用户名: 密码: 验证码:
真空预压加固高铁软基试验研究及机理探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国东部沿海地区广泛分布有软土地基,在软土地基上修筑高速铁路,必须严格控制路基沉降。真空预压法是一种行之有效的软基处理方法,但高速铁路对软基沉降要求更加严格,相应工程处理经验偏少,尚待进一步研究。当前,我国的高速铁路建设已进入大发展时期,探究真空预压处理高速铁路软土地基的实际效果,具有重要的理论意义和应用价值。本文依托我国京沪高速铁路真空预压软基处理工程,采用现场监测、室内模型试验、理论分析和数值模拟相结合的方法,对真空预压法在修建高速铁路中的地基加固机理、土体性状、沉降计算和数值分析方法,以及加固效果等进行了探索。主要工作如下:
     (1)通过现场取样,开展各种室内实验,搜集区域性土的特性,获取了丰富的数据资料;采用参与研制的专利仪器进行堆载和真空作用下的土体对比固结试验,着重进行了真空作用下的土体渗透试验。结果表明,真空作用下土样的含水率和孔隙比比堆载作用下略偏小,证明真空作用在这两个方面优于堆载作用;真空初始阶段,渗透系数先出现波动,之后渗透系数逐渐下降,最终趋于平稳。试验表明,两种加载方式下土样固结效果总体是一致的。
     (2)通过现场监测,获得了真空预压下地基沉降速率、沉降及孔隙水压力等参数的分布和变化规律,结合地质条件和工况分析出其原因。通过采用固结概念分析了真空预压法和堆载预压法加固软土的机理,得到如下共识:两者都是由于形成压差,使土中孔隙水排出,孔压降低,有效应力增大,土体固结。
     (3)通过对超孔隙水压力实测资料的分析,首次提出将真空预压下土体固结过程在时间上分成三个阶段的观点:①真空吸力导致浅层土体渗透固结,并对深层土体产生“堆载”效应;②浅层土体固结稳定的同时,深层土体由主要受“堆载”效应向主要受“负压”效应过渡;③深层土体在“负压”效应下产生渗透固结,并达到稳定平衡。首次提出加固土体分为浅层土体和深层土体的概念,并提出:浅层土体主要产生渗透固结,深层土体主要是由水位下降产生的“堆载”效应和“负压”效应共同产生的。利用这个理念能很好的解释加固土体中某些测点的超孔隙水压,在抽真空初始阶段提升至正值和基本维持不变的现象。
     (4)提出真空预压在土体固结第一阶段所能影响的最大深度lmax(即浅层土体厚度)和地下水位下降造成的“堆载”效应p概念。lmax可通过实测土体超孔隙水压力的变化曲线得到,p可通过监测水位下降的深度计算得到。真空预压法的作用机理根源并不是单独的流体渗流场产生的负压差,而是不同时间段“正压”和“负压”共同作用以及两种“压力”互相叠加发生的。“正压”现象会削弱真空渗流场的强度。
     (5)建立了一维“双弹簧”土体固结模型和模型方程,并通过界定了初始边界条件,得到解析解。此模型着重从有效应力路径、应变路径角度研究了真空及堆载预压法的固结机理和特点。考虑砂井径向固结,进行了超孔隙水压力解析解研究。探讨了基于大变形固结理论和非饱和土理论的真空预压机理。
     (6)采用基于比奥固结理论的有限单元法,进行现场情况数值模拟分析。结果显示:①数值计算中不能将真空作用等效为堆载。②建议在进行沉降计算时,可将竖向排水通道作为渗透性很强的介质,而在进行坡脚处水平位移计算时,宜将之作为负压边界。③数值计算中竖向排水通道负压分布模式界定很重要。
     (7)建立了灰色理论及遗传算法地基沉降预测模型,进行了真空预压下软基全时段沉降预测。基于真空预压下士体单向固结机理,得到了真空预压下的主固结沉降计算方法。根据太沙基一维土体固结理论,推导出适合真空堆载联合预压法沉降计算公式,并通过计算结果与实测值的对比分析,提出了兼顾了真空和堆载作用、考虑了瞬时沉降和侧向变形等因素影响的修正参数值。
     (8)讨论了抽真空强度、地下水位下降对加固效果的影响。增加射流泵会使得加固效果变好,但费用会增加;地下水位下降越大会使效果更好。用常规指标评价了软基处理效果。
Building high speed railway in the soft soil, especially in the east coastal area of China, high requirements are put forward to foundation treatment for controlling settlement rigidly. Vacuum preloading is an effective method for soft foundation improvement. However, the engineering experience in design using such treatment is relative poor, it must be studied further. Nowadays, as the construction of high speed railways has stepped into great development period, further understanding of the vacuum preloading have theoretical and practical significances. In this paper, with the case of the Beijing-Shanghai high speed railway in China, the soil deformation behavior, numerical simulation and consolidation mechanism of the vacuum preloading for soil treatment were completely studied by applying the field and laboratory tests, theoretical and numerical analysis. Central works were as followed:
     (1) The regional soil characteristics of the undisturbed soil samples taken from field were obtained by various laboratory tests. The consolidation simulataneous tests between vacuum preloading and surcharge preloading were carried out with patent apparatus. Permeability tests under vacuum preloading were also carried out. The tests showed the vacuum preloading had better effects to decrease the water ratio and void ratio of the soil as comparison to surcharge method. Conductivity coefficient has some fluctuation in initial stage afer vacuum preloading. Later it declined slowly and declining velocity became slower and slower. However, the consolidation effects under the two different loads were almost accordant.
     (2) Through field tests, the soil behavior, settlement velocity and pore water pressure distributing, etc. were statistically analyzed and the mechanisms of vacuum preloading and surcharge preloading were also studied. Both of them are aimed to cause pore pressure differences for draining and then increase the effective stresses with the pore pressure dissipation to reach soil consolidation.
