用户名: 密码: 验证码:
灌溉和雨养条件下高产小麦耗水特性和产量形成的生理基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1推迟拔节水及其灌水量对小麦耗水特性和产量形成的影响
     试验以高产小麦品种济麦22为材料,于2007~2008小麦生长季在山东泰安山东农业大学实验农场进行。小麦生育期间降水量,播种至冬前期为21.1mm,冬前至返青期为12.5mm,返青至拔节期为13.8mm,拔节至开花期为57.3mm,开花至成熟期为37.0mm。小麦生育期内补灌拔节水和开花水。拔节水设2个补灌时期,分别为拔节期和拔节后10d,每次补灌设3个目标相对含水量,即灌水后0–140cm土层土壤相对含水量分别达到65%、75%、80%;各处理开花期补灌的目标相对含水量均为70%。以W(165%)、W2(75%)、W3(80%)表示拔节期灌水处理,DW1(65%)、DW2(75%)、DW3(80%)表示拔节后10d灌水处理,W0表示不灌水处理。研究推迟拔节水及其灌水量对小麦耗水特性和产量形成的影响。
     1.1推迟拔节水及其灌水量对小麦耗水特性的影响
     同一补灌水平下,DW2和DW3处理拔节至拔节后10d日耗水量分别低于W2和W3处理,拔节后10d至开花阶段日耗水量分别高于W2和W3处理,表明拔节后10d补灌有利于满足小麦孕穗期对水分的需求。
     拔节后10d补灌条件下,DW2处理小麦拔节至开花阶段0–120cm土层土壤贮水消耗量低于DW1处理,高于DW3处理;拔节至开花阶段日耗水量、全生育期灌水量和耗水量高于DW1处理,低于DW3处理,表明在拔节水推迟10d灌溉的条件下,随拔节水补灌水平提高,小麦拔节至开花阶段0–120cm土层土壤贮水消耗量降低,全生育期灌水量和耗水量增加。
     1.2推迟拔节水及其灌水量对小麦碳氮代谢的影响
     同一补灌水平下,DW2和DW3处理开花后各个时期旗叶光合速率、花后29d最大光化学效率和实际光化学效率、花后干物质积累量和氮素积累量分别高于W2和W3处理,营养器官贮藏干物质和氮素向籽粒的转运量分别低于W2和W3处理,表明拔节后10d补灌有利于提高开花后旗叶光合同化能力,增加开花后的干物质和氮素积累量。
     拔节后10d补灌条件下,DW2处理开花后28d旗叶光合速率显著高于DW1和DW3处理,花后干物质积累量高于DW1处理,与DW3处理无显著差异,花后氮素积累量高于DW3处理,表明DW2处理有利于提高小麦开花后干物质积累量和氮素积累量。
     1.3推迟拔节水及其灌水量对小麦产量和品质及水分利用效率的影响
     同一补灌水平下,DW2和DW3处理穗数分别低于W2和W3处理,穗粒数、千粒重、籽粒产量、水分利用效率和灌溉效益高于W2和W3处理,湿面筋含量、吸水率、面团形成时间和稳定时间与W2和W3处理无显著差异,表明拔节水由拔节期推迟至拔节后10d灌溉有利于提高籽粒产量、水分利用效率和灌溉效益,对籽粒品质无显著影响。
     拔节后10d补灌水平为75%的DW2处理籽粒产量高于DW1处理,与DW3处理无显著差异,水分利用效率高于DW3处理,灌溉效益高于DW1和DW3处理,籽粒蛋白质含量和湿面筋含量亦较高,是本试验条件下的最优处理。
     2耕作方式和灌溉时期对小麦耗水特性和产量形成的影响
     试验以高产小麦品种济麦22为材料,于2008~2009小麦生长季在山东兖州小孟镇史家王子村进行。小麦生育期间降水量,播种至冬前期为13.6mm,冬前至返青期为6.7mm,返青至拔节期为28.9mm,拔节至开花期为54.9mm,开花至成熟期为26.3mm。2007~2008生长季设置了条旋耕、深松+条旋耕、旋耕、深松+旋耕和翻耕5种耕作方式处理,本试验在2007~2008生长季的试验小区内设同一处理进行定位试验,但“深松+条旋耕”和“深松+旋耕”处理不再深松,研究一次深松耕作的后效。每种耕作方式下设置1个不灌水处理和3个灌溉时期处理:拔节期+开花期(W1),拔节后10d+开花期(W2),拔节后10d+开花后10d(W3),不灌水处理做对照(W0)。设计灌水后0–140cm土层土壤目标相对含水量为75%。研究耕作方式和灌溉时期对小麦耗水特性和产量形成的影响。
     2.1耕作方式和灌溉时期对小麦耗水特性的影响
     灌溉时期相同的条件下,深松+条旋耕处理播种至拔节阶段和拔节至开花阶段耗水模系数低于其他处理,开花至成熟阶段耗水量和耗水模系数高于其他处理;全生育期灌水量低于旋耕、深松+旋耕和翻耕处理,土壤贮水消耗量高于其他处理,总耗水量低于深松+旋耕处理,与翻耕处理无显著差异;开花至成熟阶段80–160cm土层土壤贮水消耗量高于其他处理,表明深松+条旋耕处理促进了小麦对深层土壤贮水的吸收,有利于提高开花至成熟阶段的耗水量,减少灌水量,节约灌溉水资源。
     同一耕作方式条件下,与W1处理相比,仅推迟拔节水的W2处理灌水量增加,但土壤贮水消耗量及其占总耗水量的比例未降低;与推迟拔节水和开花水的W3处理相比,W2处理灌水量降低,土壤贮水消耗量增加,开花至成熟阶段20–100cm土层土壤贮水消耗量高于W3处理,总耗水量与W3处理无显著差异。
     2.2耕作方式和灌溉时期对小麦碳代谢的影响
     灌溉时期相同的条件下,小麦灌浆中后期旗叶光合速率、最大光能转换效率、磷酸蔗糖合成酶活性和开花后干物质积累量表现为深松+条旋耕和深松+旋耕处理显著高于其他处理;在W2和W3条件下,深松+条旋耕处理与深松+旋耕处理之间无显著差异;在W0和W1条件下,深松+条旋耕处理高于深松+旋耕处理,表明深松+条旋耕处理有利于延缓小麦旗叶衰老,提高灌浆中后期光合同化能力,增加开花后干物质积累量;条旋耕和旋耕处理灌浆中后期旗叶光合速率均较低,不利于干物质的积累。
     条旋耕和深松+条旋耕条件下,W2处理开花后旗叶光合速率与W1处理无显著差异,灌浆前期高于W3处理,灌浆中后期低于W3处理;营养器官开花前贮藏干物质转运量高于W1和W3处理,开花后干物质积累量与W1和W3处理无显著差异。旋耕、深松+旋耕和翻耕条件下,W2处理灌浆中后期旗叶光合速率高于W1处理,低于W3处理;营养器官开花前贮藏干物质转运量低于W1处理,高于W3处理,开花后干物质积累量高于W1处理,与W3处理无显著差异。上述结果表明,与W1处理相比,在条旋耕和深松+条旋耕条件下,仅推迟拔节水的W2处理促进了开花前贮藏干物质向籽粒的转运,在旋耕、深松+旋耕和翻耕条件下W2处理促进了开花后干物质积累;与推迟拔节水和开花水的W3处理相比,W2处理在不同耕作方式下均有利于开花前贮藏干物质向籽粒的转运。
     2.3耕作方式和灌溉时期对小麦籽粒产量、水分利用效率和灌溉效益的影响
     灌溉时期相同的条件下,深松+条旋耕处理在W0条件下籽粒产量显著高于其他处理,水分利用效率高于条旋耕处理,与其他处理无显著差异。在灌水条件下深松+条旋耕处理水分利用效率和灌溉效益显著高于其他处理,其籽粒产量与深松+旋耕处理的无显著差异,二者均高于其他处理。旋耕和条旋耕处理籽粒产量和水分利用效率低于其他处理。表明,深松+条旋耕有利于提高小麦籽粒产量、水分利用效率和灌溉效益,是本试验条件下的最优耕作处理。
     同一耕作方式条件下,W2处理小麦籽粒产量、水分利用效率和灌溉效益均显著高于W1处理;水分利用效率和灌溉效益高于W3处理;条旋耕、旋耕和翻耕条件下籽粒产量高于W3处理,表明在不同耕作方式条件下,于拔节后10d和开花期灌溉的W2处理均有利于提高籽粒产量、水分利用效率和灌溉效益,是本试验条件下的最优灌溉时期处理。推迟开花水的W3处理不利于水分的高效利用。
     3耕作方式和施氮量及种植密度对旱地小麦耗水特性和产量形成的影响
     试验于2009~2010和2010~2011小麦生长季在山东临淄边河乡边河村进行,该地区为丘陵旱地,无灌溉条件。2009~2010生长季试验以济麦22为材料,设置条旋耕、深松+条旋耕、旋耕和深松+旋耕4种耕作方式处理。每种耕作方式下设置3个施氮量处理:不施氮(N0);施纯氮90kg hm2(N1);施纯氮150kg hm2(N2),磷钾肥用量一致,氮磷钾肥全部基施,基本苗为225株·m2。在深松+条旋耕且施纯氮150kg hm2的条件下设置3个种植密度处理,基本苗分别为225株·m (2D1)、300株·m (2D2)和375株·m2(D3)。小麦生育期间降水量,播种至冬前期为57.9mm,冬前至返青期为37.7mm,返青至拔节期为35.6mm,拔节至开花期为7.9mm,开花至成熟期为99.7mm。2010~2011生长季试验以山农16为材料,在2009~2010生长季试验的小区内设同一处理进行定位试验,但“深松+条旋耕”和“深松+旋耕”处理不再深松,研究耕作方式和施氮量及种植密度对旱地小麦耗水特性和产量形成的影响。小麦生育期间降水量,播种至冬前期为5.0mm,冬前至返青期为0.0mm,返青至拔节期为20.0mm,拔节至开花期为9.5mm,开花至成熟期为71.1mm。
     3.1耕作方式和施氮量及种植密度对旱地小麦耗水特性的影响
     基本苗为225株·m2、同一施氮量条件下,深松+条旋耕处理播种至拔节阶段0–60cm土层土壤贮水消耗量和各生育时期棵间蒸发量均低于旋耕和深松+旋耕处理,与条旋耕处理无显著差异;拔节至开花阶段和开花至成熟阶段耗水量高于其他处理;全生育期土壤贮水消耗量高于条旋耕和旋耕处理,在降水少的2010~2011生长季亦高于深松+旋耕处理,表明深松+条旋耕处理促进了小麦对土壤贮水的吸收,减少了土壤水分向大气中的扩散,有利于抵御干旱胁迫。
     基本苗为225株·m2、同一耕作方式条件下,N2处理开花至成熟阶段40–200cm土层土壤贮水消耗量、阶段耗水量和耗水模系数均高于N0和N1处理,小麦全生育期土壤贮水消耗量和总耗水量最高,N1处理次之,N0处理最低,表明N2处理促进了旱地小麦对土壤贮水的消耗,有利于植株生长。
     种植密度处理间比较,D1处理播种至拔节阶段耗水量和耗水模系数显著低于D2和D3处理,拔节至开花阶段和开花至成熟阶段显著高于D2和D3处理。在全生育期降水238.9mm的2009~2010生长季,各处理间土壤贮水消耗量无显著差异,在全生育期降水105.6mm的2010~2011生长季,D1处理显著高于D2和D3处理,表明D1处理有利于减少旱地小麦生育前期的耗水,增加生育后期的耗水,在降水少的条件下可促进小麦对土壤贮水的吸收。
     3.2耕作方式和施氮量及种植密度对旱地小麦碳氮代谢的影响
     基本苗为225株·m2、同一施氮量条件下,深松+条旋耕处理灌浆中后期旗叶光合速率、最大光能转换效率、磷酸蔗糖合成酶活性和超氧化物歧化酶活性均高于其他处理,旗叶丙二醛含量低于其他处理;开花后干物质和氮素积累量及其对籽粒的贡献率显著高于其他处理,表明深松+条旋耕处理有利于延缓旗叶衰老,提高旱地小麦灌浆中后期的光合生产能力,增加开花后干物质和氮素积累量。
     基本苗为225株·m2、同一耕作方式条件下,N2处理有利于提高小麦灌浆中后期旗叶超氧化物歧化酶活性,延缓旗叶衰老,旗叶灌浆中后期光合速率和开花后干物质积累量显著高于其他处理。随施氮量增加,小麦各生育时期的植株氮素积累量提高,营养器官开花前贮藏氮素向籽粒的转运量和开花后氮素积累量均增加。
