用户名: 密码: 验证码:
隐身微小卫星结构设计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国防军事需求和空间资源探索的牵引下,人造卫星正朝着微型化、功能化和模块化方向快速发展。伴随微机电、新型材料等高新技术的不断革新,小型卫星和微小卫星的发展正在世界上蓬勃兴起。作为整个卫星系统的重要技术基础,结构设计技术不仅直接关系到卫星发射的成败,同时也是实现整星总体综合性能的基本保障。因此,本文以南京航空航天大学自主研制的某隐身微小卫星为背景,从卫星隐身构型设计、主承力结构设计、结构多目标优化设计以及力学环境试验设计等关键技术展开研究,具体工作如下:
     1.针对微小卫星隐身构型的设计需求,根据多棱面设计思路,在满足运载给出的约束条件及总体性能需求下,提出了一种底部为六棱柱、中部为六棱台、顶部为六棱锥的钻石结构隐身构型设计方案。通过分析卫星的散射特性,采用高频散射理论对其雷达散射截面积进行了预估,并在微波暗室对全尺寸全金属卫星模型进行了C波段测试验证。通过对比分析确定了隐身构型设计方案的合理性。
     2、提出了一种框架和箱板式结构相结合的微小卫星主承力结构设计方法,该方法不仅能满足主传力路径的合理性和主承力结构的刚度,而且能实现星载设备的合理布局。以某微小卫星为例,在其隐身构型的基础之上,对其主承力结构进行了系统设计,并对适配器、底板和隔板等主要承力部件进行了详细设计。
     3.选取整星刚度和结构重量为目标函数,以各蜂窝夹层板的面板和蜂窝芯子厚度为设计变量,对其主承力结构进行多目标优化设计。针对复杂工程优化问题所构建的近似模型精度较低的情况,提出了一种改进的基于信赖域的近似模型管理框架。该方法的优点在于在求解过程中受近似模型精度的影响较小,通过最大最小距离法从上一步迭代过程中得到的Pareto最优解集中挑选距离最大的若干个解用于高精度模型评价,并根据信赖度值的大小对搜索限制域进行更新,从而保证得到与实际模型一致的Pareto最优解集。通过四组经典测试函数的测试后将该方法成功运用于整星主承力结构多目标优化设计中,得到了较为满意的Pareto最优解集。最后采用模糊综合评判法选取了最终设计方案,并就整星刚度和主结构质量较优化前进行了对比分析,取得了较好的优化效果。
     4.通过对初始模型参数的修正得到了优化后的整星有限元模型,运用PATRAN/NASTRAN软件对其进行了静力分析,考核了优化后整星的结构强度。同时,根据卫星总体及星上单机的设计要求,对整星进行了频率响应分析和随机振动分析,获取了主承力结构各主要部件及星载设备的动态响应特性。为后续力学环境试验方案的设计提供了参考依据。
     5.考虑到卫星结构设计对可靠性要求较高,在仿真分析的基础之,根据卫星在发射和飞行期间所经受的力学环境及其自身特点,提出了初样星的力学环境试验设计方案。该方案以验证初样星结构设计及其优化方法的合理性为主要目的,以获取整星主承力结构和星载设备的静动态特性及工程可靠性为主要任务。通过对整星在验收级和鉴定级条件下正弦和随机振动试验数据的采集分析,验证了有限元模型构建及近似模型管理方法的有效性和合理性。此次力学环境试验为正样星结构局部调整以及今后其他微小卫星的结构设计、力学环境试验方案的设计提供了可靠依据。
Under the needs of national military and sapce resources exploration, the satellite is developingforword to miniaturization, functionalization and modularization rapidly. By continuously renew ofthe micro electromechanical, new material and other hi-tech, the development of small satellite andmicro satellite is springing up over the world. As the important technical foundation for satellitesystem, structure design is not only directly related to the success of the satellite launch, but also is thebasic guarantee for the satellite comprehensive properties implementation. Taking the stealth microsatellite as the background, which is designed by Nanjing university of aeronautics andastronautics, the researchs were carried out form the ascepts of stealth configuration design, primaryload bearing structure design, structure multi-objective optimization design and dynamicenvironmental test design. The concrete contents are as following:
     1. By meeting the needs of dimension constraints and the stealth performance, according to thepolygon design thought, a diamond-type configuration design scheme is proposed. Its bottom ishexagonal-prism, the middle is hexagonal-prismoid and the top is hexagonal-pyramid. By analyzingthe scattering characteristics of the mirco satellite, the radar scattered section is predicted using highfrequency methods. A real-size metal satellite model is made for the RCS measurement at C bands ina microwave darkroom. By comparison and analysis, the rationality of the scheme is determined.