     (3) Through the analysis of measurements of the excess pore water pressure, consolidation process of soil in vacuum preloading was compartmentalized three phases for the first time. The three phases were:①seepage consolidation in shallow soil and " surcharge loading" effect in deep soil by vacuum suction;②consolidation stabilization in shallow soil and transformation of "surcharge loading" effect to "negative pressure" effect in deep soil;③seepage consolidation in deep soil under "negative pressure" effect and to balance. The soil in vacuum preloading was divided into shallow soil and deep soil. Seepage consolidation happened in shallow soil and the superposition of "surcharge loading" and "negative pressure" caused deep soil consolidation. Such proposed theory could explain the phenomenon that the excess pore water pressure in some survey points became positive or maintained constant in first several days after picking up the suction.
     (4) Maximum deepness (depth of shallow soil) lmax by vacuum preloading in the first phase was brought forward. And momentary "surcharge loading" P resulted in by groundwater decline was also developed. lmax could be obtained from variation curves of excess pore water pressure of all measurement points. p could be approximately calculated through decline depth of groundwater. The essential cause of soil behavior by vacuum preloading was not negative pressure difference solely caused by seepage field, but rather the working together of "positive pressure" and "negative pressure" during different phases as well as the especial phenomenon:groundwater decline. Meanwhile,"positive pressure" would weaken intensity of seepage field.
     (5) A one-dimension vacuum consolidation model including "two springs" was established and applied to analyze soil consolidation. The excess pore water pressure was obtained by solving the consolidation equation under the given initial and boundary conditions, and a basically reasonable agreement existed with the measurements.Mechanisms of vacuum preloading and surcharge loading were analyzed in effective stress path and strain. Considered radial consolidation of sand drain, analytical solutions of excess pore water pressure were analyzed. Based on large deformation consolidation theory and unsaturated soil theory, mechanisms of vacuum preloading were discussed.
     (6) The model of the vacuum preloading considering Biot consolidation theory was established using finite element method (FEM). The results showed that:①In numerical calculation, surcharge preloading was not identical with vacuum preloading.②Vertical drainage channels were applicable to be treated as the medium of strong permeation during the settlement calculation of roadbed and applicable to be treated as negative pressure boundary conditions for calculating horizontal displacement at the slope toe of roadbed.③It was very important to define negative pressure distribution mode of vertical drainage channels.
     (7) Based on the grey theory and Genetic Algorithms, settlement forecast model were established and applied to forecasting roadbed settlements under vacuum preloading. Based on one-dimension consolidation theory, the consolidation settlement calculation formulas method of both vacuum preloading and that combined surcharge preloading were deduced under some simplifications. By comparing the theory solution and the measurements, some correction parameters taken account into the instantaneous settlement and lateral deformation were proposed for both vacuum and surcharge preloading.