     种植密度处理间比较,D1处理灌浆中后期旗叶超氧化物歧化酶活性高于D2和D3处理,丙二醛含量低于D2和D3处理; D1处理冬前期和返青期干物质积累量低于D2和D3处理,开花后干物质积累量和成熟期干物质积累量显著高于D2和D3处理,表明D1处理有利于延缓旗叶衰老,增加小麦生育后期的干物质积累量。
     3.3耕作方式和施氮量及种植密度对旱地小麦籽粒产量、籽粒蛋白质含量和水分利用效率的影响
     基本苗为225株·m2、同一施氮量条件下,深松+条旋耕处理籽粒产量和籽粒蛋白质产量显著高于其他处理,水分利用效率高于旋耕和深松+旋耕处理,与条旋耕处理无显著差异,籽粒蛋白质含量与其他处理均无显著差异,表明深松+条旋耕处理有利于提高籽粒产量、籽粒蛋白质产量和水分利用效率,是本试验条件下的最优耕作处理。
     基本苗为225株·m2、同一耕作方式条件下,N2处理籽粒产量、籽粒蛋白质含量和籽粒蛋白质产量均最高,N1处理次之,N0处理最低;N2处理水分利用效率与N1处理无显著差异,高于N0处理,表明在一定范围内增加施氮量可显著提高旱地小麦籽粒产量、籽粒蛋白质含量和水分利用效率。
     种植密度处理间比较,在降水多的2009~2010生长季,D1处理公顷穗数低于D2和D3处理,穗粒数、千粒重、籽粒产量和水分利用效率高于D2和D3处理;在降水少的2010~2011生长季,D1处理穗粒数、籽粒产量和水分利用效率高于D2和D3处理,表明在旱作条件下,D1处理有利于增加小麦穗粒数和籽粒产量,提高水分利用效率。
1Effects of delayed irrigation at jointing stage and irrigation amount on waterconsumption characteristics and yield formation of wheat
     The experiments were conducted in the experimental farm of Shandong AgriculturalUniversity in Taian, Shandong during2007~2008wheat growing season with high-yieldwheat cultivar Jimai22. The precipitation amount in wheat growing season was as follows:21.1mm during the stage from sowing to pre-wintering,12.5mm from pre-wintering toreviving,13.8mm from reviving to jointing,57.3mm from jointing to anthesis,37.0mmfrom anthesis to maturity. Tow irrigation were given in wheat growing season. The firstirrigation was given at jointing stage or10d after jointing stage respectively. Moreover, therespected relative soil water content in0–140cm soil layer after the first irrigation was65%,75%,80%respectively, and which was70%after the second irrigation at anthesis stage in alltreatments. W1(65%), W2(75%), W3(80%) represented irrigation treatments at jointingstage, and DW1(65%), DW2(75%), DW3(80%) represented irrigation treatments on10dafter jointing. W0denoted no irrigation treatment. The object of this study was to expound theeffects of delayed irrigation at jointing stage and irrigation amount on water consumptioncharacteristics and yield formation of wheat.
     1.1Effects of delayed irrigation at jointing stage and irrigation amount on waterconsumption characteristics of wheat
     Under the same irrigation level, the daily water consumption of DW2and DW3treatment was separately lower than that of W2and W3treatment from jointing to10d afterjointing, but higher than that of W2and W3treatment separately from10d after jointing toanthesis. The results indicated that supplementary irrigation on10d after jointing wasbeneficial to meet the water demand of wheat at booting stage.
     In the treatments irrigated at10d after jointing stage, soil water consumption in0–120cm soil layers of DW2was lower than that of DW1, and higher than that of DW3, from jointing to anthesis. However, the daily water consumption from jointing to anthesis,irrigation amount and water consumption amount during the whole growing season of DW2treatment were higher than those of DW1, and lower than those of DW3. It showed that soilwater consumption in0–120cm layers decreased from jointing to anthesis, irrigation amountand water consumption of whole growth season increased with the increasing of irrigationamount on10d after jointing.
     1.2Effects of delayed irrigation at jointing stage and irrigation amount on carbon andnitrogen metabolism of wheat
     Under the same irrigation level, photosynthetic rate of flag leaf after anthesis, themaximal photochemical efficiency (Fv/Fm) and actual photochemical efficiency at29d afteranthesis, dry matter accumulation amount and nitrogen accumulation amount after anthesis inDW2and DW3treatment were higher than those in W2and W3treatment respectively. Butdry matter translocation amount from vegetative organs to grains and nitrogen translocationamount from vegetative organs to grains of DW2and DW3treatment were lower than thoseof W2and W3respectively. The results suggested that supplementary irrigation on10d afterjointing was favorable to delay the senescence of flag leaf, improve photosynthetic rate of flagleaf and increase dry matter accumulation and nitrogen accumulation amount after anthesis.
     Under the condition of the treatment irrigated on10d after jointing, photosynthetic rateof flag leaf of DW2treatment on28d after anthesis was significantly higher than that ofDW1and DW3. Moreover, dry matter accumulation amount of DW2after anthesis washigher than that of DW1, and there was no significant difference between DW2and DW3treatment. However, nitrogen accumulation amount of DW2was higher than that of DW3.The results elucidated that DW2treatment whose soil relative water content reached75%after supplementary irrigation on10d after jointing, was beneficial to increase dry matteraccumulation and nitrogen accumulation in wheat after anthesis.