     2. A method for primary load bearing structure of the micro satellite is proposed. The method notonly meets the need of structure stiffness and rationality for the force transfer path, but alsoimplements the layout of the satellite equipments. Taking the stealth mirco satellite for example, theprimary load bearing structure is designed comprehensive, based on the stealth configuration. Thesatellite adapter, the floor, the diaphragm and other force bearing parts are also designed respectively.
     3. The multi-objective optimization design is carried out for the primary load bearing structure ofthe micro satellite.Both the satellite stiffness and the primary load bearing structure mass is taken asthe objective function. The design variable contains the thickness of aluminum panels, core plates andskeleton. An improved trust-region approximation model management frame is proposed subject tothe low precision of the ordinary approximation model for comprehensive engineering problems. Theadvantages of this method are that the optimization results are little influenced by approximationmodel during the solving process. By using max-min distance means, several maximum distancesolutions evaluated by real model are selected from the last pareto optimization solutions. Then, searching area is renewed according to the evaluation result, thus the final solutions are uniform to thereal pareto solutions. The method is demonstrated by four different classical test functions andsuccessfully applied in the micro satellite structure optimization design. By comparing with the valuesof the objective function after optimization, good effect is obtained.
     4. After modified the micro satellite structure parameters, the optimized FEM is built. By usingthe PATRAN/NASTRAN software for static analysis, the satellite strength is evaluated. Meanwhile,according to the general and equipments design requirements of the satellite, frequency responseanalysis and random vibration analysis are calculated in the software. From the analysis andcalculation, the dynamic response characteristics of the structure parts and equipments are obtained.Meanwhile, the results provide reference for dynamic environmental test design.
     5. Considering the high reliability for satellite structure design, the mechanical environmentaltest design scheme is proposed, based on the simulated results. It takes the aim at verifying therationality of the structure design and optimization method, requiring the structure static and dynamiccharacteristics. By acquiring and analyzing the sine-vibration and random vibration test datas underacceptance and identification grade, the effectiveness and rationality of the approximation modelmanagement method and the FEM building is verified. The mechanical environmental test providereliable basis for formal satellite local adjustment and other micro satellites structure and test designin future.
引文
[1]李海平.微小卫星热控制系统的设计[D].南京航空航天大学硕士学位论文,2006,12.
    [2]刘海颖.微小卫星姿态控制系统关键技术研究[D].南京航空航天大学博士学位论文,2008,4.
    [3]林来兴. ST-5微小卫星与星座及其空间飞行验证[J].航天器工程,2007,16(1):63~68.
    [4]唐绍凡,刘冰.我国小卫星、微小卫星有效载荷的发展[J].航天返回与遥感,1999,20(4):13~15.
    [5] JamesD.R. Why SmallSats[C]. AIAA Space2009Conference&Exposition, September2009,Pasadena,California.
    [6]林来兴.当今小卫星发展水平及其关键技术[J].中国空间科学技术,1995,15(4):37~39.
    [7] Anuscheh Nawaz. Evaluation of a data fusion method for various sensor systems onboard thesnap satellite[C].55thInternational Astronautical Congress2004-Vancouver, Canada.
    [8] Carayannis Elias G,Samanta Roy Robie I.Davids vs Goliaths in the small satellite industry:the role of techno—logical innovation dynamics in firm [J].Technovation,2000,2(2):287~297.
    [9]张晓敏,张永维,马骏.微小卫星技术与运用的发展[J].卫星应用,2006,14(4):33~41.
    [10]Lundahl Kaj, Fredrik Von Scheele. Swedish small satellites[J]. Air&Space Europe.2000,(2):61~64.
    [11]陆建华,王京,龚克.微小卫星技术发展及其应用[J].世界电信,2001,(11):8~11.
    [12]黄汉文.卫星隐身概念研究[J].航天电子对抗,2010,26(6):22~25.