     (8) The influences of vacuum intensity and groundwater decline on soil consolidation effect were discussed. Increasing the quantity of jet pumps or declining the groundwater would make better reinforcement effect, but the cost would rise simultaneously. At last, the treatment effect was appraised by conventional criterions.
引文
[1]Kjellman, W., Consolidation of clay by mean of atmospheric pressure[C]. Conference on soil stabilization, MIT,1952.
    [2]Holton G R. Vacuum Stabilization of Subsoil Beneath Runway Extension at Philadelphia International Airport[C]. MIT,1965.
    [3]龚晓南.21世纪岩土工程发展展望[J].岩土工程学报,2000(2).238-242.
    [4]Arutiunian R N. Vacuum-Accelerated Stabilization of Liquefied Soils in Landslide Body[C].1983.
    [5]王星华.地基处理与加固[M].长沙:中南大学出版社,2002.40-43.
    [6]张永钧,秦宝玖,平涌潮,张锋.超载预压处理深厚软弱地基[C].第四届地基处理学术讨论会论文集.杭州:浙江大学出版社,1995.
    [7]高志义.真空预压法的机理分析[J].岩土工程学报,1989,11(4).45-55.
    [8]李青松,吴爱祥,黄继先等.真空渗流场作用下的渗透固结[J].中南大学学报,2005,36(4).689-693.
    [9]邱青长莫海鸿董志良.真空预压地基竖向排水体内流体的压降分析[J].华南理工大学学报(自然科学版),2007,35(3).132-135.
    [10]张力霆.粉煤灰土地基的工程特性以及提高真空预压效果的研究[J].河北水利专科学校学报.1990(2).26-35.
    [11]严蕴,房震,花剑岗.真空堆载预压处理软基效果的室内试验研究[J].河海大学学报(自然科学版),2002,30(5).118-121.
    [12]Ali H M, Liu H. Laboratory study for effects vacuum preloading on physical and mechanical properties of soft clayey soils[J]. Journal of Southeast University (English Edition).,21(1).82-87.
    [13][13] Indraratna B, Redana I W. Laboratory Determination of smear zone due to vertical drain installation[J]. J. Geotech. and Geoenviron. Engrg. ASCE.1998(2). 180-184.
    [14]吴桂芬,高玉峰,魏代现等.真空和堆载两种预压法的室内实验研究[J].岩土力学,26(增).95-98.
    [15]房营光,徐敏,朱忠伟.碱渣土的真空-电渗联合排水固结特性试验研究[J].华南理工大学学报(自然科学版),2006,34(11).70-75.
    [16]邱青长,莫海鸿,黄志良等.真空吸力作用流体的流型及压降试验研究[J].2006,6(20).3262-3267.
    [17]董志良,李婉,张功新.真空预压法加固潮间带软土地基的试验研究[J].岩石 力学与工程学报,2006,25(增).3490-3494.
    [18]秦焱,王清,侯红英.真空加固前后软土工程地质性质研究[J].世界地质,2007,26(1).89-93.
    [19]艾英钵,蔡南树,柯朝辉.减小真空预压区外土体侧向变形的措施[J].河海大学学报(自然科学版),2007,35(6).686-689.
    [20][20]周波,张可能,杨庆光等.南沙深厚软土真空预压法的现场试验与应用研究[J].湖南科技大学学报(自然科学版),2008,23(1).60-65.
    [21]邱青长,罗彦.南沙港区软土固结孔压特性试验研究[J].中国港湾建设,2009(4).23-25.
    [22]胡珩,王保田.真空作用面位置对加固效果影响的试验研究[J].岩土力学,2009,30(5)
    [23]程琪,王卫东.真空预压法加固连云港庙岭三期软基可行性试验[J].中国港湾建设,2002(3).48-51.
    [24]岑仰润.真空预压加固地基的试验及理论研究[D].浙江大学博士学位论文,2003.51-54.
    [25]朱平,闫澍旺,刘润等.真空预压法加固路堤软基的工程实例分析.岩土工程学报[J],2003,25(4).508-510.
