用户名: 密码: 验证码:
亚适宜温光环境对黄瓜幼苗生长、氮和钾吸收与转运的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日光温室和塑料大棚等蔬菜栽培设施内温光环境较差,冬春季节设施内栽培的黄瓜常处于亚适宜温光(15-18℃/10-12℃,200-300μmol m-2s-1)环境下,使得黄瓜生理代谢活动失调,从而影响黄瓜的生长发育、产量与品质的形成等,已经成为制约我国设施黄瓜高产优质的主要因素。氮和钾是植物生长发育、品质形成所必需的2种大量矿质元素。亚适宜温光处理可能通过影响氮和钾的吸收与转运使黄瓜产生一系列的生理生化变化,进而影响了黄瓜的产量与品质,但尚未见国内外有相关报道。
     本研究以正常温度(25/18℃)正常光照强度(500±20μmol m-2s-1)为对照(CK),设亚适宜光照强度(200±20μmol m-2s-1)正常温度(25/18℃)(T1)、亚适宜光照强度(200±20μmol m-2s-1)亚适宜温度(18/12℃)(T2)、亚适宜光照强度(200±20μmo1m-2s-1)低温(12/8℃)(T3)、亚适宜温度(18/12℃)正常光照强度(500±20μmolm-2s-1)(A1)、亚适宜温度(18/12℃)亚适宜光照强度(200±20μmol m-2s-1)(A2)和亚适宜温度(18/12℃)弱光(90±10μmol m-2s-1)(A3)等6个处理,处理5、10d,测定黄瓜生长、光合特性、氮和钾含量、氮吸收与转运相关酶活性、ATPase活性与K+转运蛋白基因的表达等,研究亚适宜光照强度下不同温度、亚适宜温度下不同光照强度对黄瓜生长、生理特性和氮和钾吸收与转运的影响。主要研究结果如下:
     1.与正常温度正常光照强度处理(CK)相比,亚适宜光照强度不同温度处理和亚适宜温度不同光照强度处理均降低了植株的株高、干鲜重、叶面积、根冠比、净光合速率、叶片和根系中氮和钾的含量,但使黄瓜叶片叶绿体色素含量和胞间二氧化碳浓度明显增加。而且,亚适宜光照强度下温度越低,或者亚适宜温度下光照强度越低,对黄瓜株高、干鲜重、叶面积增加量、净光合速率、氮和钾含量的抑制效果越明显。亚适宜光照强度不同温度处理和亚适宜温度不同光照强度处理下黄瓜幼苗叶片和根系氮和钾含量均明显降低,可能是亚适宜光照强度不同温度处理和亚适宜温度不同光照强度处理下黄瓜生长受抑的重要原因。
     2.与正常温度正常光照强度处理(CK)相比,亚适宜光照强度不同温度处理和亚适宜温度不同光照强度处理均使黄瓜幼苗叶片和根系硝酸还原酶、谷氨酸合酶和谷氨酸脱氢酶活性显著降低,但使硝酸盐明显积累,亚适宜光照强度下温度越低,或者亚适宜温度下光照强度越低,黄瓜幼苗叶片和根系硝酸还原酶、谷氨酸合酶和谷氨酸脱氢酶活性下降幅度越大,而硝酸盐含量增加越多;亚适宜光照强度不同温度处理和亚适宜温度不同光照强度处理均使叶片中谷氨酰胺合成酶活性升高,但降低了根系中谷氨酰胺合成酶活性。亚适宜光照强度不同温度处理和亚适宜温度不同光照强度处理下黄瓜幼苗氮吸收与代谢均明显下降,是亚适宜光照强度不同温度处理和亚适宜温度不同光照强度处理下黄瓜幼苗叶片和根系氮含量明显降低的主要原因。
     3.与正常温度正常光照强度处理(CK)相比,亚适宜光照强度不同温度处理和亚适宜温度正常光照强度、亚适宜温度亚适宜光照强度处理使黄瓜幼苗叶片和根系Ca2+-ATPase、Cu2+-ATPase、H+/K+-ATPase和Na+/K+-ATPase活性明显增加,且亚适宜光照强度下温度越低,黄瓜幼苗体内Ca2+-ATPase、Cu2+-ATPase、H+/K+-ATPase和Na+/K+-ATPase活性增加幅度越大,但亚适宜温度弱光(A3)处理下黄瓜根系Ca2+-ATPase、Cu2+-ATPase、H+/K+-ATPase活性小于正常温度与正常光照强度(CK)处理的ATPase活性。亚适宜光照强度不同温度处理和亚适宜温度不同光照强度处理使黄瓜幼苗叶片和根系中K+转运蛋白基因K2和K12表达量明显下降,且亚适宜光照强度下温度越低,或者亚适宜温度下光照强度越低,黄瓜幼苗叶片和根系中K2和K12基因表达量越低。亚适宜光照强度不同温度处理和亚适宜温度不同光照强度处理下黄瓜幼苗叶片和根系中K+转运蛋白基因表达量均明显下降,是亚适宜温光条件下黄瓜幼苗叶片和根系中的钾含量明显降低的主要原因。
Poor temperature and photon flux density (PFD) were common in sunlight greenhouses. Cucumber cultured in the facilities in winter and early spring may encounter long-term condition of suboptimum temperature and suboptimum PFD (15-18℃/10-12℃,200-300μmol m-2s-1).The physiological mechanism of cucumber may be imbalanced. Therefore, the growth, development, yield and quality of cucumber may be inhibited. This has become the main limiting factors for the high-yield-and-good-quality vegetable culture. Two kinds of macroelements, potassium and nitrogen are necessary to the plant growth and quality formation. The absorption, transport and metabolism of potassium and nitrogen of cucumber may be affected by suboptimum condition treatments, a series of physiological and biochemical changes were aroused, and then the yield and quality of cucumber were affected. However, no reports were seen at home and abroad.