     1.3Effects of delayed irrigation at jointing stage and irrigation amount on wheat yield,wheat quality and water use efficiency
     Under the same irrigation level, the spike number of DW2and DW3was separatelylower than that of W2and W3, the grain number per spike,1000-grain weight, grain yield,water use efficiency and irrigation benefit of DW2and DW3were higher than those of W2 and W3. However, comparing to W2and W3, there’s no significant difference in wet glutencontent, water absorption, dough developing time and dough stability time. These resultssuggested that supplementary irrigation on10d after jointing was beneficial to increase grainyield, water use efficiency and irrigation benefit, but has no significant effect on grain quality.
     Under the condition of the treatment irrigated on10d after jointing, the grain yield ofDW2treatment whose soil relative water content reached75%after supplementary irrigationon10d after jointing, was higher than that of DW1, but there was no significant differencebetween DW2and DW3. Furthermore, the water use efficiency of DW2was higher than thatof DW3, the irrigation benefit of DW2was higher than that of DW1and DW3. In addition,grain protein content and wet gluten content of DW2were also relatively higher than those ofthe other treatments. DW2treatment was the best treatment in this study.
     2Effects of tillage practice and irrigation stage on water consumption characteristicsand yield formation of wheat
     The experiments were conducted in Shiwang village, Yanzhou, Shandong, during2008~2009growing season with high yield wheat cultivar Jimai22. The precipitation was13.6mm from sowing to pre-wintering,6.7mm from pre-wintering to reviving,28.9mmfrom reviving to jointing,54.9mm from jointing to anthesis, and26.3mm from anthesis tomaturity. Five tillage treatments, which were strip rotary tillage (SR), strip rotary tillage aftersubsoiling (SRS), rotary tillage (R), rotary tillage after subsoiling (RS) and plowing tillage (P)respectively, were designed during2007~2008growth seasons. In this experiment, the sametreatment was designed in the same experimental plot of2007~2008growing seasonexperiment. However, SRS and RS treatments were no longer subsoiling in order to study theafter-effect of subsoiling. In this study, three irrigation stage treatments were designed undereach tillage, which were jointing+anthesis (W1),10d after jointing+anthesis (W2),10dafter jointing+10d after anthesis (W3), and no irrigation was as the control (W0). Theaverage relative soil water content in0–140cm layer was75%after irrigation. The effects oftillage and irrigation stage on water consumption characteristics and yield formation of wheatwere researched in this study.
     2.1Effects of tillage practice and irrigation stage on water consumption characteristicsof wheat
     Under the same irrigation stage, soil water consumption amount in80-160cm layer ofSRS was higher than that of the other treatments from anthesis to maturity, but the waterconsumption percentage was lower than that of the other treatments from sowing to jointingand from jointing to anthesis. Moreover, water consumption amount from anthesis to maturityand its percentage to total water consumption amount in whole growing season was higherthan that of the other treatments. In addition, irrigation amount of SRS in wheat growingseason was lower than that of R, RS and P treatment, and soil water consumption amount washigher than that of the other treatments. However, total water consumption amount was lowerthan that of RS treatment, and there’s no significant difference between SRS and P treatment.The results showed that SRS treatment promoted the absorption of soil water, and wasfavorable to increase water consumption from anthesis to maturity. Furthermore, SRStreatment was also beneficial to decrease irrigation amount in wheat growing season, and savewater resources.
     Under the same tillage, The irrigation amount of W2increased, but the soil waterconsumption amount and its percentage to total water consumption amount didn’t decrease,Comparing to W1treatment. However, comparing to W3treatment, the irrigation amount ofW2decreased, the soil water consumption increased. Moreover, soil water consumptionamount of W2in20-100cm layer was higher than that of W3from anthesis to maturity, butthere was no significant difference between W2and W3in total water consumption amount.2.2Effects of tillage practice and irrigation stage on the carbon metabolism of wheat
     Under the same irrigation stage, the photosynthetic rate of flag leaf, Fv/Fmand SPSactivity at mid-late filling stage and dry matter accumulation amount after anthesis of SRSand RS treatment were significantly higher than those of the other treatments. Under thecondition of W2and W3, there’s no significant difference between SRS and RS. But underthe condition of W0and W1, SRS treatment was higher than RS treatment, which indicatedthat SRS treatment was beneficial to delay the senescence of flag leaf and increase dry matteraccumulation amount after anthesis. The photosynthetic rate of flag leaf of SR and Rtreatment were lower at mid-late filling stage, which was unfavorable to dry matteraccumulation.
     Under the condition of SR and SRS treatment, there was no significant difference in photosynthetic rate of flag leaf after anthesis between W2and W1, the photosynthetic rate offlag leaf of W2was higher than that of W3at early filling stage, but was lower than that ofW3at mid-late filling stage. Dry matter translocation amount from vegetative organs to grainsin W2was higher than that in W1and W3. There was no significant difference in dry matteraccumulation amount after anthesis between W2and W1and W3. Under the condition of R,RS and P treatment, photosynthetic rate of flag leaf of W2at mid-late grain-filling stage washigher than that of W1and lower than that of W3. Dry matter translocation amount fromvegetative organs in W2was lower than that in W1and higher than that in W3. Dry matteraccumulation amount of W2after anthesis was higher than that of W1, but had no significantdifference compared with that of W3. The results showed that compared with W1treatment,under the condition of SR and SRS, W2treatment was good to increase dry mattertranslocation amount from vegetative organs to grains. Under the condition of R, RS and P,W2treatment was good to increase dry matter accumulation amount after anthesis. Incomparison with W3, W2promoted the transportation of dry matter from vegetative organs tograins.
     2.3Effects of tillage practice and irrigation stage on grain yield, water use efficiency andirrigation benefit of wheat
     Under the condition of W0, grain yield of SRS was significantly higher than that of theother treatments. Furthermore, water use efficiency of SRS was higher than that of SR, but nosignificant difference was observed compared with other treatments. Under the condition ofirrigation, water use efficiency and irrigation benefit of SRS treatment was significantlyhigher than that of the other treatments. The grain yield of SRS and RS were higher than thatof the other treatments, but there was no significant difference between SRS and RS.Moreover, compared with the other treatments, R and SR had lower grain yield and water useefficiency. This research indicated that SRS was beneficial to increase grain yield, water useefficiency and irrigation benefit, and was the best tillage treatment in this study.
     Under the same tillage, grain yield, water use efficiency and irrigation benefit of W2were significantly higher than those of W1. The water use efficiency and irrigation benefit ofW2were also higher than that of W3. In addition, under the condition of SR, R and P, thegrain yield of W2was also higher than those of W3, which suggested that W2that was irrigated on10d after jointing and at anthesis was good to increase grain yield, water useefficiency and irrigation benefit. However, W3was not beneficial to high efficient utilizationof water.
     3Effects of tillage practice, nitrogen rate and planting density on water consumptioncharacteristics and yield formation of dry land wheat
     The field experiments were carried out in Bianhe township, Bianhe village, Linzi,Shandong, during2009~2010and2010~2011wheat growing season. This area is the hilly dryland and has no condition for irrigation. The tested cultivar was Jimai22in the growingseason of2009-2010. In this experiment, four tillage treatments were designed, which wereSR treatment, SRS treatment, R treatment and RS treatment. Each tillage had three treatmentsof nitrogen rate, which were no nitrogen application (N0),90kg N hm2(N1) and150kg Nhm2(N2). The nitrogen was given as base fertilizer, and the basic seedling number was225per square meter. Under the condition of SRS treatment and nitrogen rate of150kg hm2,three planting density were designed, which were225basic seedling per square meter (D1),300basic seedling per square meter (D2) and375basic seedling per square meter (D3). Theprecipitation amount was57.9mm from sowing to pre-wintering,37.7mm frompre-wintering to reviving,35.6mm from reviving to jointing,7.9mm from jointing toanthesis,99.7mm from anthesis to maturity. During the growing season of2010~2011,Shannong16was the tested cultivar. The same treatment was designed in the sameexperimental plot in2009~2010growing season experiment. However, SRS and RStreatments were no longer subsoiling during2010~2011growth seasons. This study was toverify the effects of tillage, nitrogen rate and planting density on water consumptioncharacteristics and yield formation of dry land wheat. During2010~2011growing season, theprecipitation amount was5.0mm from sowing to pre-wintering,0.0mm from pre-winteringto reviving,20.0mm from reviving to jointing,9.5mm from jointing to anthesis and71.1mmfrom anthesis to maturity.