    [26]夏玉斌,王剑平,唐元松.椒江污水处理工程超深软基真空预压加固效果综合分析[J].工程地质学报,2004(增).411-417.
    [27]孙治林,牛恩宗.黄骅港堆场软基真空预压效果及监测[J].水运工程,2005(4).27-30.
    [28]金志宝,朱建才.真空联合堆载预压加固桥头软基的沉降监测分析[J].岩土工程师,2005,17(1).46-48.
    [29]艾凯,徐兵,张计.真空预压法在某泵站工程中的应用与研究[J].长江科学院院报,2005,22(5).52-53.
    [30]张功新,莫海鸿,董志良.孔隙水压力测试和分析中存在的问题及对策[J].岩石力学与工程学报,2006,25(增2).3535-3538.
    [31]韩雪峰,邝国麟,谭国焕,赵维炳.水下真空预压过程中孔隙水压力变化规律研究[J].岩土工程学报,2008,30(5).659-662.
    [32]Bergado D T, Chai J C, Miura N, et al. PVD improvement of soft Bangkok Clay with combined vacuum and reduced sand embankment preloading[J]. Geotechnical Engineering.1998,29(1).95-122.
    [33]Home M R. The consolidation of a stratified soil with vertical and horizontal drainage[J]. Int. J. Mech. Sci.1964(6).187-197.
    [34]Valent P J. Investigation of the seafloor preconsolidatioin foundation concept[R]. Washington:Naval Civil Engineering laboratory,1973.
    [35]Ter-Martirosyan Z G, Cherkasova L I. Theoretic basis for the compaction of water-saturated soils by vacuum[C].1983.
    [36]Yoshikuni H. Design and control of construction in the vertical drain method[C]. Tokyo:1979.
    [37]Yoshikuni H, Nakanodo H. Consolidation of soils by vertical drain wells with finite permeability[J]. Soils and Foundations.1974,14(2)35-46.
    [38]Hansbo S. Consolidation of fine-grained soils by prefabricated drains[C]. Stockholm,1981.
    [39]Onoue A. Consolidation by vertical drains taking well resistance and smear into consolidation[J]. Soils and Foundations.1988,28(4).165-174.
    [40][40] Tang M, Gao Z. Experimenttal study and application of vacuum preloading for consolidating soft soil foundation[C].
    [41]Cognon J M J, Uran I, Thevanayagam S. Vacuum consolidation technology principles and field experience[M]. NEWYORK:Geotechnical Special Publication,Publ by ASCE,1994.
    [42]Bergado D T, Chai J C, Miura N, et al. PVD improvement of soft Bangkok Clay with combined vacuum and reduced sand embankment preloading[J]. Geotechnical Engineering.1998,29(1).95-122.
    [43]张泽鹏,李约俊,冯淦清,洪宝宁.塑料排水板在真空预压加固软基中的作用.广州大学学报(自然科学版),2002,1(2).68-71.
    [44]张志允,翟国民,张明品.堆载预压法和真空预压法加固机理的比较研究[J].岩土工程界,2002,5(11).24-26.
    [45]莫海鸿,邱青长,董志良.软土地基孔隙水压力降低引起的压缩分析[J].岩石力学与工程学报,2006,25(增2).3435-3440.
    [46]刘润,闫澍旺,苗中海等.水下真空预压中真空产生机制的研究[J].中国港湾建设,2003,126(5).29-35.
    [47]张敬,刘爱民.水下真空预太的加固机理分析[J].岩土工程学报,2007,29(5).
    [48]徐泽中,刘世同,柴玉卿.真空堆载联合预压法的渗流分析[J].河海大学学报,2002,30(3).85-88.
    [49]朱斌,陈若曦,陈云敏等.分层真空预压软上地基一维大变形固结模型及试验研究[J].浙江大学学报(工学版).2007,41(11).1927-1936.
    [50]Cheng Y K, Lee P K, Xie K H. Some remarks on two and three dimensional consolidation analysis of sand-drained ground[J]. Computer and Geotechnits. 1991(12).73-87.
    [51]Indraratna B, Redana I W. Plain strain modeling of smear effects associated with vertical drains[J]. Geotech. and Geoenviron. Engrg. ASCE.1997(5).474-478.