    [13]Knott E F, Schaeffer J F and Tuley M T. Radar cross section [M]. Raleigh, NC: ScitechPublishing, Inc.,2004.
    [14]徐福祥.卫星工程[M].北京:中国宇航出版社,2002.
    [15]Yuzcelik C K. Radar Absorbing material design[D]. Monterey, CA: NavalPostgraduate School,2003.
    [16]Crispin J W and Siegel K M. Methods of radar cross-section analysis[M]. New York andLondon: Academic Press,1968.
    [17]高文坤,刘鹏,孙建勋.导弹隐身外形布局设计方法初步研究[J].战术导弹技术,2009(4):7~12.
    [18]陆柱蕙.轰炸机隐身外形的研究[J].战术导弹技术,1986(3):4~9.
    [19]http://www.globalsecurity.org/space/systems/misty_follow_on.htm.2009
    [20]Eldridge M T, McKechnie K H and Hefley R M. Satellite signature Ssuppression shield[P].U.S. Patent, No.5345238,1994.
    [21]Barker W C, Palisades P and Slager D M. Crossed skirt antiradar screen structures for spacevehicles[P]. U.S. Patent, No.6107952,2000.
    [22]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005.
    [23]阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版社,1998.
    [24]袁家军.卫星结构设计与分析(上)[M].北京:宇航出版社,2004.
    [25]王勇.“TXZ”微小卫星结构设计与分析[D].南京航空航天大学硕士学位论文,2006,12.
    [26]夏利娟,余音,金咸定.卫星构架结构固有频率特性的试验研究和优化设计[J].上海交通大学学报,2004,38(11):1889~1891.
    [27]陈昌亚,郑晓亚,姜晋庆.卫星结构优化设计的建模问题[J].机械科学与技术,2005,24(1):66~69.
    [28]毛佳,江振宇,陈广南等.卫星中心承力筒结构优化设计研究[J].国防科技大学学报,2010,32(2):1~6.
    [29]霍军周,李广强,腾弘飞等.人机结合蚁群/遗传算法及其在卫星舱布局设计中的应用[J].机械工程学报,2005,41(3):112~116.
    [30]Young H.Y. parallel optimal design of satellite bus structure using particle swarmoptimization [C].48thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, andMeterials Conference, Honolulu,Hawaii,2007:1864.
    [31]Coello.C, Pulido.G.T, Lechuga.M.S. Handling multiple objectives with particle swarmoptimization[J]. Evolutionary Computation,2004,8(3):256~279.
    [32]Hu X.H, Eberhart.R. Multiobjective optimization using dynamic neighborhood particleswarm optimization[C]. IEEE World Congress on Computational Intelligence. HonoluluHI,2002:1677~1681.
    [33]Geem.Z.W, Hwangbo.H. Application of harmony search to multi-objective optimization forsatellite heat pipe design[C]. US-Korea Conference on Science, Technology,Entrepreneurship. Teaneck,USA,2006.
    [34]于广滨.航空用微小型减速装置多目标优化设计及性能分析[D].哈尔滨:哈尔滨工业大学博士学位论文,2009.
    [35]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报,2005,14(3):236~240.
    [36]安伟刚.多目标优化方法研究及其工程应用[D].西安:西北工业大学博士学位论文,2005.
    [37]安治国,周杰,赵军等.基于径向基函数响应面法的板料成形仿真研究[J].系统仿真学报,2009,21(6):1557~1561.
    [38]YangY S, Jang B S, Yeun Y S. A framework for managing pproximation models in place ofexpensive simulations in optimization[A].Proc.2ndASMO UK/ISSMO Conf.on engineeringdesign optimization[C].Wales,2000:249~256.
    [39]Jang B S, Yang Y S, Yeun Y S.Managing approximation models in multi-objeetive106optimization[J].Struetural and Multidisciplinary OPtimization,2002,24(2):141~156.
    [40]刘桂萍,韩旭,官凤娇.基于信赖域近似模型管理的多目标优化方法及其应用[J].中国机械工程,2008,19(10):1140~1143.
    [41]Stratton J A. Electromagnetic Theory[M]. McGraw-Hill, NY:1941
    [42]Gordon W B. Far field approximation of the Kirchhoff-Helmholtz representation of scatteredfields[J]. IEEE Transactions on Antennas and Propagation,1975,23(5):590~592.