     In our study, optimum temperature (25/18℃) and optimum PDF (500±20μmol m-2s-1) was set as control. Six treatments, suboptimum PDF (200±20μmol m-2s-1) and optimum temperature (25/18℃)(T1), suboptimum PDF (200±20μmol m-2s-1) and suboptimum temperature (18/12℃)(T2), suboptimum PDF (200±20μmol m-2s-1) and low temperature (12/8℃)(T3), suboptimum temperature (18/12℃) and optimum PDF (500±20μmol m-2s-1)(A1), suboptimum temperature (18/12℃) and suboptimum PDF (200±20μmol m-2s-1)(A2), suboptimum temperature (18/12℃) and low PDF (90±10μmol m-2s-1))(A3) were established to study the effect of suboptimum PDF and different temperature and suboptimum temperature and different PDF treatments on the growth, physiological characteristic and the absorption and transport of nitrogen and potassium. The growth, content of nitrogen and potassium, key enzymes'activities of nitrogen absorption and transport, ATPase activities, photosynthetic characteristics and the gene expression of K+transporters were determined after0,5and10days treatments. The main results are as follows:
     1. Compared with the treatment of optimum temperature and optimum PDF (CK), the plant height, fresh and dry weight, leaf area, ratio of root to shoot, net photosynthesis rates and nitrogen and potassium content in the leaves and roots of cucumber seedlings were decreased by suboptimum PDF or suboptimum temperature treatments. The lower temperature under suboptimum PDF or the lower PDF under suboptimum temperature, the lower plant height, fresh weight and dry weight, leaf area, ratio of root to shoot, net photosynthesis rates and nitrogen and potassium content. The results indicated that the decline of nitrogen and potassium content in leaves and roots may be the main reason for the growth inhibit of cucumber seedlings cultured in suboptimum PDF and suboptimum temperature treatments.
     2. Compared with the treatment of optimum temperature and optimum PDF (CK), the activities of nitrate reductase, glutamate synthase and glutamate dehydrogenase in cucumber leaves and roots cultured in suboptimum PDF and suboptimum temperature were decreased clearly. The lower temperature under suboptimum PDF or lower PDF under suboptimum temperature, the lower activities of nitrate reductase, glutamate synthase and glutamate dehydrogenase. However, the activities of glutamine synthetase in leaves were increased and the activities of glutamine synthetase in roots were decreased. The decrease of nitrogen absorption and metabolism is the main reason for the decrease of nitrogen content in leaves and roots of cucumber seedlings cultured under suboptimum PDF or suboptimum temperature treatments.