     3.1Effects of tillage practice and nitrogen rate on water consumption characteristics ofdry land wheat
     Under the condition of the same nitrogen rate and225basic seedling per square meter,the soil water consumption in0-60cm soil layer from sowing to jointing and evaporation in each growing stage of SRS were lower than those of R and RS, but there was no significantdifference between SRS and SR. Moreover, water consumption from jointing to anthesis andfrom anthesis to maturity in SRS were higher than those in the other treatments. Furthermore,soil water consumption of SRS was higher than that of SR and R treatment in wheat growthseason, and was also higher than that of RS treatment in2010~2011growing season withsmall precipitation. The results suggested that SRS treatment promoted the water absorbingfrom soil by wheat, and reduced soil water diffusion to air, which was beneficial for wheat toresist drought stress.
     Under the condition of the same tillage practice and225basic seedling per square meter,the soil water consumption in40-200cm soil layer from anthesis to maturity, waterconsumption during different stages and their percentages to total water consumption in N2treatment were higher than those in N0and N1. Moreover, N2treatment had the highest soilwater consumption and total water consumption in the wheat growth season, and N1took thesecond place, and N0was the lowest. The results suggested that N2treatment promoted soilwater consumption of wheat, and was beneficial for growth of wheat.
     Comparing among the treatments with different planting density, water consumption andwater consumption percentage of D1were significantly lower than those of D2and D3fromsowing to jointing, and were significantly higher than those of D2and D3from jointing toanthesis and from anthesis to maturity. In2009~2010growing season with the precipitationamount of238.9mm, there was no significant difference in soil water consumption amongdifferent treatments. However, soil water consumption of D1was significantly higher thanthat of D2and D3in2010~2011growing season with the precipitation amount of105.6mm.This research suggested that D1treatment was beneficial to reduce water consumption atearly growth stage, and increase water consumption at late growth stage. Furthermore, D1treatment promoted water absorbing from soil by wheat under the condition of littleprecipitation.
     3.2Effects of tillage practice, nitrogen rate and planting density on carbon and nitrogenmetabolism of dry land wheat
     Under the condition of the same nitrogen rate and225basic seedling per square meter,photosynthetic rate of flag leaf, Fv/Fm, SPS activity and SOD activity of SRS treatment were higher than those of the other treatments at mid-late grain filling stage. In addition, MDAcontent of flag leaf was lower than that of the other treatments, the dry matter accumulationamount, nitrogen accumulation amount and its contribution rate to grain were significantlyhigher than those of the other treatments after anthesis. The results showed that SRS treatmentwas good to delay the senescence of flag leaf, enhance photosynthetic production at mid-lategrain filling stage, and increase dry matter and nitrogen accumulation amount after anthesis.
     Under the condition of the same tillage and225basic seedling per square meter, N2treatment was favorable to increase SOD activity of flag leaf at mid-late grain filling stage,and then delay the senescence of flag leaf. Furthermore, photosynthetic rate of flag leaf atmid-late grain filling stage and dry matter accumulation after anthesis in N2treatment weresignificantly higher than those in the other treatments, which was the base for higher yield.With the nitrogen rate increasing, nitrogen accumulation amount of wheat in each growthstage increased, and nitrogen translocation amount from vegetative organs to grains andnitrogen accumulation amount after anthesis were also enhanced.
     Comparing among the treatments with different planting density, SOD activity of flagleaf of D1treatment was higher than that of D2and D3at mid-late grain filling stage, andMDA content of D1treatment was lower than that of D2and D3treatment, which indicatedthat D1treatment was beneficial to delay the senescence of flag leaf. Furthermore, dry matteraccumulation amount of D1was lower than that of D2and D3at pre-wintering and revivingstage, the dry matter accumulation amount of D1after anthesis and at maturity stage wassignificantly higher than that of D2and D3. The results suggested that D1treatment wasfavorable to reduce dry matter accumulation of wheat at early growth stage, but increase it atlate growth stage.
     3.3Effects of tillage practice, nitrogen rate and planting density on grain yield, grainprotein content and water use efficiency of dry land wheat
     Under the condition of the same nitrogen rate and225basic needling per square meter,the grain yield and grain protein yield of SRS treatment were significantly higher than thoseof the other treatments. The water use efficiency of SRS treatment was higher than that of Rand RS treatment, but there was no significant difference between SRS and SR treatment.Furthermore, there’s no significant difference in grain protein content between SRS and the other treatments. The results indicated that SRS treatment was favorable to increase grainyield, grain protein yield and water use efficiency, didn’t reduce grain protein content, andwas the best tillage treatment in this study.
     Under the condition of the same tillage practice and225basic seedling per square meter,grain yield, grain protein content and grain protein yield of N2treatment were the highest,and N1took the second place, N0was the lowest. Moreover, the water use efficiency of N2was higher than that of N0treatment, but there was no significant difference between N2andN1. N2was the best nitrogen rate in this study. The results also suggested that the increase ofnitrogen rate within a certain range was beneficial to enhance grain yield, grain proteincontent and water use efficiency of dry land wheat.
     Comparing among the treatments with different planting density, the spike number perhectare of D1treatment was lower than that of D2and D3in2009~2010growing season withmany precipitation. However, grain number per spike,1000-grain weight, grain yield andwater use efficiency of D1treatment were higher than those of D2and D3. In2010~2011growing season with little precipitation, there were no significant difference in the spikenumber per hectare,1000-garin weight and water use efficiency among D1, D2and D3treatment, the grain number per spike, grain yield and water use efficiency of D1were higherthan those of D2and D3. The results revealed that D1treatment with the basic seedlingnumber of225per square meter was beneficial to increase grain number per spike, grain yield,and water use efficiency, was the best treatment of planting density in this study.
引文
蔡典雄,张志田,高绪科.半湿润偏旱区旱地麦田保护性耕作技术研究[J].干旱地区农业研究,1995,13(4):67-74.
    蔡焕杰,康绍忠,张振华,柴红敏,胡笑涛,王健.作物调亏灌溉的适宜时间与调亏程度的研究[J].农业工程学报,2000,16(3):24-27.
    曹树青,赵永强,温家立,王树安,张荣铣.高产小麦旗叶光合作用及与籽粒灌浆进程关系的研究[J].中国农业科学,2000,33(6):19-25.
    陈辉林,田霄鸿,王晓峰,曹玉贤,吴玉红,王朝辉.不同栽培模式对渭北旱塬区冬小麦生长期间土壤水分、温度及产量的影响[J].生态学报,2010,30(9):2424-2433.
    陈四龙,陈素英,孙宏勇,张善英,裴冬.耕作方式对冬小麦棵间蒸发及水分利用效率的影响[J].土壤通报,2006,37(4):817-820.
    陈素英,张喜英,裴冬,孙宏勇.秸秆覆盖对夏玉米田棵间蒸发和土壤温度的影响[J].灌溉排水学报,2004,23(4):32-36.
    陈志雄, Miehel V.封丘地区土壤水分平衡研究IV.雨养条件下三个不同湿度麦季的小麦耗水量与水分利用率[J].土壤学报,1991,28(4):396-403.
    Crabtree R J.雨养条件下小麦、大豆和粒用高粱长期复种[J].国外农学-麦类作物,1992,(1):34-36.
    戴万宏,吕殿青,刘胜利.关中雨养麦田施肥的节水增产效应研究[J].水土保持研究,1996,3(3):96-99.
    丁庆堂.不同耕法对草甸黑土肥力的影响[J].土壤通报,1986,17(7):61-64.
    杜太生,康绍忠,王振昌,王锋,杨秀英,苏兴礼.隔沟交替灌溉对棉花生长、产量和水分利用效率的调控效应[J].作物学报,2007,33(12):1982-1990.
    房全孝,陈雨海,李全起,于舜章,罗毅,于强,欧阳竹.土壤水分对冬小麦生长后期光能利用及水分利用效率的影响[J].作物学报,2006,32(6):861-866.
    樊向阳,齐学斌,郎旭东,高胜国,赵辉,王景雷.不同覆盖条件下春玉米田耗水特征及提高水分利用率研究[J].干旱地区农业研究,2002,20(2):60-64.
    范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱或渍水下氮素供应对小麦光合和籽粒淀粉积累的影响[J].应用生态学报,2005,16(10):1883-1888.
    冯广龙,刘昌明.冬小麦根系生长与土壤水分利用方式相互关系分析[J].自然资源学报,1998,13(3):234-239.
    高凤梅,邵立刚,王岩,李长辉,马勇,车京玉,张启晶,刘宁涛.密度与超高产春小麦生物积累及相关性状关系的研究[J].安徽农学通报,2008,14(1):139-141.
    高焕文,李洪文,陈君达.可持续机械化作农业研究[J].干旱地区农业研究, l999, l7(1):63-66.
    高焕文,李问盈,李洪文.中国特色保护性耕作技术[J].农业工程学报,2003,19(3):1-4.
    高云超,朱文珊.秸秆覆盖免耕对土壤细菌群落区系的影响[J].生态科学,2000,19(3):27-32.