    [43]张考,马东力.军用飞机生存力与隐身设计[M].北京:国防工业出版社,2002.
    [44]Ling H, Chou R C and Lee S W. Shooting and bouncing rays: calculating the RCS of anarbitrarily shaped cavity[J]. IEEE Transactions on Antennas and Propagation,1989,37(2):194~205.
    [45]陶治国,蔡德忠.坦克的雷达隐身外形技术初步研究[J].车辆与动力技术,2004(3):29~34.
    [46]胡添元.飞行器外形隐身优化方法及应用研究[D].南京:南京航空航天大学硕士学位轮文,2006.
    [47]Jenn D C. Radar and laser cross section engineering. American: Institute of Aeronautics andAstronautics Press,1995.
    [48]庄钊文,袁乃昌,莫锦军等.军用目标雷达散射截面预估与测量[M].北京:科学出版社,2007.
    [49]薛晓春,李宗瑞,朱自强.电磁散射场和雷达反射截面积的计算[J].北京航空航天大学学报,1998,24(2):193~196.
    [50]莫锦军.隐身目标低频宽带电磁散射特性研究[D].长沙:国防科技大学博士学位论文,2004.
    [51]Kline M and Kay I W. Electromagnetic theory and geometrical optics[M]. New York: WileyInterscience,1965.
    [52]汪连栋.几何光学法用于飞机进气道RCS的计算[J].火力与指挥控制,1992,17(2):58~65.
    [53]Keller J B. Geometrical theory of diffraction[J]. Journal of the Optical Society of America,1962,52:116~130.
    [54]刘建新,杨永照.几何绕射理论中几个特殊函数的数值计算[J].航天器工程,1996,5(4):35~41.
    [55]Pathak P H, Burnside W D, Marhefka R J. A uniform GTD analysis of the diffraction ofelectromagnetic waves by a smooth convex surface[J]. IEEE Transactions on Antennas andPropagation,1980,28(5):631~642.
    [56]Kouyoumjian R G, Pathak P H. A uniform geometrical theory of diffraction for an edge in aperfectly sonductiong surface[J]. Proceedings of the IEEE,1974,62(11),1448~1461.
    [57]张京国,梁晓庚.基于物理光学法和面元法的目标近场RCS计算[J].探测与控制学报,2008,30(6):42~45.
    [58]Ufimtsev P Y. Elementary edge waves and the physical theory of diffration[J].Electromagnetics,1991,11(2):125~160.
    [59]Naqvi Q A, Hongo K, Kobayashi H. Scattering from an impedance polygonal cylinder atskew incidence using the physical theory of diffraction with transition currents approach[J].Electromagnetics,2003,23(4):293~314.
    [60]Michaeli A. Equivalent edge currents for arbitrary aspects of observation[J]. IEEETransactions on Antennas and Propagation,1984,32(3):252~258.
    [61]Ling H, Chou R C, Lee S W. Shooting and bouncing rays: caculating the RCS of anarbitrarily shaped cavity[J]. IEEE Transactions on Antennas and Propagation,1989,37(2):194~205.
    [62]陈烈民.航天器结构与机构[M].北京:中国科学技术出版社,2005.
    [63]王薇.“TXZ”微小卫星结构优化设计与分析[D].南京:南京航空航天大学硕士学位论文,2008.
    [64]张晓燕,季林红,王耀兵等.微小卫星整星模块化结构的模态分析[J].机械设计与制造,2003(2):67~68.
    [65]夏利娟,金咸定,汪庠宝.卫星结构蜂窝夹层板的等效计算[J].上海交通大学学报,2003,37(7):999~1001.
    [66]徐胜今,孔宪仁,王本利等.正交异性蜂窝夹层板动静力学问题的等效分析方法[J].复合材料学报,2000,17(3):92~95.
    [67]赵金森.铝蜂窝夹层板的力学性能等效模型研究[D].南京:南京航空航天大学硕士学位论文,2006.
    [68]Davalos J F, Qiao P Z, Xu X F. Modeling and characterization of fiber-reinforced plastichoneycomb sandwich panels for highway bridge application[J]. Composite Structures,2001(52):441~452.
    [69]翟光,杨小平.多夹心层蜂窝板动力学特性分析与仿真[J].计算机仿真,2006,23(8):44~46.