    [52]Indraratna B, Redana I W. Closure:Plain strain modeling of smear effects associated with vertical drains[J]. J. Geotech. and Geoenviron. Engrg. ASCE. 1999(1).96-99.
    [53]Indraratna B, Redana I W. Numerical modeling of vertical drains with smear and well resistance installed in soft clay[J]. Can. Geotech.2000(1).132-145.
    [54]Hird C C, Pyrah I C, Russell D. Finite element modelling of vertical drains beneath embankments on soft ground[J]. Geotechnique.1992,42(3).499-511.
    [55]Hird C C, Russel D, Cinicioglu F. Modeling the effect of vertical drains in two-dimensional finite element analysis of embankments on soft ground[J]. Can Geotech.J.1995(5).795-807.
    [56]Sanchez J M, Sagaseta C. Analysis of staged construction of embankments on soft soil[C]. Santander.1990.
    [57]曾国熙.砂井地基的若干问题[J].岩土工程学报.1981(3).74-81.
    [58]曾国熙.竖井排水固结理论研究的若干进展[C].杭州:浙江大学出版社,1994.
    [59]Zeng G X. New development of the vertical drain theories[C].1989.
    [60]Chai J C, Miura N, Bergado D T. Behavior of vertical drain improved subsoil under embankment loading[J]. Soils and Foundations.1995(4).49-61.
    [61]Chai J C, Miura N. Investigation of factors affecting vertical drain behavior[J]. Geotech and Geoenviron, Engrg. ASCE.1999(3).216-226.
    [62]Chai J C, Shen S L, Miura N. Simple method of modeling PVD-Improved subsoil[J]. Geotech and Geoenviron, Engrg. ASCE.2001(11).965-972.
    [63]Bergado D T. Smear effects of vertical drains on soft Bangkok clay[J]. J.Geotech. Engrgl17, ASCE.1991(10).1509-1530.
    [64]Bergado D T. Full scale field test of prefabricated vertical drain(PVD) on soft Bangkok clay and subsiding environment[C]. New York:1997.
    [65]Bergado D T. Prefabricated vertical drains (PVDs) in soft Bangkok clay:a case study of the new Bangkok international airport project[J]. Can. Geotech.2002(2). 304-315.
    [66]Kim Y T, Lee S R. An equivalent model and back-analysis technique for modeling in situ consolidation behavior of drainage-installed soft deposits[J]. Computer and geotechnics.1997(2).125-142.
    [67]Amir M A, Herrmann L R. Continuum model and analysis of wick-drained systems[J]. International journal for numerical and analytical methods in geomechanics.1993(17).827-847.
    [68]吴跃东,余湘娟,殷宗泽.负压条件下考虑土体损伤和流变的有限元分析[J].岩土力学,2002,23(2).137-141.
    [69]陈远洪,洪宝宁,龚道勇.真空预压法对周围环境影响的数值分析[J].岩土力学,2002,23(3).382-386.
    [70]徐立新,陈云敏,吕庆雷等.真空预压法加固高速公路软基的有限元分析[J].河海大学学报(自然科学版),2004,32(5).587-591.
    [71]姜增国,刘伏成.软基真空预压加固沉降过程的数值模拟研究[J].岩土工程界,2005,8(10).30-31.
    [72]何良德,宋少华2,熊国平等.真空预压地基最终应力和位移的解析解[J].河海大学学报(自然科学版),2005,33(2).194-197.
    [73]董志良,陈平山,莫海鸿真空预压法有限元计算比较[J].岩石力学与工程学报,2008,27(11).2347-2353.
    [74]刘华,钱德玲,付聪.基于ABAQUS的软土地基加固有限元分析[J].合肥工业大学学报(自然科学版),2009,32(8).1229-1232.
    [75]Leong, E.C., Soemitro, R.A.A,& Rahardjo,H..Soil improvement by surcharge andvacuum preloading. Geotechnique,50(5),2000,601-605.
    [76]余湘娟,吴跃东,赵维炳.真空预压法对加固区边界影响的研究[J].水利学报,2002(9).123-128.
    [77]王劲,陈晓平.真空预压法对周边地基变形影响的研究[J].岩石力学与工程学报,2005,24(增2).5490-5494.
    [78]孟昭即,石利平.对真空-堆载联合预压影响深度的探讨[J].地基处理,2006,17(2).27-32.