    郭清毅,黄高宝.保护性耕作对旱地麦-豆双序列轮作农田土壤水分及利用效率的影响[J].水上保持学报,2005,19(3):165-169.
    韩宾,李增嘉,王芸,宁堂原,郑延海,史忠强.土壤耕作及秸秆还田对冬小麦生长状况及产量的影响[J].农业工程学报,2007,23(2):48-52.
    何照范.粮油籽粒品质及其分析技术[M].北京:中国农业出版社,1985.
    何忠诚,刘庆芳.干旱对小麦生育后期旗叶衰老的影响[J].莱阳农学院学报,2000,17(1):35-37.
    侯连涛,江晓东,韩宾,焦念元,赵春,李增嘉.不同覆盖处理对冬小麦气体交换参数及水分利用效率的影响[J].农业工程学报,2006,22(9):58-63.
    黄伦先,沈世华.免耕生态系统中土壤动物对土壤养分影响的研究[J].农村生态环境,1996,12(4):8-10.
    黄明,李友军,吴金芝,陈明灿,孙敬克.深松覆盖对土壤性状及冬小麦产量的影响[J].河南科技大学学报:自然科学版,2006,27(2):74-77.
    黄明,吴金芝,李友军,姚宇卿,张灿军,蔡典雄,金柯.不同耕作方式对旱作冬小麦旗叶衰老和籽粒产量的影响[J].应用生态学报,2009,20(6):1355-1361.
    胡梦芸,张正斌,徐萍,董宝娣,李魏强,李景娟.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究[J].作物学报,2007,33(10):1711-1719.
    胡伟.保护性耕作推广项目简介[J].农机市场,2002,(7):29.
    姜东,谢祝捷,曹卫星,戴廷波,荆奇.花后干旱和渍水对冬小麦光合特性和物质运转的影响[J].作物学报,2004,30(2):175-182.
    姜东,于振文,李永庚,余松烈.施氮水平对高产小麦蔗糖含量和光合产物分配[J].中国农业科学,2002,35(2):157-162.
    姜文来,唐华俊,罗其友,陶陶.黄淮海地区农业综合发展战略研究[J].农业展望,2007,(3):34-37.
    籍增顺,洛希图.旱地玉米免耕系统土壤养分研究: Ⅰ.土壤有机质、酶及氮变化[J].华北农学报,1998,13(2):42-47.
    居辉,兰霞,李建民,周殿玺,苏宝林.不同灌溉制度下冬小麦产量效应与耗水特征研究[J].中国农业大学学报,2000,5(05):23-29.
    居辉,李三爱,严昌荣.我国北方旱区雨养小麦生产潜力研究[J].中国生态农业学报,2008,16(3):728-731.
    居辉,王璞,周殿玺,兰林旺.不同灌溉时期的冬小麦土壤水分变化动态[J].麦类作物学报,2005,25(3):76-80.
    康绍忠,梁宗锁.控制性交替灌溉:一种新的农田节水调控思路[J].干旱地区农业研究,1997,15(1):1-6.
    Karlen D L,徐海.美国的水土保持耕作系统及研究方向[J].水土保持科技情报,1995,(1):60-66.
    寇长林,巨晓棠,张福锁.三种集约化种植体系氮素平衡及其对地下水硝酸盐含量的影响[J].应用生态学报,2005,16(4):660-667.
    兰林旺,周殿玺.小麦节水高产研究[M].北京:北京农业大学出版社,1995.
    兰霞,周殿玺,兰林旺.灌溉制度对冬小麦产量结构形成与产量物质来源的影响[J].中国农业大学学报,2001,6(1):17-22.
    连彩云.春小麦垄作交替隔沟灌溉研究[J].甘肃农业科技,2006,(8):21-22.
    廖允成,韩思明,温晓霞.黄土台原旱地小麦机械化保护性耕作栽培体系的水分及产量效应[J].农业工程学报,2002,18(4):68-71.
    李百凤,冯浩,吴普特.作物非充分灌溉适宜土壤水分下限指标研究进展[J].干旱地区农业研究,2007,25(3):227-231.
    李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    李焕章,苗果园.浅论旱地小麦土、肥、水、苗生态系[J].山西农业科学,1982,(07):5-8.
    李建民,王璞.灌溉制度对冬小麦耗水及产量的影响[J].生态农业研究,1999,7(2):23-26.
    李建民,王璞,周殿玺,兰林旺.冬小麦灌溉制度对土壤贮水利用的影响[J].中国生态农业学报,1999,7(1):54-57.
    李建民,王璞,周殿玺,兰林旺.灌溉制度对冬小麦耗水及产量的影响[J].生态农业研究,1999,7(4):23-26.
    李金才,魏凤珍.氮素营养对小麦产量和籽粒蛋白质及组分含量的影响[J].中国粮油学报,2001,16(2):6-8.
    李玲玲,黄高宝,张仁陡,晋小军, Li G D, Chan K Y.不同保护性耕作措施对旱作农田土壤水分的影响[J].生态学报,2005,25(9):94-96.
    蔺海明,陈垣,李有忠.半干旱区少免耕对土壤水分动态的影响[J].甘肃农业大学学报,1996,31(1):32-35.
    李宁,段留生,李建民,翟志席,李召虎.播期与密度组合对不同穗型小麦品种花后旗叶光合特性、籽粒库容能力及产量的影响[J].麦类作物学报,2010,30(2):296-302.
    李素娟,李琳,陈阜,张海林.保护性耕作对华北平原冬小麦水分利用的影响[J].华北农学报,2007,22(z1):115-120.
    李同阳.一种丘陵旱地的新耕作法-聚土免耕法[J].西南农业学报,1988,(2):5-7.
    李新平,李素俭.黄土高原旱作土壤水分动态及提高水分利用率的研究[J].土壤侵蚀与水土保持学报,1997,3(1):74-79.
    李永华,王玮,马千全,邹琦.干旱胁迫下抗旱高产小麦新品系旱丰9703的渗透调节与光合特性[J].作物学报,2003,29(5):759-764.
    李友军,黄明,吴金芝,姚宇卿,吕军杰.不同耕作方式对豫西旱区坡耕地水肥利用与流失的影响[J].水土保持学报,2006,20(2):42-45.
    李友军,吴金芝,黄明,姚宇卿,张灿军,蔡典雄,金柯.不同耕作方式对小麦旗叶光合特性和水分利用效率的影响[J].农业工程学报,2006,22(12):44-48.
    李昱,李问盈.冷凉风沙区机械化保护性耕作技术体系试验研究[J].中国农业大学学报,2004,9(3):16-20.
    李裕元,郭永杰,邵明安.施肥对丘陵旱地冬小麦生长发育和水分利用的影响[J].干旱地区农业研究,2000,18(1):15-21.
    李志军,张富仓,康绍忠.控制性根系分区交替灌溉对冬小麦水分与养分利用的影响[J].农业工程学报,2005,21(08):17-21.
    刘恩科,梅旭荣,龚道枝,严昌荣,庄严.不同生育时期干旱对冬小麦氮素吸收与利用的影响[J].植物生态学报,2010,34(5):555-562.
    刘凤英.中国水资源可持续利用的研究[J].江苏理工大学学报(社会科学版).2001,1.
    刘立晶,高焕文,李洪文.秸秆覆盖对降雨入渗影响的试验研究[J].中国农业大学学报,2004,9(5):12-15.
    刘世平.长期少免耕土壤供肥特征及水稻吸肥规律的研究[J].江苏农学院学报,1995,16(2):77-80.
    刘万代,尹钧,朱高纪.剪叶对不同穗型小麦品种干物质积累及籽粒产量的影响[J].中国农业科学,2007,40(7):1353-1360.
    刘文,彭小波.我国的农业水资源安全分析[J].农业经济,2006,(10):54-56.
    刘增进,李宝萍,李远华,崔远来.冬小麦水分利用效率与最优灌溉制度的研究[J].农业工程学报,2004,20(4):58-63.
    娄成后.大田生产的残茬覆盖免耕法-省工、节时、保墒、护土、增产的田间作业[J].作物杂志,1993,(01):8.
    吕军杰,姚宇卿,王育红,王海洋,张宪初.不同耕作方式对坡耕地土壤水分及水分生产效率的影响[J].土壤通报,2003,34(1):74-76.
    吕丽华,胡玉昆,李雁鸣,王璞.灌水方式对不同小麦品种水分利用效率和产量的影响[J].麦类作物学报,2007,27(1):88-92.
    马俊贵.保护性耕作技术简介[J].新疆农机化,2004,(4):19-20.
    毛红玲,李军,贾志宽,王蕾.旱作麦田保护性耕作蓄水保墒和增产增收效应[J].农业工程学报,2010,26(8):44-51.
    孟凡德,马林,石书兵,郭飞,刘兴强,朱军,毛吉贤,刘正兴.不同耕作条件下春小麦干物质积累动态及其相关性状的研究[J].麦类作物学报,2007,27(4):693-698.
