用户名: 密码: 验证码:
山西省小麦—玉米轮作系统养分资源综合管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦-玉米轮作系统是山西省重要的作物种植体系之一,主要分布在临汾和运城两个地区,对全省谷类作物生产的贡献率达30%。养分管理不合理尤其是氮肥过量施用是目前该区域高产区中普遍存在的问题,不仅降低养分利用效率,还造成环境方面潜在的风险。本文通过村级水平的农户调查了解了小麦-玉米轮作生产中农户施肥行为以及养分流动状况;通过在洪洞县和永济市多年多点的田间试验,采用氮素实时监控技术和磷钾恒量监控技术,建立了山西省小麦-玉米轮作体系农田养分综合管理技术,分析了氮肥施用对研究地区小麦和玉米产量与环境效应的影响;采用GIS技术,对氮、磷、钾养分进行了区域化研究,建立了区域尺度的养分管理技术体系。主要研究结果如下:
     1.村级水平养分流动与养分循环研究表明,村级养分投入与产出极不平衡,氮磷盈余,而钾缺少。主要原因是小麦-玉米体系氮素投入量过大,一个轮作周期氮磷钾的投入量分别为714kg/ha,137kg/ha (P2O5),42kg/ha(K2O),导致的后果是养分投入量大而利用效率低。
     2.田间试验结果显示,建立小麦-玉米轮作养分资源综合管理技术体系,采用其中的核心技术“氮素实时监控技术和磷钾量监控技术”推荐氮磷钾肥最佳用量,与传统的施肥处理比较,能够大幅度降低肥料用量,尤其是氮肥用量,提高产量,增加收益。在连续3年6季作物的试验周期中,氮肥总用量为862kg/ha,仅为农民传统处理的35%,作物增产6.2%,永济点平均年总收入增加1262.4元/ha,洪洞点平均每年总收入增加3065元/ha。
     对永济市0-120cm土体NO3--N含量动态研究发现,应用养分资源综合管理技术,由于推荐的施氮量低,向下淋洗的硝态氮没有传统处理严重。但无论是应用养分资源综合管理技术还是农户传统管理模式,一旦施肥后,表层聚集的N03--N会急剧增加,而后又慢慢减少,向土层下方淋洗。
     3.洪洞县农田应用养分资源综合管理技术,小麦季氮素表观损失比传统施肥减少22%,玉米季比传统施肥减少91%,小麦-玉米轮作体系比传统施肥减少56%。永济市农田由于农户传统施肥量不足,应用养分资源综合管理技术增加了施氮量,因此,氮素表观损失较农户传统施肥一个轮作周期高出64.7kgN/ha,但区别不是很大,多施的氮素主要用于产量提高。
     小麦-玉米轮作体系氮效率研究结果,应用养分资源综合管理技术,3茬小麦和3茬玉米的PFPN均在30kg/kg以上,而农户传统处理的PFP值只有20kg/kg左右,养分资源综合管理技术养分生产效率较农户模式提高50%左右。
     4.2007-2008年对氮素损失途径的定量化研究,结果显示,永济试验区以NOx形式排放损失的氮量占到施氮量的1.2%,该结果高于IPCC的确认值(1%)。而本试验条件下,氨挥发量不是很高,只占施氮量的7%,可能是本地区氮肥采用深施以及施肥后马上采用喷灌技术的原因。氨损失的程度仅为华北地区其它采用深施进行试验研究的结果的一半,其它研究中较大的损失可能是施肥量过高导致土壤铵态氮含量高的原因。本研究中,因为土壤表层的NH4+含量在10天内比较稳定,而N03含量较低,仅为施氮量的3.9%,所以土壤硝化和反硝化速率都很低,不是氮损失的主要途径,而尿素深施抑制了氨挥发,这些将有利于提高肥料的利用效率。
     应用箱法对N20的排放研究得出,N2O排放与农田氮用量密切相关,随施N量的增加而增加。土壤温度和湿度会影响N2O的排放。DMPP可有效抑制N2O排放,大约可以减少N2O排放量的一半,从而减少氮素损失,提高氮肥利用效率
     5.以永济市为例,对全市511个GPS定位土壤样本分析发现,氮磷钾养分在不同兮M尺度上存在中等程度的自相关性,目前氮磷仍然是限制作物生长的主要因素。本文同时应用克立格法对全氮、有效磷和交换性钾的空间分布进行评价分析,并进行了区域化养分管理分区,分区后全市氮素管理可以按四个等级、有效磷按一个等级、交换性钾按二个等级进行养分管理。3年的田间试验对区域化养分管理技术验证,如果推荐肥料用量被农户所采纳,小麦-玉米轮作系统产量可增加10-20%,经济收入增加1550-2610元/ha。
     鉴于以上研究结果,初步得出山西省小麦-玉米轮作区生产中养分管理建设性意见:
     1.针对小麦-玉米轮作系统养分失衡问题,提出“减氮稳磷”对策,大力提倡秸秆还田,加强钾的养分再循环,增施农家肥。
     2.针对小麦-玉米轮作系统氮素淋洗损失的问题,在建议减少氮素用量的同时,提出必须解决肥料的剂型和肥料形态,比如研发与小麦玉米生长需求相匹配的缓释氮肥等。
     3.欧美等小麦玉米生产大国的偏生产力可以达到50~60kg/kg,从我们的结果来看,PFP值还没有达到此标准,关键是籽粒产量偏低的原因。因此,产量的进一步提升是目前要解决的问题,提出养分管理研究必须与高产栽培技术相结合。
     4.鉴于目前我国农户生产经营规模小,土壤样品采集化验成本高的状况,区域化养分管理技术是一个可行的选择。因此,区域化养分管理或养分分区管理系统更适合中国农村实际状况,值得在县、乡、村级水平上进一步发展。在此基础上研发相应的区域化专用配方肥,实现技术的物化更有必要。
Wheat-Maize (W-M) rotation is one of the important crop-growing systems in Shanxi Province. It is mainly distributed in Linfen and Yuncheng Basin, and its production accounts for30%of the total production of cereal crops in the province. Unreasonable management of nutrients, especially excessive nitrogen application is a common problem in high-yield area of the region, not only reduces the efficiency of nutrient utilization, but also causes potential environmental problems. In this paper, Village-level household survey was conducted to understand the farmer's fertilization behavior and nutrient flows. Nutrient real-time monitoring technologies were applied in the experiments to establish the integrated nutrient management techniques (INM) of W-M rotation system in Shanxi Province. In addition, effects of nitrogen fertilizers on crop yield and environment was evaluated. Based on the above, using GIS technology, regional scale nutrient management system was established in Yongji County. The main findings are as follows:
     1. Nutrient flows and nutrient cycling studies showed that nutrient input and output was extremely unbalanced at the village level, specifically, nitrogen (N) and phosphorus (P) surplus, and the lack of potassium (K). It was due to the too much nitrogen inputs in W-M system. For example, the rate of N, P, and K inputs in Hongdong survey was714kg/ha.137kg/ha and42kg/ha, respectively.