     3. Compared with the treatment of optimum temperature and optimum PDF (CK), the activities of Ca2+-ATPase, Cu2+-ATPase, H+/K+-ATPase and Na+/K+-ATPase in cucumber seedling's leaves and roots treated by suboptimum PDF and different temperature, suboptimum temperature and optimum PDF, suboptimum temperature and suboptimum PDF were increased, but the activities of Ca2+-ATPase, Cu2+-ATPase and H+/K+-ATPase in cucumber seedlings roots treated by suboptimum temperature and weak light. The expression of K2and K12in leaves and roots of cucumber seedlings were decreased by suboptimum PDF or suboptimum temperature treatments, and this is the main reason for the decrease of potassium content in leaves and roots of cucumber seedlings cultured under suboptimum PDF or suboptimum temperature treatments.
引文
Abiko, T., M. Obara, et al. (2005). "Localization of NAD-isocitrate dehydrogenase and glutamate dehydrogenase in rice roots:candidates for providing carbon skeletons to NADH-glutamate synthase." Plant and Cell Physiology 46(10):1724-1734.
    Ache, P., D. Becker, et al. (2000). "GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel." FEBS Letters 486(2):93-98.
    Amrutha, R., P. Sekhar, et al. (2007). "Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.)." Plant Science 172(4):708-721.
    Anderson, J. A., S. S. Huprikar, et al. (1992). "Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae." Proceedings of the National Academy of Sciences of the United States of America 89(9):3736-3740.
    Araki, R. and H. Hasegawa (2006). "Expression of rice(Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction." Breeding Science 56(3):295-302.
    Arnon, D. I. (1949). "Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris." Plant Physiology 24(1):1-15.
    Baev, M. V., M. Y. Kiriukhin, et al. (1997). "Regulation of ammonia assimilation in an obligate methylotroph Methylobacillus flagellatum under steady-state and transient growth conditions." Antonie van Leeuwenhoek 71(4):353-361.
    Banuelos, M. A., B. Garciadeblas, et al. (2002). "Inventory and functional characterization of the HAK potassium transporters of rice." Plant Physiology 130(2): 784-795.
    Banuelos, M. A., R. D. Klein, et al. (1995). "A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity." The EMBO Journal 14(13):3021-3027.
    Basile, B., R. E.J., et al. (2003). "Leaf potassium concentration, CO2 exchange and light interception in almond trees (Prunus dulcis (Mill) D.A. Webb)." Scientia Horticulturae 98(2):185-194.
    Bassirirad, H., M. M. Caldwell, et al. (1993). "Effects of soil temperature and nitrogen status on kinetics of 15NO3- uptake by roots of field-grown Agropyron desertorum (Fisch. Ex Link) Schult." New Phytologist 123(3):485-489.
    Becker, D., D. Geiger, et al. (2004). "AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH-and Ca2+-dependent manner." Proceedings of the National Academy of Sciences of the United States of America 101(44):15621-15626.
    Bednarz, C. W. and D. M. Oosterhuis (1999). "Physiological changes associated with potassium deficiency in cotton." Journal of Plant Nutrition 22(2):303-313.
    Bednarz, C. W., D. M. Oosterhuis, et al. (1998). "Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency." Environmental and Experimental Botany 39(2):131-139.
    Berg, W. K., S. M. Cunningham, et al. (2007). "The long-term impact of phosphorus and potassium fertilization on alfalfa yield and yield components." Crop science 47(5): 2198-2209.
    Blanco, L., P. M. Reddy, et al. (2008). "Molecular cloning, characterization and regulation of two different NADH glutamate synthase cDNAs in bean nodules." Plant, Cell and Environment 31(4):454-472.
    Bouquin, T., C. Meier, et al. (2001). "Control of specific gene expression by gibberellin and brassinosteroid." Plant Physiology 127(2):450-458.
    Bradford, M. M. (1976). "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding." Analytical Biochemistry 72:248-254.
    Bridges, D., M. Fraser, et al. (2005). "Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes." BMC Bioinformatics 6(1): doi:10.1186/1471-2105-1186-1186.
    Brugiere, N., F. Dubois, et al. (2000). "Immunolocalization of glutamine synthetase in senescing tobacco (Nicotiana tabacum L.) leaves suggests that ammonia assimilation is progressively shifted to the mesophyll cytosol." Planta 211(4):519-527.
    Bubner, B. and I. T. Baldwin (2004). "Use of real-time PCR for determining copy number and zygosity in transgenic plants." Plant Cell Reports 23(5):263-271.
    Buschmann, P. H., R. Vaidyanathan, et al. (2000). "Enhancement of Na+ uptake currents, time-sependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells." Plant Physiology 122(4):1387-1398.