    [70]Carney K, Yunis I, smith K. Nonlinear dynamic behavior in the cassini spacecraft modalsurvey [A].15th In Ternational Modal Analysis Conference. Florida,USA:IMAC,1997,811~817.
    [71]陈昌亚,宋汉文,王德禹等.卫星振动频率漂移现象与非线性参数识别[J].上海交通大学学报,2005,39(7):1197~1110.
    [72]Smith K, Kenneth S. Modal test of the cassini spacecraft [A].15th In Ternational ModalAnalysis Conference. Florida, USA: IMAC,1997,804~810.
    [73]徐磊.基于遗传算法的多目标优化问题的研究与应用[D].长沙:中南大学硕士学位论文,2007.
    [74]Lagaros N.K, Plevris V, Papadrakakis M. Multi--objective design optimization using cascadeevolutionary computations[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(30-33):3496~3515.
    [75]Gholap.A.K, Khan.J.A. Design and multi--objective optimization of heat exchangers forrefrigerators [J]. Applied Energy,2007,84(12):1226~1239.
    [76]Bernier E, Marechal F. Multi--objective design optimization of a natural gas-combined cyclewith carbon dioxide capture in a life cycle perspective[J]. Energy,2010,35(2):1121~1128.
    [77]Aryanezhad.M.B, Hemati.M. A new genetic algorithm for solving nonconvex nonlinearprogramming problems[J]. Applied Mathematics and Computation,2008,199(1):186~194.
    [78]He S, Wu.Q.H. A particle swarm optimizer with passive congregation[J]. Biosystems,2004,78(1-3):135~147.
    [79]Montalvo I, Izquierdo J. Multi--objective particle swarm optimization applied to waterdistribution systems design: An approach with human interaction[J].Mathematical andComputer Modelling,2010,52(7-8):1219~1227.
    [80]Naeem O, Huesman A E. Non-linear model approximation using new multivariatehammerstein block structure model for large process[J]. Computer Aided ChemicalEngineering,2010,28:661~666.
    [81]Sakata S, Ashida F, Zako M. Structure optimization using kriging approximation[J].Computer Methods in Applied Mechanics and Engineering,2003,192(7-8):923~939.
    [82]Liu G P, Han X, Jiang C. A novel multi-objective optimization method based on anapproximation model management technique[J]. Computer Methods in Applied Mechanicsand Engineering,2008,197(33-40):2719~2731.
    [83]Carlos A. An updated survey of GA-based multi-objective optimization techniques[J]. ACMComputing Surveys2000,32(2):109~143.
    [84]Deb K. Multi-objective optimization using evolutionary algorithms[M]. Hoboken: JohnWiley&Sons,2001.
    [85]Marler R.T, Arora J.S. Survey of Multi-objective optimization methods for engineering[J].Struetural and multidisciplinary optimization,2004,26(6):369~395.
    [86]Kay C.T, Tong H.L. Evolutionary algorithms for multi-objective optimization: performanceassessments and comparisons[J].Artif.Intell.2002,17(4):251~290.
    [87]Ray T, Liew K M. A swarm metaphor for multiobjective design optimization[J]. Eng. Opt,2002,34(2):141~153.
    [88]潘新,王小平.一种基于多Agent的进化多目标优化算法[J].计算机应用与软件,2006,23(3):12~14.
    [89]李斌,钟润添,肖金超等.一种基于边缘分布估计的多目标优化算法[J].电子与信息学报,2007,29(11):2683~2687.
    [90]赵长见,姚红,周伯昭.导弹姿控系统设计的进化多目标优化算法[J].导弹与航天运载技术,2006,(4):11~15.
    [91]Kennedy J, Eberhart R. Particle swarm optimization. proceedings of IEEE internationalConference On Neural Network,1995:1942~1948.
    [92]周驰,高海兵,高亮等.粒子群优化算法[J].计算机应用研究,2003(12):7~11.
    [93]陈绍新.多目标优化的粒子群算法及其应用研究.大连:大连理工大学硕士学位论文,2007.
    [94]Raquel C R, Naval P C. An effective use of crowding distance in multiobjective particleswarm optimization[c], Proc of Congress Evolutionary Compution. Washington DC, USA:ACM Press,2005:257~264.
