J. Stability of the pseudo-inverse method for reconfigurable controlsystems [J]. International Journal of Control,1991,53(3):717-729.
    [149] J. R. Fisher. Aircraft control using nonlinear dynamic inversion in conjunction with adaptiverobust control [D]. Master of Science Thesis, Texas A and M University,2004.
    [150] Groves K P, Sigthorsson D O, Serrani A, et al. Reference command tracking for a linearizedmodel of an air-breathing hypersonic vehicle[C]. Proceedings of AIAA Guidance, Navigation andControl Conference and Exhibit, San Francisco, Carolina,2005.
    [151] Sigthorsson D O, Jankovsky P, Serrani A, et al. Robust linear output feedback control of anair-breathing hypersonic vehicle [J]. Journal of Guidance, Control, and Dynamics,2008,31(4):1052-1066.
    [152] Parker J T,Serrani A, Yurkovich S. Approximate Feedback Linearization of an Air-breathingHypersonic Vehicle[C]. AIAA Guidance Navigation and Control Conference and Exhibit,calorado, AIAA2006-6556:1-16.
    [153]张明廉.飞行控制系统[M].北京:国防工业出版社,1984.
    [154]郭锁风,申功璋,吴成富等编著,先进飞行控制系统[M],第1版,北京:国防工业出版社,2003.
    [155]吴森堂,费玉华编著.飞行控制系统[M].北京:北京航空航天大学出版社,2006.
    [156] Mirmirani M, Wu C, Clark A, et al. Air-breathing hypersonic flight vehicle modeling andcontrol, review, challenges, and a CFD-based example[C]. Workshop on Modeling and Control ofComplex Systems, Ayia Napa, Cyprus,2005.
    [157] Parker J T, Serrani A, Yurkovich S, et al. Controloriented modeling of an airbreathinghypersonic vehicle [J]. Journal of Guidance, Control, and Dynamics,2007,30(3):856-869.
    [158] Mirmirani M, Wu C, Clark A, Choi S. Modeling for Control of a Generic Air-breathingHypersonic[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, California,AIAA,2005-6256:1-19.
    [159]孟中杰,陈凯,黄攀峰,闫杰.高超声速飞行器机体/发动机耦合建模与控制[J].宇航学报,2008,29(5):1509-1514.
    [160]李晓宇.高超声速飞行器一体化布局气动外形设计[D].国防科学技术大学,2007.
    [161] Shahriar Keshmiri, Richard Colgren. Six-DOF Modeling and Simulation of a GenericHypersonic Vehicle for Control and Navigation Purposes[C]. AIAA Guidance, Navigation andControl Conference and Exhibit,2006, AIAA2006-6694:1-10.
    [162] Keshmiri S, Mirmirani M D. Six-DOF modeling and simulation of a generic hypersonicvehicle for conceptual design studies [C]. In: AIAA Modeling and Simulation TechnologiesConference and Exhibit Norfolk, Virginia,2004, AIAA2004-4805.
    [163]朱亮.空天飞行器不确定非线性鲁棒自适应控制[D].南京:南京航空航天大学,2006.
    [164]孙富春,陆文娟,韦峰.系统仿真技术在某飞行器侧向回路稳定性分析中的应用[J].系统仿真学报,1995,7(3):40-47.
    [165] Bolender M A, Doman D B. A Non-Linear Model for the Longitudinal Dynamics of aHypersonic Air-breathing Vehicle[C]. In: AIAA Guidance, Navigation, and Control Conferenceand Exhibit.San Francisco, CA,2005, AIAA2005-6255.
    [166] Bolender M A, Doman D B. Nonlinear longitudinal dynamical model of an air-breathinghypersonic vehicle [J]. Journal of Spacecraft and Rockets,2007,44(2):374-387.
    [167]黄显林,葛东明.吸气式高超声速飞行器纵向机动飞行的鲁棒线性变参数控制[J].宇航学报,2010,31(7):1789-1797.
    [168] Vicente Fernández, Luis F. Pe ín, Jo o Araujo, Augusto Caramagno, Chu Q P, EricBornschlegl. Modeling and FDI specification of a RLV Re-entry for Robust Estimation of Sensorand Actuator Faults [J]. AIAA Guidance, Navigation, and Control Conference and Exhibit,2005,AIAA2005-6254:1-12.
    [169]朱亮,姜长生,方炜.空天飞行器六自由度数学建模研究[J].航天控制,2006,24(4):39-44.
    [170]王玉慧,吴庆宪,姜长生,黄国勇.基于模糊前馈的空天飞行器再入姿态的模糊鲁棒跟踪控制[J].宇航学报,2008,29(1):150-155.