    Bybordi, A., J. Tabatabaei, et al. (2009). "Effects of salinity and NO3-:NH+ ratio on yield and quality in canola(Brassica napus L.)." Notulae Scientia Biologicae 1(1):67-72.
    Cakmak, I., C. Hengeler, et al. (1994). "Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants." Journal of Experimental Botany 45(9):1251-1257.
    Choi, H. K., A. Kleinhofs, et al. (1989). "Nucleotide sequence of rice nitrate reductase genes." Plant Molecular Biology 13(6):731-733.
    Clarkson, D. T. and J. B. Hanson (1980). "The mineral nutrition of higher plants." Annual Review of Plant Physiology 31:239-298.
    Crawford, N. M. and A. D. M. Glass (1998). "Molecular and physiological aspects of nitrate uptake in plants." Trends in Plant Science 3(10):389-395.
    Cren, M. and B. Hirel (1999). "Glutamine synthetase in higher plants regulation of gene and protein expression from the organ to the cell." Plant and Cell Physiology 40(12): 1187-1193.
    Cruz, C., S. H. Lips, et al. (1993). "The effect of nitrogen source on photosynthesis of carob at high CO2 concentrations." Physiologia Plantarum 89(3):552-556.
    Cuin, T. A., A. J. Miller, et al. (2003). "Potassium activities in cell compartments of salt-grown barley leaves." Journal of Experimental Botany 54(383):657-661.
    Czempinski, K., J.-M. Frachisse, et al. (2002). "Vacuolar membrane localization of the Arabidopsis 'two-pore' K+ channel KCO1." The Plant Journal 29(6):809-820.
    Czempinski, K., S. Zimmermann, et al. (1997). "New structure and function in plant K+ channels:KCO1, an outward rectifier with a steep Ca2+ dependency." EMBO Journal 16(10):2565-2575.
    Daniel-Vedele, F., M. F. Dorbe, et al. (1989). "Cloning and analysis of the tomato nitrate reductase-encoding gene:protein domain structure and amino acid homologies in higher plants." Gene 85(2):371-380.
    Davies, C., R. Shin, et al. (2006). "Transporters expressed during grape berry(Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation." Journal of Experimental Botany 57(12):3209-3216.
    Davies, D. D. (1986). "The fine control of cytosolic pH." Physiologia Plantarum 67: 702-706.
    Deeken, R., D. Geiger, et al. (2002). "Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis." Planta 216(2):334-344.
    Desbrosses, G., C. Kopka, et al. (2004). "Lotus japonicus LjKUP is induced late during nodule development and encodes a potassium transporter of the plasma membrane." Molecular Plant-Microbe Interactions 17(7):789-797.
    Doyle, D. A., J. M. Cabral, et al. (1998). "The structure of the potassium channel: molecular basis of K+ conduction and selectivity." Science 280(5360):69-11.
    Dreyer, I., F. Poree, et al. (2004). "Assembly of plant Shaker-like kout channels requires two distinct sites of the channel a-subunit." Biophysical Journal 87(2):858-872.
    Elumalai, R. P., P. Nagpal, et al. (2002). "A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion." The Plant Cell 14(1):119-131.
    Engels, C. and H. Marschner (1993). "Influence of the form of nitrogen supply on root uptake and translocation of cations in the xylem exudate of maize (Zea mays L)." Journal of Experimental Botany 44(11):1695-1701.
    Engineer, C. B. and R. G. Kranz (2007). "Reciprocal leaf and root expression of AtAmt1.1 and root architectural changes in response to nitrogen starvation." Plant Physiology 143(1):236-250.
    Epstein, E. and A. J. Bloom (2005). Mineral nutrition of plants:principles and perspectives,2nd ed. Sunderland, MA., Sinauer Associates Inc.
    Evans, H. J. and R. A. Wildes (1971). "Potassium and its role in enzyme activation." Potassium in biochemistry and physiology:13-39.
    Garciadeblas, B., M. E. Senn, et al. (2003). "Sodium transport and HKT transporters: the rice model." The Plant Journal 34(6):788-801.
    Gassmann, W., F. Rubio, et al. (1996). "Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1." The Plant Journal 10(5):869-882.
    Gaymard, F., G. Pilot, et al. (1998). "Identification and disruption of a plant Shaker-like outward channel involved in K+release into the xylem sap." Cell 94(5): 647-655.
    Gierth, M. and P. Maser (2007). "Potassium transporters in plants-Involvement in K+ acquisition, redistribution and homeostasis." FEBS Letters 581(12):2348-2356.