     2. The field experiments results showed that INM could increase the crop yield and significantly reduce the amount of fertilizer, especially nitrogen fertilizer, compared with traditional fertilization management. In the3-year experiments, the total amount of nitrogen fertilizer using INM was862kg/ha, only35%of the traditional treatment. But the yield of INM was increased by6.2%, the annual profitabilty was increased by1262.4yuan/ha in Yongji trials, and3065yuan/ha in Hongdong trials. At the same time, the results about dynamic changes of soil nitrate nitrogen (NO3--N) concentration of0-120cm depth in Yongji County found that the application of INM could effectivly reduce the leaching of NO3--N, compared with the traditional treatment, due to the lower nitrogen rate. But whether the integrated nutrient management technology or farmer's traditional management, the leaching of NO3--N would occur after fertilization.
     3. Apparent N losses of INM in wheat season reduced by22%than traditional fertilization management in Hongdong and91%in maize season. In Yongji County, because INM increased the nitrogen rate, apparent N losses is higher64.7kg N/ha than traditional fertilization management in W-M rotation. For the nitrogen efficiency, partial factor productivity from applied nitrogen (PFPN) is increased by50%, compared with the traditional treatment.
     4. In2007-2008, the studies of the pathways of nitrogen loss were implemented in Yongji. The results showed that7%of the applied N was lost by ammonia (NH3) volatilization when the urea fertilizer was deep placed using farmers'local practice, and that1.2%of the applied N was lost as nitric oxide and nitrogen dioxide (NOX). The result of NOX loss is higher than the value of IPCC (1%), whereas, NH3loss was much lower than that observed in other experiments with deep placement in the North China Plain. The greater losses in those experiments may have been due to the higher rates of fertilizer application, which resulted in higher ammoniacal N concentrations.
     The study on nitrous oxide (N2O) emissions using chamber method showed that the amount of nitrous oxide (N2O) emissions increased with applying nitrogen fertilizer. In addition, soil temperature and humidity also affect N2O emissions. The nitrification inhibitor DMPP (3-4-dimethyl pyrazole phosphate) can effectively inhibit N2O emissions and reduce about half of the N2O emissions rate.
     5. Throngh the analysis of a total of511GPS-referenced soil samples taken in Yongji County, moderate spatial dependence was found for soil total nitrogen (TN), Olsen extractable phosphorus (OLSENP) and extractable potassiue (EXTK). but at different spatial scales. Low concentrations of TN and OLSENP were found and they are likely to be the main limiting nutrients for crop growth in this county. The spatial distributions of TN. OLSENP and EXTK were estimated by using kriging interpolation. The cropped areas of the county were divided into fertilizer management categories consisting of four classes of TN, three classes of OLSENP and two classes of EXTK. In3-year field verification trials in two villages, the crop yields of the wheat-maize rotation system increased by10-20%, and farmers'cash income increased by1550-2610RMB/ha/year where regional fertilization recommendations were implemented, in comparison with traditional farmers'practices.
     Given the above findings, the initial comments on the nutrient management of wheat-Maize rotation in Shanxi Province are as follow:
     1. In view of the nutrient imbalances of wheat-maize rotation system, the strategy which reduce nitrogen rate and stabilize phosphorus rate are adviced. In additon, it is necessary that strengthen stalk return to the field and apply organic fertilizer.
     2. Research of release nitrogen fertilizer matching the growth of wheat and maize is necessary when we study the nitrogen feitilizer application.
     3. Partial factor productivity from applied nitrogen of wheat and maize in Europe and America can achieve50-60kg/kg, but it has not yet reached this standard in our country. Therefore, the further increase of the yield is the current problem to be solved, the proposed nutrient management research with the combination of high-yield cultivation techniques.
     4. The regionalized fertilization maps are a practical alternative to site-specific soil nutrient management approaches in areas where it is not practical, because of small farm size or other constraints, to use intensive soil sampling and chemical analyses. Hence, a regionalized nutrient management (or nutrient zone management) system is more suitable for the rural Chinese situation and should be developed at the county, town or village levels.
引文
[1]中国统计年鉴.北京,中国统计出版社,2010,471-481.