    [171]王玉慧,吴庆宪,姜长生,黄国勇.具有闭环极点约束的空天飞行器再入姿态的模糊保性能控制[J].航空学报,2007,28(3):654-660.
    [172]钱承山,吴庆宪,姜长生,周丽.基于反作用发动机推力的空天飞行器再入姿态飞行控制[J].航空动力学报,2008,23(8):1546-1552.
    [173] J.J. Recasens, Q.P. Chu, J.A. Mulder. Robust Model Predictive Control of a FeedbackLinearized System for a Lifting-body Re-entry Vehicle [C]. AIAA Guidance, Navigation, andControl Conference and Exhibit,2005, AIAA-2005-6147:1-33.
    [174]杨伟编著.容错飞行控制系统[M].西安:西北工业大学出版社,2007.
    [175] Andrés Marcos, Gabriele De Zaiacomo, Luis F. Pe ín. Simulation-Based Fault AnalysisMethodology for Aerospace vehicles [J]. AIAA Guidance, Navigation and Control Conferenceand Exhibit,2008, Honolulu, Hawaii, AIAA-6623:1-15.
    [176] F. W. Burcham, C. G. Fullertron and T. A. Maine. Manual manipulation of engine throttlesfor emergency flight control. Technical Report NASA/TM-2004-212045, NASA,2004.
    [177] M. H. Smaili, J. Breeman and T. J. J. Lombaerts et al. A simulation benchmark for integratedfault tolerant flight control evaluation [C]. In AIAA Modeling and Simulation TechnologiesConference and Exhibit,2006.
    [178] Guillaume J.J. Ducard. Fault-tolerant Flight Control and Guidance Systems PracticalMethods for Small Unmanned Aerial Vehicles [M]. London: Springer-Verlag,2009.
    [179] Joosten D A, Van den Boom T J J, Lombaerts T J J. Effective control allocation infault-tolerant flight control using feedback linearization and model predictive control [C]. InEuropean Control Conference,2007.
    [180] Zhang Y M, Suresh V S, Jiang B, et al. Reconfigurable control allocation against aircraftcontrol effect or failures [C].16th IEEE International Conference on Control Applications, Part ofIEEE Multi-conference on System and Control, Singapore,2007:1197-1202.
    [181] Tanaka K, Ikeda T, Wang H O. Robust stabilization of a class of uncertain non-linearsystems via fuzzy control: quadratic stabilizability H∞control theory and linear matrixinequalities [J]. E Trans on Fuzzy System [J].1964,4(1):1-13.
    [182] Nguang S K, Shi P. Fuzzy output feedback control design for nonlinear systems: an LMIapproach [J]. IEEE Transactions on Fuzzy Systems,2003,11(3):331-340.
    [183] Lin C, Wang Q G, T. H. Lee. Fuzzy descriptor systems and nonlinear model followingcontrol [J]. IEEE Transactions on Fuzzy Systems,2006,14(4):542-551.
    [184] Wang Y, Wu Q, Jiang C, Huang G. Guaranteed cost fuzzy output feedback control via LMImethod for re-entry attitude dynamics [J]. Journal of Uncertain Systems,2007,1(4):291-302.
    [185] Zhao Yan, Zhang Changzhu, Gao Huijun. A new approach to guaranteed cost control of T-Sfuzzy dynamic systems with interval parameter uncertainties [J]. IEEE Transactions on Systems,Man and Cybernatics—PART B: Cybernatics,2009,39(6):1516-1527.
    [186] T. Takagi and M. Sugeno, Fuzzy identification of systems and its application to modeling andcontrol [J]. IEEE Transactions on Systems, Man and Cybernatics,1985,15(1):116-132.
    [187] Tan Chee Pin, Edwards C. Reconstruction of sensor faults using a secondary sliding modeobserver [C]. Proceedings of the CDC, Orlando, Florida, USA,2001, pp.579-584.
    [188] Edwards C, Tan Chee Pin. Fault tolerant control using sliding mode observers[C].Proceedings of the CDC,2004, pp.5254-5259.
    [189] Tan Chee Pin, Edwards C. Multiplicative fault reconstruction using sliding mode observers
    [C]. Proceedings of the5th Asian Control Conference,2004, pp.957-962.
    [190]刘强,于达仁,王仲奇.高超声速飞行器的滑模观测器设计[J].航空学报,2004,25(6):588-592.
    [191] Hou M, Patton R P. An LMI approach to fault detection observers [C]. In Proceedings of theUKACC International Conference on Control, Exeter, UK,1996:305-310.
    [192]刘京津,姜斌.基于滑模观测器的故障诊断技术在飞控系统中的应用[C].中国控制与决策学术年会论文集,2007:1-4.
    [193]陈复扬,姜斌.自适应控制与应用[M].北京:国防工业出版社,2009.