    Gierth, M., P. Maser, et al. (2005). "The potassium transporter AtHAK5 functions in K+deprivation-induced high-affinity K+uptake and AKT1 K+channel contribution to K+ uptake kinetics in Arabidopsis roots." Plant Physiology 137(3):1105-1114.
    Glass, A. D. M. (1983). "Regulation of ion transport." Annual Review of Plant Physiology 34(3):311-326.
    Glass, A. D. M., J. E. Shaff, et al. (1992). "Studies of the uptake of nitrate in barley: Ⅳ. Electrophysiology." Plant Physiology 99(2):456-463.
    Goldstein, S. A. N., K. W. Wang, et al. (1998). "Sequence and function of the two P domain potassium channels:implications of an emerging superfamily." Journal of Molecular Medicine 76(1):13-20.
    Golldack, D., F. Quigley, et al. (2003). "Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently." Plant Molecular Biology 51(1):71-81.
    Gong, D., Y. Guo, et al. (2004). "The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis." Plant Physiology 134(3):919.
    Gwathmey, C. O. and D. D. Howard (1998). "Potassium effects on canopy light interception and earliness of no-tillage cotton." Agronomy Journal 90(2):144-148.
    Hartje, S., S. Zimmermann, et al. (2000). "Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes." Planta 210(5): 723-731.
    Haynes, R. J. and K. M. Goh (1978). "Ammonium and nitrate nutrition of plants." Biological Reviews 53(4):465-510.
    Hell, R., R. R. Mendel, et al. (2010). Potassium. Cell Biology of Metals and Nutrients, Springer Berlin/Heidelberg.17:199-224.
    Hirsch, R. E., B. D. Lewis, et al. (1998). "A role for the AKT1 potassium channel in plant nutrition." Science 280(5365):918-921.
    Horie, T., F. Hauser, et al. (2009). "HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants." Trends in Plant Science 14(12): 660-668.
    Horie, T., K. Yoshida, et al. (2001). "Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa" The Plant Journal 27(2):129-138.
    Hua, B. G., R. W. Mercier, et al. (2003). "Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel." Plant Physiology 132(3): 1353-1361.
    Huppe, H. C. and D. H. Turpin (1994). "Integration of carbon and nitrogen metabolism in plant and algal cells." Annual Review of Plant Physiology and Plant Molecular Biology 45(1):577-607.
    Ishiyama, K., T. Hayakawa, et al. (1998). "Expression of NADH-dependent glutamate synthase protein in the epidermis and exodermis of rice roots in response to the supply of ammonium ions." Planta 204(3):288-294.
    Ishiyama, K., E. Inoue, et al. (2004). "Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots." Plant and Cell Physiology 45(11):1640-1647.
    Ishiyama, K., S. Kojima, et al. (2003). "Cell type distinct accumulations of mRNA and protein for NADH-dependent glutamate synthase in rice roots in response to the supply of NH4+." Plant Physiology and Biochemistry 41(6-7):643-647.
    Ivashikina, N., D. Becker, et al. (2001). "K+ channel profile and electrical properties of Arabidopsis root hairs." FEBS Letters 508(3):463-469.
    Janssen, L. H. J. and P. R. v. Hasselt (1988). "Temperature-induced alterations of in vivo chlorophyll a fluorescence induction in cucumber as affected by DCMU." Photosynthesis Research 15(2):153-162.
    Ju, X. T., C. L. Kou, et al. (2007). "Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain." Environmental Pollution 145(2):497-506.
    Kaiser, B. N., S. R. Rawat, et al. (2002). "Functional analysis of an Arabidopsis T-DNA" knockout" of the high-affinity NH4+ transporter AtAMT1; 1." Plant Physiology 130(3):1263-1275.
    Kaiser, W. M., W. Urbach, et al. (1980). "The role of monovalent cations for photosynthesis of isolated intact chloroplasts." Planta 149(2):170-175.
    Kaith, N. S., D. K. Mehta, et al. "Effect of different levels of potassium on growth, yield and fruit quality of apple (Malus domestica Borkh)." Journal of Hill Agriculture 1(2): 160-163.
    Kanai, S., R. E. Moghaieb, et al. (2011). "Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity." Plant Science 180(2):368-374.
    Kato, Y., M. Sakaguchi, et al. (2001). "Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters." Proceedings of the National Academy of Sciences of the United States of America 98(11): 6488-6493.