    [2]张福锁.提高作物养分资源利用效率的生物学途径.北京农业大学学报,1995,21(增刊),104-110.
    [3]Dual R. and Roy R.N. Integrated Plant Nutrition Systems. FAO Fertilizer and Nutrition Bulletin,12, Rome,1995.
    [4]Oenema O. Governmental polices and measures regulating nitrogen and phosphorus from animal manure in European Agriculture. Journal Animal Sciences,2004,82, 1-11.
    [5]Mulla D.J. A comparison of winter wheat yield and quality under uniform versus spatially variable fertilizer management. Agriculture, Ecosystems and Environment, 1992,38,301-311.
    [6]Kincheloe S. Tools to aid management:the use of site specific management. Journal of soil and water conservation,1994,49 (2),43-47.
    [7]Sawyer J.E. Concepts of variable rate technology with considerations for fertilizer application. Journal of production Agriculture.1994.7.195-201.
    [8]Bhatti A.U. Comparison of wheat yield under uniform and variable rates of fertilizer on spatially-eroded land. Communications in Soil Science and Plant Analysis,1998, 29.2855-2863.
    [9]Scharf P.C. Spring nitrogen on winter wheat:I. Farmer-field validation of issue test-base rate recommendations. Agronomy Journal.1993.85.1181-1186.
    [10]Olk D.C. Interpreting fertilizer-use efficiency in relation to soil nutrient-supplying capacity, factor productivity, and agronomic efficiency. Nutrient Cycling in Agroecosystems,1999,53,35-41.
    [11]Weisz R. Optimizing nitrogen application timing in no-till soft red winter wheat. Agronomy Journal,2001,93,435-442.
    [12]Vanlauwe B. Within-farm soil fertility gradients affect response of maize to fertilizer application in western Kenya. Nutrient Cycling in Agroecosystems,2006,76, 171-182.
    [13]Tilman. Global environmental impacts of agricultural expansion:The need for sustainable and efficient practices. PNAS,1999,96,5995-6000.
    [14]Swaminathan M. S. An evergreen revolution. Biologist,2000,47(2),85-9.
    [15]Kenneth G. Cassman. Ecological intensification of cereal production systems:Yield potential, soil quality, and precision agriculture. PNAS,1999,96,5952-5959.
    [16]Kenneth G. Cassman. Meeting cereal demand while protecting natural resources and improving environment quality. Annual Review of Environment and Resources,2003, 28,315-358.
    [17]李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题.南昌,江西科学技术出版社,1998.
    [18]张福锁.养分资源综合管理.北京,中国农业大学出版社,2003,1-3.
    [19]FAO.2005. FAO Statistical Databases. Agriculture Data. Http://fao.org/faostat.
    [20]郭庆法,王庆成,汪黎明.中国玉米栽培学.上海,上海科学技术出版社,2004,16-25.
    [21]陈新平.华北平原小麦-玉米轮作体系养分资源管理现状分析.小麦-玉米轮作体系养分资源综合管理理论与实践.北京,中国农业大学出版社,2006,18-54.
    [22]张玲敏,马文奇.河北省小麦玉米施肥状况评价.中国农业科技导报(增刊)2003,115-120.
    [23]Russell E. J. Soil conditions and plant growth. John Wiley & Sons, New York,1988.
    [24]Truog E. Fifty years of soil testing.7th International Congress of Soil Science IV.1960, 7,46-53.
    [25]Stanford G and Hunter A.S. Nitrogen requirements of winter wheat (Triticum aestivum L.). Agronomy Journal,1973,65,442-447.
    [26]Stanford G. Rational for optimum N fertilization in crop production. Journal of Environmental Quality,1973,2,159-165.
    [27]Hunter A.H. Laboratory and greenhouse techniques for Nutrient survey to determine the soil amendments required for optimum plant growth. Agro Service International Inc. Florida, USA,1980.
    [28]毛达如.推荐试飞技术中施肥模型与实验设计研究.土壤通报,1991,22(5),216-218.
    [29]张福锁.协调作物高产与环境保护的养分资源综合管理技术研究与应用.北京,中国农业大学出版社,2008,10-11.
    [30]陈新平,张福锁.美国玉米带氮肥管理.土壤肥料,1997,3,45-47.
    [31]王兴仁,张福锁.养分资源管理的理论和技术及其在小麦玉米高产轮作中的应用.中国农业大学学报,2003(增刊),8,36-41.
    [32]陈新平,李志宏.土壤、植株快速测试推荐施肥技术体系的建立与应用.土壤肥料,1999,2,6-10.
    [33]张福锁,马文奇.肥料投入水平与养分资源高效利用的关系.土壤与环境,2000,9(2),154-157.
    [34]张福锁,马文奇.养分资源的概念及综合管理的理论基础与技术途径.养分资源综合管理,张福锁主编,北京,中国农业大学出版社,2003,4-14.
    [35]陈新平.小麦-玉米轮作体系养分资源综合管理研究小组.张福锁主编.根际过程与养分资源高效利用研究群体简介.北京,中国农业大学出版社,2008,36-37.
    [36]Chen X and Zhang F. Synchronizing N supply from soil and fertilizer and N demand of winter wheat by an improved Nmin method. Nutrient Cycling in Agroecosystem, 2006,74,91-98.
    [37]王德建,林静慧.太湖地区稻麦轮作农田氮素淋洗特点.中国农业生态学报,2001,9(1),16-18.
    [38]吕耀.农业生态系统中氮素造成的非点源污染.农业环境保护,1998,17(1):35-39
    [39]宁建凤,邹献中.农田氮素流失对水环境污染及防治研究进展.广州环境科学,2007,22(1),5-10.