    孟兆江,贾大林,刘安能,庞鸿宾,王和洲,陈金平.调亏灌溉对冬小麦生理机制及水分利用效率的影响[J].农业工程学报,2003,19(04):66-69.
    牟会荣,姜东,戴廷波,荆奇,曹卫星.遮荫对小麦旗叶光合及叶绿素荧光特性的影响[J].中国农业科学,2008,41(2):599-606.
    彭文英.免耕措施对土壤水分及利用效率的影响[J].土壤通报,2007,38(2):379-383.
    彭永欣.小麦栽培与生理[M].南京:东南大学出版社,1992.
    秦红灵,李春阳,高旺盛,董孝斌.干旱区保护性耕作对土壤水分的影响研究[J].干旱区资源与环境,2006,20(4):166-169.
    屈会娟,李金才,沈学善,魏凤珍,王成雨,郅胜军.种植密度和播期对冬小麦品种兰考矮早八干物质和氮素积累与转运的影响[J].作物学报,2009,35(1):124-131.
    全国农业技术推广服务中心.土壤分析技术规范(第二版)[M].北京:中国农业出版社,2006,47-49.
    任书杰,李世清,郑纪勇,王全九,李生秀.不同栽培模式和施氮对半湿润易旱区冬小麦籽粒灌浆特征的影响[J].干旱地区农业研究,2007,25(2):1-7.
    山仑,孙纪斌,刘忠民,杜守宇.宁南山区主要粮食作物生产力和水分利用的研究[J].中国农业科学,1988,21(02):9-16.
    山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报,1991,2(1):70-74.
    山仑.植物水分利用效率和半干旱地区农业用水[J].植物生理学通讯,1994,(1):61-66.
    山仑,康绍忠,吴普特.中国节水农业[M].北京:北京农业出版社,2004:229-230.
    石岩,林琪,位东斌,李忠军,李华.不同灌水处理冬小麦耗水规律与节水灌溉方案确立[J].干旱地区农业研究,1996,14(04):7-11.
    孙海国, Francis J. Larney.保护性耕作和植物残体对土壤养分状况的影响[J].生态农业研究,1997,5(1):47-51.
    孙宏勇,刘昌明,张永强,张喜英.微型蒸发器测定土壤蒸发的试验研究[J].水利学报,2004,(8):114-118.
    孙景生,康绍忠,蔡焕杰,胡笑涛.交替隔沟灌溉提高农田水分利用效率的节水机理[J].水利学报,2002,(3):64-68.
    王兵,刘文兆,党廷辉,高长青,李志,甘卓亭.长期施肥条件下旱作农田土壤水分剖面分布特征[J].植物营养与肥料学报,2007,13(3):411-416.
    王彩绒,田霄鸿,李生秀.沟垄覆膜集雨栽培对冬小麦水分利用效率及产量的影响[J].中国农业科学,2004,3(72):208-214.
    王昌全,魏成明,李廷强,孙凤琼.不同免耕方式对作物产量和土壤理化性状的影响[J].四川农业大学学报,2001,19(2):152-155.
    王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究[J].华北农学报,1992,7(4):1-8.
    王德梅,于振文.灌溉量和灌溉时期对小麦耗水特性和产量的影响[J].应用生态学报,2008,19(09):1965-1970.
    王建政.旱地小麦保护性耕作对土壤水分的影响[J].中国水土保持科学,2007,5(5):71-74.
    王家仁,郭风洪,孙茂真,崔若亮,郭春荣,边萍,付光永.冬小麦调亏灌溉节水高效技术指标试验初报[J].灌溉排水学报,2004,23(1):36-40.
    王立明.播种密度对旱地不同类型冬小麦产量和水分利用效率的影响[J].中国种业,2010,3:41-43.
    王润元,杨兴国,赵鸿,刘宏谊.半干旱雨养区小麦叶片光合生理生态特征及其对环境的响应[J].生态学杂志,2006,25(10):1161-1166.
    汪恕诚.资源水利:人与自然和谐相处[M].北京:中国水利水电出版社,2003.
    王同朝,杜园园,卫丽,王燕,王俊忠.雨养旱作区垄作小麦减产原因初步分析[J].干旱地区农业研究,2008,26(6):38-43.
    王月福,程金亮,王炳军,王岳光,王丽丽,隋春青.山东省旱地小麦生产发展回顾及展望[J].莱阳农学院学报,2003,20(3):202-205.
    王月福,于振文,李尚霞,余松烈.土壤肥力和施氮量对小麦氮素吸收运转及籽粒产量和蛋白质含量的影响[J].应用生态学报,2003,14(11):1868-1872.
    王月福,于振文,潘庆民,李素美.水分处理与耐旱性不同的小麦光合特性及物质运转[J].麦类作物学报,1998,18(3):44-47.
    吴长艾,孟庆伟,邹琦,赵世杰,王玮.小麦不同品种叶片对光氧化胁迫响应的比较研究[J].作物学报,2003,29(3):339-344.
    吴凯,陈建耀,谢贤群.冬小麦水分耗散特性与农业节水[J].地理学报,1997,52(5):455-460.
    武兰芳,欧阳竹.不同种植密度下两种穗型小麦叶片光合特性的变化[J].麦类作物学报,2008,28(4):618-625.
    吴晓东,张春雨.免耕条件下的小麦稀播试验[J].安徽农业科学,1989,(3):30-33.
    吴永成,周顺利,王志敏,张霞.节水栽培冬小麦对下层土壤残留氮素的利用[J].生态学报,2005,25(8):1869-1873.
    谢贤群.农田生态系统水分循环与作物水分关系研究[J].中国生态农业学报,2001,9(1):9-12.
    谢英荷,李廷亮,洪坚平,刘丽萍,庞娇,冯倩,邓树元,单杰.施氮和垄膜沟播种植对晋南旱地冬小麦水分利用的影响[J].应用生态学报,2011,22(8):2038-2044.
    徐福利,严菊芳,王渭玲.不同保墒耕作方法在旱地上的保墒效果及增产效应[J].西北农业学报,2001,10(4):80-84.
    徐国伟,谈桂露,王志琴,刘立军,杨建昌.秸秆还田与实地氮肥管理对直播水稻产量、品质及氮肥利用的影响[J].中国农业科学,2009,42(8):2736-2746.
    许振柱,王崇爱,李晖.土壤干旱对小麦叶片光合和氮素水平及其转运效率的影响[J].干旱地区农业研究,2004,22(4):75-79.
    许振柱,于振文.限量灌溉对冬小麦水分利用的影响[J].干旱地区农业研究,2003,21(1):6-8.
    许振柱,于振文.限量灌水对冬小麦光合性能和水分利用的影响[J].华北农学报,1997,12(2):65-70.
    杨建平,丁永建,陈仁升,刘连友.50a来我国干湿气候界线的空间变化分析[J].冰川冻土,2002,24(6):731-736.
    杨兴国,柯晓新,张旭东,万信.甘肃河东雨养农业区土壤水分变化规律的研究[J].应用气象学报,2000,11(2):205-212.
    杨玉惠,张仁陟.氮肥施用对黄土高原中部雨养农业区土壤硝态氮分布与累积的影响[J].土壤通报,2007,38(4):672-676.
    杨永华,林培龙,臧春华.山东省水资源战略发展研究及实证分析[J].水科学与工程技术,2007,5:4-7.
    于舜章,陈雨海,周勋波,李全起,罗毅,于强.冬小麦期覆盖秸秆对夏玉米土壤水分动态变化及产量的影响[J].水土保持学报,2004, l8(6):175-178.
    於新建.植物生理学实验手册[M].上海植物生理学会编.科学技术出版社,1985.
    翟丙年,李生秀.水氮配合对冬小麦产量和品质的影响[J].植物营养与肥料学报,2003,9(1):26-32.
    张步羽中,刘普海,刘宠佩.集雨限量补灌对小麦土壤水分及生长发育的影响[J].节水灌溉试验研究,2004,(2):7-9.
    张飞,赵明,张宾.我国北方保护性耕作发展中的问题[J].中国农业科技导报,2004,6(3):36-39.
    张海林,陈阜,秦耀东,朱文珊.覆盖免耕夏玉米耗水特性的研究[J].农业工程学报,2002,18(2):36-40.
    张海林,高旺盛,陈阜.保护性耕作研究现状、发展趋势及对策[J].中国农业大学学报,2005,10(1):16-20.
    张海林,高旺盛,王广章,朱文珊.覆盖免耕夏玉米生长及水分利用的研究[J].作物杂志,2000,4:7-91.
    张海林,秦耀东,朱文珊.覆盖免耕土壤棵间蒸发的研究[J].土壤通报,2003,34(4):259-261.
    张宏,周建斌,王春阳,董放,郑险峰,李生秀.栽培模式及施氮对冬小麦-夏玉米体系产量与水分利用效率的影响[J].植物营养与肥料学报,2010,16(5):1078-1085.