    [194] Johnson E N. Limited authority adaptive flight control [D]. Atlanta: Georgia Institute ofTecnology,2000.
    [195] Zhang Xiaodong, Luis Farfan-Ramos, Kuldip Rattan. Adaptive Fault-Tolerant Fuzzy Controlof Robotic Systems [C]. The28th North American Fuzzy Information Processing Society AnnualConference (NAFIPS2009), Cincinnati, Ohio, USA,2009, pp.1-6.
    [196] Tang X, Tao G, Joshi S M. Adaptive actuator failure compensation for nonlinear MIMOsystems with an aircraft control application [J]. Automatica,2007,43:1869–1883.
    [197] Gibson T E, Annaswamy A M. Adaptive Control of Hypersonic Vehicles in the Presence ofThrust and Actuator Uncertainties [C]. AIAA Guidance, Navigation, and Control Conference andExhibit,2008, AIAA,2008-6961:1-16.
    [198] Bo kovi J D, Bergstrom S E, Mehra R K, et al. Fast on-line actuator reconfigurationenabling (FLARE) system [C]. AIAA Guidance, Navigation and Control Conference and Exihibit,San Francisco, California,2005:1-11.
    [199] WANG H, DALEY S. Actuator fault diagnosis: an adaptive observer-based technique [J].IEEE Trans. Autom. Control,1996,41,(7):1073–1078.
    [200] CORLESS M, TU J. State and input estimation for a class of uncertain systems [J].Automatica,1998,34(6):757–764.
    [201] Marios Polycarpou, Zhang Xiaodong, Xu Roger, Yang Yanli, Chinman Kwan. A neuralnetwork based approach to adaptive fault tolerant flight control [C]. Proceeding of the2004IEEEInternational Symposium on Intelligent Control, Taipei, Taiwan,2004, pp.61-66.
    [202] Mok H T, Chan C W. Online fault detection and isolation of nonlinear systems based onneural fuzzy networks [J]. Engineering Applications of Artificial Intelligence,2008,21(2):171-181.
    [203]朱亮,姜长生,张春雨.基于径向基神经网络干扰观测器的空天飞行器自适应轨迹线性化控制[J].航空学报,2007,28(3):673-677.
    [204]周川,胡维礼,陈庆伟.基于神经网络自适应观测器的鲁棒故障检测[J].应用科学学报,2004,22(1):124-126.
    [205] Fray C W, Kuntze H B, Giesen K. A neuro-fuzzy based fault tolerant control concept forsmart multi-sensory robots [C]. Proceedings on the5th Symposium on Fault Detection,Supervision and Safty for Technical Processes, Washington D. C., USA,2003:573-578.
    [206] Liu Chun Sheng, Hu Sousong. Adaptive neural-networks-based fault detection and diagnosisusing unmeasured states [J]. IET Control Theory Appl.,2008,2(12):1066–1076.
    [207] Cybenko G. Approximation by superposition of sigmoidal functions [J]. Math ControlSignals Syst.,1989,2(4):303–314.
    [208] Talebi H, Khorasani K, Tafazoli S. A recurrent neural-network-based sensor and actuatorfault detection and isolation for nonlinear systems with application to the satellite’s attitudecontrol subsystem, IEEE Transactions on neural networks,2009,20(1):45-60.
    [209] Witczak M. Advances in model-based fault diagnosis with evolutionary algorithms andneural networks. International Journal of Applied Mathematics and Computer Science,2006,16(1):85-99.
    [210] Zhang T, Ge S S, Hang C C. Neural based direct adaptive control for a class of generalnonlinear systems. International System and Science,1997,28(10):1011-1020.
    [211] Chen L J, Narendra K S. Nonlinear adaptive control using neural networks and multiplemodels [J]. Automatic,2001,37:1245-1255.
    [212]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.
    [213]周军,刘玉玺,周凤岐.基于变结构鲁棒控制的导弹再入解耦控制[J].飞行力学,2008,26(2):29-32.
    [214] Shtessel Y, Hall C, Jackson M. Reusable launch vehicle control in multiple time sale slidingmodes [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, AIAA,2000:1-11.
    [215]张桂杰.挠性航天器的变结构控制[D].黑龙江:哈尔滨工业大学,2007.
    [216] Hu Q L, Shi P, Gao H J. Adaptive variable structure and commanding shaped vibrationcontrol of flexible spacecraft [J]. Journal of Guidance, Control, and Dynamics,2007,30(3):804-815.
    [217] Chen Weitian and Saif M. Actuator fault diagnosis for uncertain linear systems using ahigh-order sliding-mode robust differentiator [J]. International Journal Robust Nonlinear Control,2008,18:413–426.
    [218]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700