    [40]Zhang W.L and Tian Z. X. Nitrate pollution of groundwater in northern China. Agriculture, Ecosystems and Environment,1996,59,223-231.
    [41]刘敏超,曾长立.氮肥施用对冬小麦氮肥作用率及土壤剖面硝态氮含量动态分布的影响.农业现代化研究,2000,21,309-312.
    [42]巨晓棠,张福锁.中国北方土壤硝态氮的累积及其对环境的影响.生态环境,2003,12(1),24-28.
    [43]张维理,田哲旭,张宁,李晓齐.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1(2),80-87.
    [44]高新昊,江丽华,刘兆辉.山东省农村地区地下水硝酸盐污染现状调查与评价.中国农业气象,2011,32(1),89-93.
    [45]陈新平,冀宏杰,张福锁.北京郊区过量施氮对蔬菜体内硝酸盐浓度的影响.见李晓林,张福锁,米国华主编.平衡施肥与可持续优质蔬菜生产.北京,中国农 业出版社,2000,270-277.
    [46]吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究.植物营养肥料学报,1998,4(1),8-15.
    [47]高旺盛,黄进勇,吴大付.黄淮海平原典型集约农区地下水硝酸盐污染初探.生态农业研究,1999,4,41-43.
    [48]杨治平,周怀平等.不同施肥措施对旱地玉米土壤硝态氮累积的影响.中国生态农业学报,2006,14(1),122-124.
    [49]Ferm M. Atmospheric ammonia and ammonium transport in Europe and critical loads-A review. Nutrient Cycling in Agrocosystems,1998,51,5-17.
    [50]Zhu Z.L. and Chen D.L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agrocosystems,2002,63,117-127.
    [51]朱兆良.肥料与农业和环境.大自然探索,1998,17(4),25-28.
    [52]杨淑莉,朱安宁,张佳宝.不同施氮量和施氮方式下田间氨挥发损失及其影响因素.干旱区研究,2010,27(3),415-420.
    [53]蔡贵信.范晓晖.土壤氮素和氮肥的有效施用.土壤-植物营养学原理和施肥.鲁如坤等著.北京,化学工业出版社,1998,112-151.
    [54]蔡贵信.氨挥发.朱兆良,文启孝主编,中国土壤氮素.南京,江苏科学技术出版社,1990.171-794.
    [55]张绍林,蔡贵信,王贤忠.黄淮海平原潮土夏玉米系统中尿素氮损失途径的研究.土壤,1991,23,271.
    [56]李贵桐,李保国,陈德立.利用Bo wen比仪策动大面积农田土壤氨挥发的方法研究.中国农业大学学报,2001,6(5),56-62.
    [57]Abbasi M.K. and Adams W. A. Gaseous N emission during simulations nitrification-denitrification associated with mineral N fertilization to a grassland soil under field conditions. Soil Biology and Biochemistry,2000,32,1251-1259.
    [58]谢军飞,李玉娥.土壤温度对北京旱地农田N20排放的影响.中国农业气象,2005,26(1),7-10.
    [59]侯爱新,陈冠雄,吴杰.稻田CH4和N2O排放关系及其生物学机理和一些影响因子.应用生态学报,1997,8(3),270-274.
    [60]郑循华,王明星,王跃思.华东稻田CH4和N2O排放.大气科学,1997,21(2) 231-237.
    [61]Nagele W. and Conrad R. Influence of pH on the release of NO and N2O from fertilized and unfertilized soil. Bio.Fertil. Soils,1990,10(1),49-58.
    [62]Daum N and Schenk M.K. Influence of nutrient solution pH on N2Oand N2 emissions from a soilless culture system. Plant and Soil,1998,203,279-287.
    [63]徐华,邢光熙,黎祖聪.土壤质地对小麦和棉花田N20排放的影响.农业环境保护,2000,19,1-3.
    [64]郑循华.农田N20产生与排放过程研究(博士学位论文).北京,中国科学院大气物理所,1996,2-3.
    [65]王彩绒,田霄鸿,李生秀.土壤中氧化亚氮的产生及减少排放量的措施.土壤与环境,2001,10(2),143-148.
    [66]石明岩,吕锡武,稻森悠平.N2O的环境效应及其防逸技术的发展趋势.城市环境与城市生态,2002,15(5),45-47.
    [67]Bolin B, Jager J, Boos B.R. The greenhouse effect, climatic change and ecosystem. New York, John Wiley & Sons.1986,1-32.
    [68]王少彬.大气中氧化亚氮的源、汇和环境效应.环境保护,1994,4,23-27.
    [69]IPCC. Climate change. The Scientific basis. Chap 4. Atmospheric Chemistry and Greenhouse Gases.2001.
    [70]Li C.S, Zhuang Y.H. Cao M.Q. Comparing a process-based agro-ecosystem model t the IPCC methodology for developing a national inventory of N2O emission from arable lands in China. Nutrient Cycling in Agroecosystems,2001,60,159-175.
    [71]Zheng X. Han S, Huang Y, Wang Y, Wang M. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles,2004,18.
    [72]赵久然,郭强,郭景伦.北京郊区粮田化肥投入和产量现状的调查分析.北京农业科学,1997,2,7-10.
    [73]Aulakh M.S, Doran J.W, Mosier A.R. Soil denitrification-significance, measurement, and effect of management. Adv Soil Sci,1992,18,1-57.
    [74]Groffman P.M. A conceptual assessment of the important of denitrification as a source of soil nitrogen loss in tropical agro-ecosystems. Fert Res,1995,42,139-148.