    张冀涛,李硕碧,张联会.不同栽培条件与小麦籽粒品质的关系[J].干旱地区农业研究,1991,9(2):16-21.
    张磊,肖剑英,谢德体,魏朝富.长期免耕水稻田土壤的生物特征研究[J].水土保持学报,2002,16(2):111-114.
    张丽娟,巨晓棠,张福锁,彭正萍.土壤剖面不同层次标记硝态氮的运移及其后效[J].中国农业科学,2007,40(9):1964-1972.
    张胜全,方保停,王志敏,周顺利,张英华.春灌模式对晚播冬小麦水分利用及产量形成的影响[J].生态学报,2009,29(4):2035-2044.
    张胜全,方保停,张英华,周顺利,王志敏.冬小麦节水栽培三种灌溉模式的水氮利用与产量形成[J].作物学报,2009,35(11):2045-2054.
    张喜英,裴冬,胡春胜.太行山山前平原冬小麦和夏玉米灌溉指标研究[J].农业工程学报,2002,18(6):36-41.
    张维理,武淑霞,冀宏杰.中国农业面源污染形势估计及控制对策I.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    张旭东,柯晓新,杨兴国,万信.甘肃河东小麦需水规律及其分布特征[J].干旱地区农业研究,1999,17(1):39-44.
    张永平,王志敏,王璞,赵明.冬小麦节水高产栽培群体光合特征[J].中国农业科学,2003,36(10):1143-1149.
    张志国,徐琪, Blevins R L.长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响[J].土壤学报,1998,35(4):384-391.
    赵秉强,李凤超,薛坚,李增嘉.不同耕法对冬小麦根系生长发育的影响[J].作物学报,1997,23(5):587-596.
    赵海涛,师帅兵.机械化保护性耕作技术的效益分析[J].农机化研究,2006(8):74-76.
    赵鸿,杨启国,邓振镛,刘宏谊.半干旱雨养区小麦光合作用、蒸腾作用及水分利用效率特征[J].干旱地区农业研究,2007,25(1):125-130.
    赵辉,戴廷波,姜东,荆奇,曹卫星.高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响[J].应用生态学报,2007,18(2):333-338.
    赵俊晔,于振文.高产条件下施氮量对冬小麦氮素吸收分配利用的影响[J].作物学报,2006,32(4):484-490.
    赵其斌,郝强.漫谈保护性耕作的现状与发展前景[J].农业机械,2001,(12):26-27.
    郑王尧.作物生理学导论[M].北京:北京农业大学出版社,1992:121-127.
    周凌云.封丘地区小麦耗水量与水分利用率研究[J].应用生态学报,1995,6(增刊):57-61.
    周凌云.封丘地区雨养麦田的水分供应和产量潜力[J].土壤学报,1993,30(3):297-303.
    朱文珊.地表覆盖种植与节水增产[J].水土保持研究,1996,(3):141-145.
    朱自玺,赵国强,邓天宏,方文松,付祥军.秸秆覆盖麦田水分动态及水分利用效率研究[J].生态农业研究,2000,8(1):34-37.
    Alke L. Soil and crop response to different tillage practices in a ferruginous soil in theNigeriavarma [J]. Soil and Tillage Research,1986,6:26l-272.
    Angers D A, Bissonnette N, Legere A, Samson N. Microbial and biochemical changesinduced by rotation and tillage in a soil under barley production [J]. Canadian Journal ofSoil Science,1993,73(1):39-50.
    Blanco-Canqui H, Lal R. Mechanisms of carbon sequestration in soil aggregates [J]. CriticalReviews in Plant Sciences,2004,23:481-504.
    Blevins R L, Thomas G W, Smith M S, Frye W W, Cornelius P L. Changes in soil propertiesafter10years continuous non-tilled and conventionally tilled corn [J]. Soil and TillageResearch,1983,3(2):135-146.
    Brestic M, Cornic G, Fryer M J, Baker N R. Does photorespiration protect the photosyntheticapparatus in French bean leaves from photoinhibition duringdrought stress [J]. Planta,1995,196(3):450-457.
    Bullock D G, Bullock D S. Quadratic and quadratic-plus-plateau models for predictingoptimal nitrogen rate of corn: a comparison [J]. Agronomy Journal,1994,86(1):191-195.
    Cerrato M E, Blackmer A M. Comparison of models for describing; corn yield response tonitrogen fertilizer [J]. Agronomy Journal,1990,82(1):138-143.
    Douglas C,Tsung M K,Frederick C. Enzymes of sucrose and hexose metabolism indeveloping kernels of two inbreds of Maize[J]. Plant Physiology,1988,86:1013-1019.
    Duivenboodew N V, Pala M, Studer C, Bielders C L, Beukes D J[J]. Cropping systems andcrop complementarity in dryland agriculture to increase soil water use efficiency: areview[J].Netherlands Journal of Agricultural Science,2000,48:213-236.
    Fan T L, Wang S Y, Tang X M, Luo J J, Steward B A, Gao Y F. Grain yield and water use in along-term fertilization trial in Northwest China [J]. Agric Water Manag,2005,76:36-52.
    Foulkes M J, Scott R K, Sylvester-Bradley R. The ability of wheat cultivars to withstanddrought in UK conditions: formation of grain yield [J]. J Agric Sci,2002,138(02):153-169.
    Franzluebbers A J. Water infiltration and soil structure related to organic matter and itsstratification with depth [J]. Soil&Tillage Research,2002,66:197-205.
    Gharous M E, Westerman R L, Soltanpour P N. Nitrogen mineralization potential of arid andsemiarid soils of Morocco [J]. Soil Science Society of America Journal,1990,54(2):438-443.
    Gooding M J, Ellis R H, Shewry P R, Schofied J D. Effects of restricted water availability andincreased temperature on the grain filling, drying and quality of winter wheat [J]. Journalof Cereal Science,2003,37(3):295-309.
    Govaerts B, Sayre K D, Deckers J. Stable high yields with zero tillage and permanent bedplanting?[J]. Field Crops Research,2005,94:33-42.
    Gupta R, Sethb A. A review of resource conserving technologies for sustainable managementof the rice–wheat cropping systems of the Indo-Gangetic plains (IGP)[J]. Crop Protection,2007,26:436-447.
    Jin K, Cornelis W M, Schiettecatte W, Lu J J, Yao Y Q, Wu H J, Gabriels D, Neve S D, Cai DX, Jin J Y, Hartmann R. Effects of different management practices on the soil–waterbalance and crop yield for improved dryland farming in the Chinese Loess Plateau [J].Soil and Tillage Research,2007,96(1-2):131-144.
    Kang S Z, Zhang L, Liang Y L, Hu X T, Cai H J, Gu B J. Effects of limited irrigation on yieldand water use efficiency of winter wheat in the Loess Plateau of China [J]. AgriculturalWater Management,2002,55(3):203-216.
    Kobata T, Palta J A, Turner N C. Rate of development of postanthesis water deficits and grainfilling of spring wheat [J]. Crop Science,1992,32(5):1238-1242.
    Koch H J, Stockfisch N. Loss of soil organic matter upon ploughing under a loess soil afterseveral years of conservation tillage [J]. Soil&Tillage Research,2006,86:73-83.
    Kibe A M, Singh S, Kalra N. Water-nitrogen relationships for wheat growth and productivityin late sown conditions [J]. Agricultural Water Management,2006,84(3):221–228.
    Lampurlanes J, Cantero-Martynez C. Hydraulic conductivity, residue cover and soil surfaceroughness under different tillage systems in semiarid conditions [J]. Soil&TillageResearch,2006,85(1-2):13-26.
    Li F M, Liu X L, Li S Q. Effects of early soil moisture distribution on the dry matter partitionbetween roots and shoots of winter wheat [J]. Agricultural Water Management,2001,49(3):163-171.
    Li F S, Kang S Z, Zhang J H, Cohen S. Effects of atmospheric CO2enrichment, water statusand applied nitrogen on water-and nitrogen-use efficiencies of wheat [J]. Plant and Soil,2003,254(2):279-289.
    Li J H, Tan Z W, Luo X W, Ou Y G, Li H B. Effects of tillage and mulch methods onsugarcane production [J]. Chinese Society of Agricultural Machinery,2004,35(5):70-73.
    Liu H S, Li F M. Root respiration, photosynthesis and grain yield of two spring wheat inresponse to soil drying [J]. Plant Growth Regulation,2005,46(3):233-240.
    Lopez-Bellido L, Lopez-Bellido R J, Redondo R. Nitrogen efficiency in wheat under rainfedMediterranean conditions as affected by split nitrogen application [J]. Field Crop Res,2005,94:86-97.
    Medrano H, Escalona J M, Bota J, Gulias J, Flexas J. Regulation of photosynthesis of C3plants in response to progressive drought: stomatal conductance as a reference parameter[J]. Annals of Botany,2002,89:895-905.
    Miller A J, Cramer M D. Root nitrogen acquisition and assimilation [J]. Plant and Soil,2004,274:1-36.