    [79]霍吉栋,朱平.浅谈软土区真空预压法对周边构筑物的影响[J].港工技术2006(3).49-50.
    [80]胡利文,王永平.南沙港区真空预压处理水力吹填堆场地基施工技术[J].公路交通科技,2005,22(4).44-48.
    [81]范须顺,刘良志.关于真空预压施工法问题的讨论[J].港工技术,2007(6).49-50.
    [82]J. Chu, S. W. Yan and H. Yang,Soil improvement by the vacuum preloading method for an oil storage station,Geotechnique,2000,50(6).625-632.
    [83]娄炎,杨守华,高长胜.对真空预压加固中沉降稳定标准的讨论[J],2004,128(1).23-31.
    [84]秦焱,王清,侯红英.刚性基础软土地基的真空预压处理[J].辽宁工程技术大学学报,2006,25(4).539-542.
    [85]施建勇,雷国辉,艾英钵.关于真空预压沉降计算的研究[J].岩土力学,2006,27(3).365-368.
    [86]湛川,高文龙,周旭荣等.黄骅港湾地区真空预压处理后地基静力触探研究[J].岩土力学.2006,27(12).2273-2276.
    [87]吴起星,胡辉.基于Gompertz成长曲线的真空预压软土沉降规律分析[J].岩石力学与工程学报,2006,25(增2).3600-3606.
    [88]侯健飞.利用真空预压实测孔隙水压力推算土体固结度的计算方法探讨[J].中国港湾建设,2005,134(1).13-15.
    [89]冼亚军.路基软基处理方案分析及探讨[J].广东建材,2007(3).16-18.
    [90]任文芳.塑料排水板距对真空预压加固时问的影响[J].中国港湾建设,2005,1 36(3).30-31.
    [91]张泽鹏,李约俊,冯淦清等.塑料排水板在真空预压加固软基中的作用[J].广州大学学报(自然科学版),2002,1(2).68-71.
    [92]王永强.天津港软土地基加固中的几点认识[J].中国港湾建设,2006,141(1).16-19.
    [93]刘汉龙,彭勃,陈永辉.真空-堆载联合预压的地基沉降简化计算方法[J].岩土力学,2006,27(5).745-748.
    [94]许胜,王媛.真空一堆载联合预压法加固软基平面等效算法研究[J].水运工程,2006(11).87-91.
    [95]金小荣,俞建霖,龚晓南等.真空预压部分工艺的改进[J].岩土力学,2007,28(12).2711-2714.
    [96]王志辉.“高真空击密法”在厦门船运基地软基加固中的应用[J].福建建筑,2008(6).64-67.
    [97]罗戌,顾长存,马殿光.常规真空预压与低位真空预压软基加固方法比较[J].水道港口,2004,25(3).164-167.
    [98]陈顺益.潮间带水下真空预压联合堆载预压软基处理施工工艺[J].世界桥梁,2005(4).72-75.
    [99]黄瑞,夏玉斌,黄旺祥.大铲湾港区一期试验区直排式真空预压法[J].水运工程,2009(5).122-127.
    [100]李军,胡继业,邓元广.大面积吹填陆域真空预压密封墙处理技术的应用[J].水运工程,2004(2).44-48.
    [101]何开胜.堤坝滑坡区土性试验和灾害治理[J].自然灾害学报.2007,16(1).81-87.
    [102]何浩强,高海江.复杂条件下真空预压法加固软基施工工艺探讨[J].浙江建筑,2006,23(8).50-52.
    [103][103]丁剑鹏.聚氯乙烯复合膜在真空预压技术中的应用探讨[J].广东建材,2008(5).16-18.
    [104]刘寒鹏,孙锐。,刘文东.膜上覆水真空预压技术在软土地基处理中的应用[J].地质与勘探,2008,44(3).87-90.
    [105]高峰,闵佳华.排水固结法地基处理技术的应用[J].山西建筑,2006(1).19-20.
    [106]李军.杨福麟.人工插膜结合粘土密封墙作为真空预压侧向密封系统的试验[J].港工技术,2008(4).38-40.
    [107]徐猛,黄家青,唐彤芝.软式透水管在高速公路真空预压工程中的应用研究[J].水利与建筑工程学报,2007,5(2).22-26.