    [75]Mosier A.R, Guenzi W.D, Schweizer E.E. Soil losses od dinitrogen and nitrous oxide from irrigated crop in northeastern Colorado. Soil Sci. Soc Am J,1986,50,344-348.
    [76]Mahmood T, Tahir G.R, Malik K.A. Denitrification losses from an irrigation sandy-clay loam under a wheat-maize cropping system receiving different fertilizer treatments. Biol Fertil Soils,1998,26,35-42.
    [77]陈子明,袁锋明,姚造华.北京潮土N03--N在土体中的移动特点及其淋失动态.植物营养与肥料学报,1995,1(2),71-79.
    [78]危常州,张福锁,马文奇.精准施肥技术及其在我国的应用前景.张福锁主编,养分资源综合管理.2002,135-144.
    [79]Paz J.O, Batchelor W.D, Colvin T.S. Model-based technique to determine variable rate nitrogen for corn. Agricultural Systems,1999,61,69-75.
    [80]Cassman K.G & Plant R.E. A model to predict crop response to applied fertilizer nutrients in heterogeneous field. Fertilizer Research,1992,31,151-163.
    [81]石元春.土壤学的数字化和信息化革命.土壤学报,2000,37(4),289-295.
    [82]彭望禄,Pierre Robert,程慧贤.农业信息技术与精准农业的发展.农业工程学报,2001,17(2),9-11.
    [83]Atherton B.C, Morgan M.T, Shearere S.A. Site-specific farming:A perspective on information needs, benefits, and limitations. J. Soil Water Conserve,1999,54(2), 455-461.
    [84]程序,张福锁.信息技术农业应用值得注意的方向.21世纪的农业技术革命.中国农业在线,2001,3,60-63.
    [85]Curran P.J, Dungan J.L, MAcler B.A. Reflectance spectroscopy of fresh whole leaves for the estimation concentration. Remote Sens Environ,1992,35,415-420.
    [86]周慧珍,龚子同.土壤空间变异性研究.土壤学报,1996,33(3),232-241.
    [87]杨俐苹,姜诚,金继运.棉田土壤养分精准管理初探.中国农业科学,2000,33(6),67-72.
    [88]张有山,林启美,秦耀东.大比例尺区域土壤养分空间变异定量分析.华北农学报,1998,13(1),122-128.
    [89]郭旭东,傅伯杰,陈利顶.河北省遵化平原土壤养分的时空变异特征-变异函数与Kriging插值分析.地理学报,2000,55(5),555-566.
    [90]雷咏雯,危常州,李俊华.不同尺度下土壤养分年空间变异特征的研究.土壤,2004,36(4),376-381.
    [91]白由路,金继运,杨俐苹.基于GIS的土壤养分分区管理模型研究.中国农业科学,2001,34(1),46-50.
    [92]黄绍文,金继运,杨俐苹.县级区域粮田土壤养分空间变异与分区管理技术研究.土壤学报,2003,40(1),79-88.
    [93]危常州,侯振安,雷咏雯.不同地理尺度下综合施肥模型的建模与验证.植物营养与肥料学报,2005,11(1),13-20.
    [94]山西统计年鉴,北京,中国统计出版社,2008,686-694.
    [95]Beegle D.B. and Lanyon L.E. Nutrient management legislation in Pennsylvania. Journal of Soil and Water Conservation,1994,49(2),84-86.
    [96]De Clercq P., Gertsis A.C., Hofman G. Nutrient management legislation in European countries. Wageningen Press, The Netherlands.2001.
    [97]Oenema O. Governmental polices and measures regulating nitrogen and phosphorus from animal manure in European agriculture. Journal of Arimal Science,2004,82(E. Suppl.):E196-E206.
    [98]OMAFRA (Ministry of Agriculture, Food, and Rural Affairs, Government of Ontario, Canada), Nutrient Management,2006.
    [99]A. de Jager.. Kariuku I., Matiri F.M., Odendo M. Monitoring nutrient flows and economic performance in African farming systems (NUTMON). IV. Linking nutrient balances and economic performance in three districts in Kenya. Agriculture. Ecosystems and Environment,1998,71,81-92.
    [100]Gachimbia L.N., Keulenb H. van, Thuraniraa E.G. Nutrient balances at farm level in Machakos (Kenya), using a participatory nutrient monitoring (NUTMON) approach. Land Use Policy,2005,22,13-22.
    [101]Bosch H. Van den., Jager A. De., Vlaming J. Monitoring nutrient flows and economic performance in African farming systems (NUTMON). Ⅱ. Tool development. Agriculture, Ecosystems and Environment,1998,71,49-62.
    [102]Jager A. De., Nandwa S.M., Okoth P.F. Monitoring nutrient flows and economic performance in African farming systems (NUTMON). I. Concepts and methodologies. Agriculture, Ecosystems and Environment,1998,71,37-48.
    [103]Bosch H. Van den., Gitari J.N., Ogaro V.N., Maobe S. Monitoring nutrient flows and economic performance in African farming systems (NUTMON). Ⅲ. Monitoring nutrient flows and balances in three districts in Kenya. Agriculture, Ecosystems and Environment,1998,71,63-80.
    [104]鲁如坤,刘鸿翔,闻大中.我国典型地区农业生态系统养分循环与养分平衡.Ⅱ.农田养分收入参数.土壤通报,1996,27(4),151-154.
    [105]朱兆良,文启孝.中国土壤氮素.南京,江苏科学技术出版社,1990.
    [106]葛晓光.菜田土壤与施肥.北京,农业出版社,2002.
    [107]张福锁.测土配方施肥技术要览.北京,中国农业大学出版社,2006,190-213.