    Mohanty M, Bandyopadhyay K K, Painuli D K, Ghosh P K, Misra A K, Hati K M. Watertransmission characteristics of a Vertisol and water use efficiency of rainfed soybean(Glycine max (L.) Merr.) under subsoiling and manuring [J]. Soil and Tillage Research,2007,93(2):420-428.
    Morell F J, Lampurlanes J, Alvaro-Fuentes J, Cantero-Martinez C. Yield and water useefficiency of barley in a semiarid Mediterranean agroecosystem: long-term effects oftillage and N fertilization [J]. Soil Tillage Res,2011,117:76-84.
    Murchie E H, Chen Y Z, Hubbart S, Peng S B, Horton P. Interactions between senescence andleaf orientation determine in situ patterns of photosynthesis and photoinhibition infield-grown rice [J]. Plant Physiology,1999,119(2):553-564.
    Musick J T, Jones O R, Stewart B A, Dusek D A. Water-yield relationship for irrigated anddryland wheat in the U S Southern Plains [J]. Agron J,1994,86(6):980-986.
    Musik J T, Porter K B, Wheat. Irrination of Agricultural Crops [M]. Soil Science Society ofAmerica, Inc,1990,597-638.
    Needelman B A, Wander M M, Bollero G A, Boast C W, Sims G K, Bullock D G. Interactionof tillage and soil texture biologically active soil organic matter in Illinois [J]. Soil ScienceSociety of America Journal,1999,63(5):1326-1334.
    Nuske A, Richter J. N-mineralization in loss-parabrownearthes: incubation experiments [J].Plant and Soil,1981,59(2):237-247.
    Oweis T, Zhang H, Pala M. Water use efficiency of rainfed and irrigated bread wheat in aMediterranean environment [J]. Agron J,2000,92(2):231-238.
    Palta J A, Kobata T, Turner N C, Fillery L R. Remobilization of carbon and nitrogen in wheatas influenced by postanthesis water deficits [J]. Crop Science,1994,34(1):118-124.
    Panda R K, Behera S K, Kashyap P S. Effective management of irrigation water for wheatunder stressed conditions [J]. Agricultural Water Management,2003,63(1):37-56.
    Paustian K, Six J, Elliot E T, Hunt H W. Management options for reducing CO2emissionsfrom agricultural soils [J]. Biogeochemistry,2000,48:147-163.
    Payero J O,Tarkalson D D,Irmak S, Davison D,Petersen J L. Effect of irrigation amountsapplied with subsurface drip irrigation on corn evapotranspiration, yield, water useefficiency, and dry matter production in a semiarid climate[J]. Agricultural watermanagement,2008,95:895-908.
    Plaut Z, Butow B J, Blumenthal C S, Wrigley C W. Transport of dry matter into developingwheat kernels and its contribution to grain yield under post-anthesis water deficit andelevated temperature [J]. Field Crops Research,2004,86(2-3):185-198.
    Ramon J, Agnès H. Effects of tillage systems in dryland farming on near-surface watercontent during the late winter period [J]. Soil and Tillage Research,2005,82(2):173-183.
    Rehman S, Khalil S K, Rehman A, Amanullah, Khan A Z, Shah N H. Micro-watershedenhances rain water use efficiency, phenology and productivityof wheat under rainfedcondition[J]. Soil Tillage Research,2009,104:82-87.
    Richter J, Nuske A, Habenicht W, Bauer J. Optimized N-mineralization parameters of loesssoils from incubation experiments [J]. Plant and Soil,1982,68(3):379-388.
    Roth G W, Fox R H, Marshall H G. Plant tissue test for predicting nitrogen fertilizerrequirement of winter wheat [J]. Agronomy Journal,1989,81(3):502-507.
    Schahram B, Sharyar B, Peter W, Konrad M. Improvement of water use and N fertilizerefficiency by subsoil irrigation of winter wheat [J]. European Journal of Agronomy,2008,28(1):1–7.
    Sinclair T R, Pinter P J, Kimball B A, Adamsen F J, LaMorte R L, Wall G W, Hunsaker D J,Adam N, Brooks T J, Garcia R L, Thompson T, Leavitt S, Matthias A. Leaf nitrogenconcentration of wheat subjected to elevated [CO2] and either water or N deficits [J].Agriculture, Ecosystems&Environment,2000,79(1):53-60.
    Somerville C, Briscoe J. Genetic engineering and water [J]. Science,2001,292:2217.
    Stevens W B, Hoeft R G, Mulvaney R L. Fate of nitrogen-15in a long–term nitrogen ratestudyⅡ.Nitrogen uptake efficiency[J].Agronomy Journal,2005,97:1046-1053.
    Sun H Y, Liu C M, Zhang X Y, Shen Y J, Zhang Y Q. Effects of irrigation on water balance,yield and WUE of winter wheat in the North China Plain [J]. Agricultural WaterManagement,2006,85(1~2):211-218.
    Suprayogo D, Van Noordwijk M, Hairiah K, Cadisch G. The inherent safety net of an Acrisol:measuring and modeling retarded leaching of mineral nitrogen [J]. Eur. J. Soil Sci,2002,53(2):185-194.
    Tanaka D L, Anderson R L. Soil water storage and precipitation storage efficiency ofconservation tillage systems [J]. Journal of Soil and Water Conservation,1997,52(5):363-367.
    Tian G M, Wang F E, Chen Y X, He Y F, Fu Q L, Kumar S, Lin Q. Effect of differentvegetation systems on soil erosion and soil nutrients in red soil region of south easternChina [J]. Pedos Phoere,2003,13(2):121-128.
    Timmons D R, Dylla A S. Nitrogen leaching as influenced by nitrogen management andsupplemental irrigation level [J]. Journal of Environmental Quality,1981,10(3):421-426.
    Tsai-Mei Ou-Lee, Setter T L. Enzymes of increased temperature in apical regions of maizeears on starch-synthesis enzymes and accumulation of sugars and starch[J].PlantPhysiology,1985,79:852-855.
    Turner N C. Further progress in crop water relations [J]. Advances in Agronomy,1996,58:293-338.
    Turner N C. Plant water relations and irrigation management [J]. Agricultural WaterManagement,1990,17(1-3):59-73.
    Wang X B, Cai D X, Hoogmoed W B, Oenema O, Perdok U D. Developments inconservation tillage in rainfed regions of North China [J]. Soil&Tillage Research,2007,93:239-250.
    Wardlaw I F, Willenbrink J. Carbonhydrate storage and mobilization by the culm of wheatbetween heading and grain maturity:The relation to sucrose synthase andsucrose-phosphate synthase[J].Austrila Journal of Plant Physiology,1994,21:251-271.
    Wehrmann J, Schapf H C. Determination of nitrogen fertilizer requirements by nitrateanalysis of the plant [J]. Proceedings of9th intern plant nutrition coll,1982,707-709.
    Wehrmann J, Scharpf H C. The nmin-method-an aid to integrating various objectives ofnitrogen fertilization [J]. Journal of Plant Nutrition and Soil Science,1986,149(4):428-440.
    Xue Q, Zhu Z, Musick J T, Stewart B A, Dusek D A. Root growth and water uptake in winter wheat underdeficit irrigation [J]. Plant and Soil,2003,257(1):151–161.
    Xu Z Z, Yu Z W, Wang D, Zhang Y L. Nitrogen accumulation and translocation for winter wheat underdifferent irrigation regimes [J]. J. Agronomy&Crop Science,2005,191(6):439-449.
    Yang J C, Zhang J H, Huang Z L, Zhu Q S, Wang L. Remobilization of carbon reserves isimproved by controlled soil-drying during grain filling of wheat [J]. Crop Science,2000,40(6):1645-1655.
    Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Water deficit-induced senescence and itsrelationship to the remobilization of pre-stored carbon in wheat during grain filling [J].Agronomy Journal,2001,93(1):196-206.
    Yang Y L, Qian L, Liu M C, Liu H L. Effects of different irrigation amounts on wheat growthin arid oasis area [J]. Agricultural Science&Technology,2010,11(2):102-105,142.
    Zhang J H, Sui X Z, Li B, Su B L, Li J M, Zhou D X. An improved water-use efficiency forwinter wheat grown under reduced irrigation [J]. Field Crops Research,1998,59(2):91-98.
    Zhang W L, Tian Z X, Zhang N, Li X Q. Nitrate pollution of groundwater in northern China[J]. Agriculture, Ecosystems and Environment,1996,59(3):223-231.
    Zhang Y, Peng B Z, Gao X, Yang H. Degradation of soil properties due to erosion on slopingland in southern Jiangsu Province, China [J]. PedosPhoere,2004,14(1):17-26.
    Zheng Y J, Yang Y Q, Liang S S, Yi X F. Effect of methanol on photosynthesis andchlorophyll fluorescence of flag leaves of winter wheat [J]. Agricultural Sciences in China,2008,7(4):432-437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700