    [108]王惠中.深层搅拌法在真空预压后地基工程上的应用[J].世界地质,2005,24(3).304-307.
    [109]邱青长,莫海鸿,董志良等.水泥搅拌桩和砂桩在真空预压防护工程中应用与分析[J].岩土工程学报,2007,29(1).143-146.
    [110]林正珍,邓昭林.水下真空联合堆载预压处理潮间带软基[J].水运工程,2005(8).67-74.
    [111]蔡南树,柯朝晖,董志良等.特殊条件下的真空预压密封技术术[J].水运工程,2005(8).67-74.128-121.
    [112]孙田磊,杨福麟,陈伟明等.新型真空预压粘土密封墙施工设备及其应用[J].水利水运工程学报,2009(3)
    [113]J.Q. Shang,M.Tang, and Z.Miao. Vacuum preloading consolidation of reclaimed land:a case study. Can. Geotech. J.,1998,35(7),740-749.
    [114]叶超琦.潮汐区真空预压联合堆载地基加固技术的应用[J].水运工程,2007(8).141-146.
    [115]中华人民共和国铁道部.高速铁路设计规范(试行).北京:中国铁道出版社,2009年12月.
    [116]祝龙根,刘利民,耿乃兴.地基基础测试新技术.北京:机械工业出版社,2002年2月.1-89.
    [117]Bowles, J.E. (1970), Engineering Properties of Soils and Their Measurement, McGraw-Hill Book Co., N.Y.
    [118]郭宏伟.真空预压法在天津市轻轨路基中的应用.岩土工程界,第6卷.第10期.31-34.
    [119]岑仰润,真空预压加固地基的试验及理论研究[D],浙江大学:博士学位论文.2003.
    [120]娄炎.真空排水预压法加固软土技术[M].北京:人民交通出版社,2002.
    [121]张勇.地基基础工程设计施工验收规范与强制性条文实施手册(JGJ79-2002)[M].北京:中科多媒体电子出版社,2003.
    [122]孟昭即.对真空预压影响深度的探讨[J].地基处理,2003,14(3).44-48.
    [123]刘汉龙,李豪,彭勃,等.真空一堆载联合预压加固软基室内试验研究[J],岩土工程学报,2004,26(1).145-149
    [124]陈环,鲍秀清.负压条件下土的固结有效应力[J].岩土工程学报,1984,6(5).39-47.
    [125]阎澎旺,陈环.用真空加固软土地基的机制与计算方法[J].岩土工程学报,1986,8(2).35-44.
    [126]高志义.真空预压法的机理分析[J].岩土工程学报,1989,11(4):45-55.
    [127]龚晓南,岑仰润.真空预压加固软土地基机理探讨[J].哈尔滨建筑大学学报,2002,35(2):7-10.
    [128]李青松,吴爱祥,黄继先.真空渗流场作用下的渗透固结—“真空预压”的实质[J].中南大学学报,2004,35(3).
    [129]邱青长,莫海鸿,董志良.真空预压地基竖向排水体内流体的压降分析[J].华南理工大学学报:自然科学版,2007,35(3):132-135.
    [130]TERZAGHI K. Theoretical soil mechanics[M]. New York:John Wiley and Sons, Inc.,1943.
    [131]刘杰,傅裕.土的渗透压密性质[J].水利学报,1993(5),76-81.
    [132]Cargill K.W., Predication of Consolidation of Very Soft Soil, Journal of Geotechnical Engineering, vol.110, no.6,1984.
    [133]王曰国.真空-堆载联合预压加固软土地基理论与试验研究[D].长沙:中南大学.2010.
    [134]《地基处理手册编写委员会》曾国熙,卢肇钧等.地基处理手册[M].北京:中国建筑工业出版社,1988.64
    [135]JGJ 79-2002,建筑地基处理技术规范[S].
    [136]Biot A.,General Theory of Three-Dimensional Consolidation,J.of Applied Phys.,1941,Vol.12.
    [137]谢康和.砂井地基固结理论,数值分析与优化设计[D].杭州:浙江大学,1987.
    [138]赵维炳,陈永辉,龚友平.平面应变有限元分析中砂井的处理方法[J].水力学报,1998.29(6)
    [139]岑仰润.真空预压加固地基的试验及理论研究[D].浙江:浙江大学.2003.76,74-75,54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700