    [108]胡坚.动物饲养学.长春,吉林科技出版社,1999.
    [109]陈新平,张福锁.华北平原小麦-玉米轮作体系养分资源管理现状分析.小麦-玉米轮作体系养分资源综合管理理论与实践.北京,中国农业大学出版社,2006,18-54.
    [110]鲁如坤.土壤-植物营养学原理与施肥.北京,化学工业出版社,1998,1-16.
    [111]鲁如坤,刘鸿翔,闻大中.我国典型地区农业生态系统养分循环与养分平衡.Ⅳ.农田养分平衡的评级方法和原则.土壤通报,1996,27(5),197-199.
    [112]陈新平.我国小麦-玉米轮作养分资源管理技术体系的建立.陈新平,张福锁主编.小麦-玉米轮作体系养分资源综合管理理论与实践.北京,中国农业大学出版社.2006,55-75.
    [113]李俊良,张瑞清,赵荣芳.华北地区冬小麦-夏玉米轮作体系的农田养分平衡模式.中国农业科技导报,2003,5(增刊),40-44.
    [114]李志宏,张福锁,王兴仁.我国北方地区几种主要作物氮营养诊断及追肥推荐研究Ⅳ:冬小麦-夏玉米轮作制度下氮营养诊断及氮肥推荐研究.植物营养与肥料学报,1997,3(4):357-362.
    [115]王兴仁,曹一平,张福锁等.磷肥恒量监控施肥法在农业中的探讨.植物营养与肥料学报,1995,1(2-4),59-64.
    [116]赵荣芳,张瑞清,陈新平等.华北地区冬小麦-夏玉米轮作体系的农田氮素循环与平衡模式.2006.
    [117]Liu X.J., Ju X,T.,Zhang F.S. Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain. Field Crops Research,2003,83,111-124.
    [118]Zhao R.F., Chen X.P., Zhang F.S. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agronomy Journal,2006,98,938-945.
    [119]王兴仁,曹一平,毛达如.作物施肥综合调控体统的建立和应用.北京农业大学 学报,1995,21(增),1-9.
    [120]李志宏,王兴仁,曹一平.冬小麦-夏玉米轮作条件下氮肥后效的定量研究.北京农业大学学报,1995,21(增),29-32.
    [121]王兴仁,曹一平,张福锁.土壤氮磷钾资源特征和综合管理策略.北京农业大学学报,1995,21(增),89-93.
    [122]陆景林.植物营养学.北京农业大学出版社,北京,1995.
    [123]杨林章.中国农田生态系统养分循环与平衡及其管理.科学出版社,北京,2008.
    [124]王兴祥,张桃林,张斌.红壤旱坡地农田生态系统养分循环和平衡.生态学报,1999,19(3),335-341.
    [125]李志博,王起超,陈静.农业生态系统的氮素循环研究进展.土壤与环境,2002,11(4),417-421.
    [126]陈明昌,张强,杨晋玲.农业生态系统中氮素循环研究综述.山西农业科学,1993,21(4),53-59.
    [127]马立珊,王祖强,张水铭.苏南太湖水系农业面源污染及其控制对策研究.环境科学学报,1997,17(1),39-46.
    [128]高怀友,赵玉态,郑向群.西部地区农业面源污染现状与对策研究.中国生态农业学报,2003,11(3),184-186.
    [129]全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施.生态学报,2002,22(3),291-298.
    [130]邢光熹,施书莲,杜丽娟.苏州地区水体氮污染状况.土壤学报,2001,4,540-546.
    [131]陈银萍,罗永清,陶玲.兰州市农村饮用水中硝态氮分布特征及评价.农业环境科学学报,2011,30(1),183-189.
    [132]刘晓晨,孙占祥.地下水硝态氮污染现状及研究进展.辽宁农业科学,2008,5,41-45.
    [133]刘宏斌,张云贵,李志宏.北京市平原农区深层地下水硝态氮污染状况研究.土壤学报,2005,3,411-418.
    [134]王庆锁,孙东宝,郝卫平.密云水库流域地下水硝态氮的分布及其影响因素.土壤学报,2011,1,141-150.
    [135]高旺盛,黄进勇,吴大付.黄淮海平原典型集约农区地下水硝酸盐污染初探.生态农业研究,1999,4,41-43.
    [136]赵同科,张成军,杜连凤.环渤海七省(市)地下水硝酸盐含量调查.农业环境科学学报,2007,26(2),779-783.
    [137]邹建文,黄耀.农业管理措施对N20排放的影响.农村生态环境,2002,18(1),46-49.
    [138]邢光熹,颜晓元.中国农田N20排放的分析估算与减缓对策.农村生态环境,2000,16(4),1-6.
    [139]郑循华,王明星,王跃思.稻麦轮作生态系统中土壤湿度对N20产生与排放的影响.应用生态学报,1996,7(3),273-279.
    [140]王智平.中国农田N20排放量的估算.农村生态环境,1997,13(2),51-55.
    [141]邹建文,黄耀.稻田CO2 CH4和N20排放及其影响因素.环境科学学报,2003,6,758-764.
    [142]丁洪,蔡贵信,王跃思.玉米-潮土系统中氮肥硝化反硝化损失与N20排放.中国农业科学,34(4),416-421.
    [143]Aulakh M.S., Doran J.W., Mosier A.R. Field evaluation of four methods for measuring denitrification. Soil Science Society of America Journal,1991.55, 1332-1338.
    [144]Mulvaney R.L., Bremner J.M. A modified diacetyl monoxime method for colorimetric determination of urea in soil extracts. Communications in Soil Science and Plant Analysis,1979,10,1163-1170.