    [95]孙光永,李光耀,陈涛等.多目标粒子群优化算法在薄板冲压成形中的应用[J].机械工程学报,2009,45(5):153~159.
    [96]孙光永,李光耀,钟志华.基于序列响应面法的汽车结构耐撞性多目标粒子群优化设计[J].机械工程学报,2009,45(2):224~230.
    [97]张勇.基于近似模型的汽车轻量化优化设计方法[D].长沙:湖南大学博士学位论文,2009.
    [98]白小涛.飞机多学科设计协同优化及近似技术研究[D].西安:西北工业大学硕士学位论文,2005.
    [99]赵靖.试验设计在质量管理中的应用研究[D].南京:南京信息工程大学硕士学位论文,2007.
    [100]赵选民.试验设计方法[M].北京:科学出版社,2009.
    [101]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    [102]韩永志.涡轮叶片多学科设计优化及近似技术研究[D].西安:西北工业大学硕士学位论文,2007.
    [103] Sakata S, Ashida F, Zako M. Approximate structural optimization using Kriging methodand digital modeling technique considering noise in sampling data[J]. Computers&Structures,2008,86(13-14):1477~1485.
    [104] Sakata S, Ashida F, Zako M. On applying Kriging-based approximate optimization toinaccurate data[J]. Computer Methods in Applied Mechanics and Engineering,2007,196(13-16):2055~2069.
    [105]刘桂萍.基于微型遗传算法的多目标优化方法及应用研究[D].长沙:湖南大学博士学位论文,2007.
    [106] Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms:empirical results[J]. Evolutionary Computation,2008,8:173~195.
    [107] Deb K, Pratap A, Agarwal S. A fast and elitist multiobjective genetic algorithm:NSGA-II [J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182~197.
    [108] Veldhuizen V,Lamont B. Evolutionary computation and convergence to a Pareto front.
    [109] Schott J R. Fault tolerant design using single and multi-criteria genetic algorithmoptimization[D]. Doctrol Dissertation. Cambridge: Massachusetts Institute ofTechnology,1995.
    [110]潘晓英,刘芳,焦李成.基于智能体的多目标社会进化算法[J].软件学报,2009,20(7):1703~1712.
    [111]张跃.模糊数学方法及其应用[M].北京:煤炭工业出版社,1992.
    [112]石嘉川.基于模糊评价的配电网络多目标优化研究[D].济南:山东大学博士学位论文,2007.
    [113]顾元宪,亢战,赵国忠.卫星承力筒复合材料结构优化设计[J].宇航学报,2003,24(1):88~91.
    [114]干小戈,许美娟,陈志峰等.微小卫星动力学环境试验及其数据处理[J].装备环境工程,2006,3(6):8~12.
    [115] Pierre C,Castanier M P. On developing new statistical energy methods for the analysis ofvibration transmission in complex vehicle structures[J]. Mechanics of Structures andMachines,1997,25(3):87~91.
    [116]郑侃,廖文和,张翔等.结构特性分析在微小卫星结构设计中的应用[J].南京航空航天大学学报,2009,41(5):601~605.
    [117]方宝东.卫星收拢太阳翼频率响应分析[J].机械设计与研究,2005,21(3):95~97.
    [118]Peters B, Ventura C E. Comparative study of modal analysis techniques for bridge dynamiccharacteristics [J].Mechanical Systems and Signal Processing,2003,17(5):965~988.
    [119]Cacciola P, Colajanni P, Muscolino G. A modal approach for the evaluation of the responsesensitivity of structural systems subjected to non-stationary random processes[J].Computer Methods in Applied Mechanics and Engineering,2005,194(42):4344~4361.
    [120]柯受全,金恂叔.卫星环境工程和模拟试验(下)[M].北京:中国宇航出版社,2009.
    [121]韩增尧,曲广吉.航天器宽带随机振动响应分析[J].中国空间科学技术,2002,(4):24~30.
    [122]金恂叔.美国HESSI卫星振动试验事故,国际太空,2002,(3):24~27.
    [123] Timmins A R, Heuser R E. A study of first-day space malfunctions[M]. Washington:National and Aeronautics and space Administration,1971.
    [124]郑侃,廖文和,张翔等.微小卫星动力学环境试验技术及试验数据分析[J].航天器环境工程,2010,27(3):328~331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700