    [145]Rayment GE, Higginson FR (1992)'Australian laboratory handbook of soil and water chemical methods'. (Inkata Press:Melbourne)
    [146]Aulakh M.S., Khera T.S., Doran J.W. Mineralization and denitrification in upland, nearly saturated and flooded subtropical soil. I. Effect of nitrate and ammoniacal nitrogen. Biology and Fertility of Soils,2000,31,162-167.
    [147]白璐,黄国红,陈冠雄.氮肥及作物根系对农田N20和CH4排放的影响.应用生态学报,2000,11(增刊),59-62.
    [148]王跃思,郑循华,王明星等.气相色谱法检测大气中的N20浓度.分析测试技术与仪器,1994,2,19-24.
    [149]Hall S.J., Matson P.A., Roth P.M. NOx emissions from soil:Implications for air quality modeling in agricultural regions. Annual Review of Energy and Environment, 1996,21,311-346.
    [150]Ludwig J., Meixner F.X., Vogel B, Forstner J. Soil-air exchange of nitric oxide:An overview of processes, environmental factors, and modeling studies. Biogeochemistry, 2001,52,225-257.
    [151]Linn D.M., Doran J.W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 1984,48,1267-1272.
    [152]Kowalenko C.G., Ivarson K.C., Cameron D.R. Effecy of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soil. Soil Biology & Biochemistry,1978,10,417-423.
    [153]Tiedje J.M. Ecology of denitrification and dissimilarity nitrate reduction to ammonium. In'Biology of anaerobic microorganisms'. (Ed. AJB Zehnder). pp.1988, 179-244 (John Wiley & Sons, New York)
    [154]Sherlock R.R., Freney J.R., Bacon P.E., van der Weerden T.J. Estimating ammonia volatilization from unsaturated urea fertilized and urine affected soils by an indirect method. Fertilizer Research,1995,40,197-205.
    [155]Zhang S.L., Cai G.X., Wang X.Z., Xu Y.H., Zhu Z.L., Freney J.R. Losses of urea-nitrogen applied to maize grown on a calcareous Fluvo-Aquic soil in north China plain. Pedosphere,1992,2,171-178.
    [156]Cai G.X., Chen D.L., Ding H., Pacholski A.. Fan X.H., Zhu Z.L. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutrient Cycling in Agroecosystems,2002 a,63,187-195.
    [157]Cai G., Chen D., White R.E., Fan X.H., Pacholski A., Zhu Z.L., Ding H. Gaseous nitrogen losses from urea applied to maize on a calcareous fluvo-aquic soil in the North China Plain. Australian Journal of Soil Research,2002 b,40,737-748.
    [158]Ray H.E., MacGregor J.M., Schmidt E.L. Movement of ammonium nitrogen in soils. Soil Science Society of America Journal,1957,21,309-312.
    [159]Fenn L.B., Miyamoto S. Ammonia loss and associated reactions of urea in calcareous soils. Soil Science Society of America Journal,1981,45,537-540.
    [160]Denmead O.T., Simpson J.R., Freney J.R. A direct field measurement of ammonia emission after injection of anhydrous ammonia. Soil Science Society of America Journal,1977,41,1001-1004.
    [161]Liu C.Y., Zheng X.H., Zhou Z.X., Han S.H., Wang Y.H., Wang K., Liang W.G., Li M., Chen D., Yang Z.P. Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China. Plant Soil,2010,DOI10.1007/s 11104-009-0278-5.
    [162]Veldkamp E., Keller M. Fertilizer-induced nitric oxide emissions from agricultural soils. Nutrient Cycling in Agroecosystems,1997,48,69-77.
    [163]Stehfest E., Bouwman L. N2O and NO emission from agricultural fields and soils under natural vegetation:summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosytems,2006,74,207-228.
    [164]Yan X.Y., Ohara T.,Akimoto H. Statistical modeling of global soil NOx emissions. Global Biogeochemical Cycles,2005,19, GB3019, doi:10.1029/2004GB002276.
    [165]Chalk P.M., Smith C.J. Chemodenitrification. In'Gaseous loss of nitrogen from plant-soil systems'. (Eds JR Freney, JR Simpson.) pp.1983,65-89. (Martinus Nijhoff/Dr W Junk Publishers:The Hague)
    [166]Francis D.D., Vigil M.F., Mosier A.R. Gaseous losses of nitrogen other than through denitrification. In'Nitrogen in agricultural systems'. (Eds JS Schepers and WR Raun) pp.2008,255-279. (ASA-CSSA-SSSA:Madison. WI)
    [167]Dunfield P.F., Knowles R. Nitrogen monoxide production and consumption in an organic soil. Biology and Fertility of Soils,1999,30,153-159.
    [168]Godde M., Conrad R. Influence of soil properties on the turnover of nitricoxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture. Biology and Fertility of Soils,2000,32,120-128.
    [169]Venterea R., Rolston D. Mechanisms and kinetics of nitric and nitrous oxide production during nitrification in agricultural soil. Global Change Biology,2000,6, 303-316.
    [170]Cardenas L., Rondon A., Johansson C, Sanhueza E. Effect of soil moisture, temperature, and inorganic nitrogen on nitric oxide emissions from acidic tropical savannah soil. Journal of Geophysical Ressearch,1993,98,14783-14790.
    [171]Remde A., Conrad R. Production of nitric oxide in Nitrosomonas Europaea by reduction of nitrite. Archives of Microbiology,1990,154,187-191.
    [172]粱东丽,同延安,Ore Emteryd菜地不同施氮量下N20逸出量的研究.西北农林科技大学学报,2004,30(2),73-77.
    [173]Freney J.R. Emission of nitrous oxide from soils used for agriculture. Nutr Cycle Agroecosyst,1997,49,1-6.
    [174]萧克,殷士学.影响氧化亚氮形成与排放的土壤因素.土壤学进展,1995,23(6)35-42.
    [175]Drury C.F. Nitric oxide and nitrous oxide production from soil:water and oxygen effects. Soil Sci.Soc.Am.J,1992,56,766.
    [176]张玉铭,陈德立.农田土壤N20生成与排放影响因素及N20总量估算的研究.中国生态农业学报,2004,12(3):121-123.
    [177]郑循华,王明星,王跃思.温度对农田N20产生与排放的影响.环境科学,1997,18(5),1-5.
    [178]Bai Y.L. and Jin J.Y. Discussion on the patterns of developing site specific agriculture in Shanghai (in Chinese). Agriculture net information,2004,4,12-15.
    [179]Zheng L.Y., Cao Q.M., Xia W.L. Developmental tendency and application of site specific agriculture (in Chinese). Journal of South China University of Tropical Agriculture,2005,11,40-44.
    [180]Mulla D. J., Bhatti A.U., Hammond M.W., Benson J.A. A comparison of winter wheat yield and quality under uniform versus spatially variable fertilizer management. Agriculture, Ecosystem and Environment,1992,38,301-311.
    [181]Sawyer J. E. Concepts of variable rate technology with considerations for fertilizer application. Journal of production Agriculture.1994.7,195-201.
    [182]Kincheloe S. Tools to aid management:the use of site specific management. Journal of soil and water conservation,1994.49, ppS43(3).
    [183]Bhatti A.U., Ali R., Ullah F., Khan M. J. Comparison of wheat yield under uniform and variable rates of fertilizer on spatially-eroded land. Communications in Soil Science and Plant analysis,1998,29,2855-2863.
    [184]Scharf P.C., Alley M.M., Lei Y.Z. Spring nitrogen on winter wheat:I. Farmer-field validation of issue test-base rate recommendations. Agronomy Journal,1993,85, 1181-1186.
    [185]Olk, D.C., Cassman, K.G., Simbahan, G., Sta Cruz, P.C., Abdulrachman, S., Nagarajan,R., Pham, Sy Tan. and Satawathananont, S.,1999. Interpreting fertilizer-use efficiency in relation to soil nutrient-supplying capacity, factor productivity, and agronomic efficiency. Nutrient cycling in Agroecosystems.53: 35-41.
    [186]Weise, R., Crozier, C.R. and Heiniger, R.W.,2001. Optimizing nitrogen application timing in no-till soft red winter wheat. Agronomy Journal.93:435-442.
    [187]Vanlauwe, B., Tittonell, P. and Mukalama, J.,2006. Within-farm soil fertility gradients affect response of maize to fertilizer application in western Kenya. Nutrient Cycling in Agroecosystens.76:171-182.
    [188]Magdoff, F.R., Jokela, W.E., Fox, R.H. and Griffin, G.F.,1990. A soil test for nitrogen availability in the northeastern United States. Communications in Soil Science and Plant analysis.21(13-16):1103-1115.
    [189]Fox, R.H., Roth, G.W., Iversen, K.V. and Piekielek, W.P.,1989. Soil and tissue nitrate tests compared for predicting soil nitrogen availability to corn. Agronomy Journal.81:971-974.
    [190]Meirvenne, Van., Pannier, M., Hofman, J. and Louwagie, G..1996. Regional characterization of the long-term change in soil organic carbon under intensive agriculture. Soil Use and management.12:86-94.
    [191]Zhang, C.S. and McGrath, David.,2004. Geostatistics and GIS analyses on soil organic carbon concentration in grassland of southeastern Ireland from two different periods. Geoderma.119:261-275.
    [192]Chiles, J.P. and Delfiner, P.,1999. Geostatistics:modeling spatial uncertainty. New York:John Wiley and Sons.
    [193]Huang S.W., Jin J.Y., Yang L.P., Bai Y.L. Spatial variability of soil nutrients and influencing factors in a vegetable production area of Hebei Province in China. Nutrient cycling in Agroecosystems,2006,75,201-212.
    [194]Zhu Z.L., Wen Q.X., Freney J.R. Nitrogen in soils of China. Dordrecht:Kluwer Academic Publishers.1997.
    [195]Yang L.L., Hu C.S. Index of precision fertilizer in high yield region of Taihang Piedmont. Chinese Journal of Eco-Agriculture,2002,10,71-75.
    [196]Cammbardella C.A. Field-scale variability of soil properties in central Iowa soils. Soil Science Society American Journal,1994,58,1501-1511.
    [197]Jones J.W. DSSAT the cropping system model. European Journal of Agronomy,2003, 18(3),235-265.
    [198]Ascough J.C., II. GPFARM:an integrated decision support system for sustainable Great Plains agriculture. In:D.E. Stott, R.H. Mohtar, and G.C. Steinhardt, eds. Sustaining the global International Journal of Geographical Information Science 979farm-local action for land leadership. Proceedings of the 10th International Soil Conservation Organization (ISCO) conference,24-29 May 1999, Purdue University, West Lafayette, IN,2002,951-960.
    [199]Chen D. A GIS-based water and nitrogen management model (WNMM) and agricultural decision support tool (ADST) for irrigated wheat and maize in North China Plain. In:Z.L. Zhu, K. Minami, and G.X. Xing, eds. The 3rd international nitrogen conference. Proceedings of the 3rd international nitrogen conference. Nanjing, China. New Jersey:Science Press,2005,899-908.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700