    Kim, E. J., J. M. Kwak, et al. (1998). "AtKUP1:an Arabidopsis gene encoding high-affinity potassium transport activity." The Plant Cell 10(1):51-62.
    Kochian, L. V. and W. J. Lucas (1983). "Potassium transport in corn roots. Ⅱ. The significance of the root periphery." Plant Physiology 73(2):208-215.
    Konnerup, D. and H. Brix (2010). "Nitrogen nutrition of Canna indica:Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates." Aquatic Botany 92(2):142-148.
    Kubo, Y., N. Ogura, et al. (1988). "Limited proteolysis of the nitrate reductase from spinach leaves." Journal of Biological Chemistry 263(36):19684-19689.
    Kumar, A., S. N. Silim, et al. (2003). "Differential expression of three members of the AMT1 gene family encoding putative high affinity NH4+ transporters in roots of Oryza sativa subspecies indica." Plant, Cell and Environment 26(6):907-914.
    Lacombe, B., G. Pilot, et al. (2000). "A Shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis." The Plant Cell 12(6): 837-851.
    Lam, H. M., K. T. Coschigano, et al. (1996). "The molecular-genetics of nitrogen assimilation into amino acids in higher plants." Annual Review of Plant Biology 47(1): 569-593.
    Lauter, F. R., O. Ninnemann, et al. (1996). "Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato." Proceedings of the National Academy of Sciences of the United States of America 93(15):8139-8144.
    Lea, P. J. and B. J. Miflin (1974). "Alternative route for nitrogen assimilation in higher plants." Nature 251:614-616.
    Leigh, R. and R. Jones (1984). "A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell." New Phytologist 97(1):1-13.
    Li, B., W. Xin, et al. (2006). "Physiological and molecular responses of nitrogen-starved rice plants to re-supply of different nitrogen sources." Plant and Soil 287(1):145-159.
    Lillo, C. (1994). "Light regulation of nitrate reductase in green leaves of higher plants." Physiologia Plantarum 90(3):616-620.
    Little, D. Y, H. Rao, et al. (2005). "The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues." Proceedings of the National Academy of Sciences of the United States of America 102(38):13693-13698.
    Loque, D., P. Tillard, et al. (2003). "Gene expression of the NO3- transporter NRT1.1 and the nitrate reductase NIA1 is repressed in Arabidopsis roots by NO2", the product of NO3- reduction." Plant Physiology 132(2):958-967.
    Loque, D. and N. Von Wiren (2004). "Regulatory levels for the transport of ammonium in plant roots." Journal of Experimental Botany 55(401):1293-1305.
    Lothier, J., L. Gaufichon, et al. (2011). "The cytosolic glutamine synthetase GLN1; 2 plays a role in the control of plant growth and ammonium homeostasis in Arabidopsis rosettes when nitrate supply is not limiting." Journal of Experimental Botany 62(4): 1375-1390.
    Loulakakis, C. A. and K. A. Roubelakis-angelakis (1990). "Intracellular localization and properties of NADH-glutamate dehydrogenase from Vitis vinifera L.:Purification and characterization of the major leaf isoenzyme." Journal of Experimental Botany 41(10): 1223-1230.
    Lu, B., Y. Yuan, et al. (2005). "Modulation of key enzymes involved in ammonium assimilation and carbon metabolism by low temperature in rice (Oryza sativa L.) roots." Plant Science 169(2):295-302.
    Luo, Y, X. Wang, et al. (2012). "Root:shoot ratios across China's forests:Forest type and climatic effects." Forest Ecology and Management 269(1):19-25.
    Marcelis, L. F. M. (1993). "Fruit growth and biomass allocation to the fruits in cucumber:2. Effect of irradiance." Scientia Horticulturae 54(2):123-130.
    Marschner, H. (1988). "Mineral Nutrition in Higher Plants." Plant, Cell and Environment 11:147-148.
    Marschner, H. (1995). Mineral nutrition of higher plants,2nd ed. San Diego, CA, Academic Press.
    Martinez-Cordero, M. A., V. Martinez, et al. (2004). "Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper." Plant Molecular Biology 56(3):413-421.
    Marten, I., S. Hoth, et al. (1999). "AKT3, a phloem-localized K+channel, is blocked by protons." Proceedings of the National Academy of Sciences of the United States of America 96(13):7581-7586.
    Martin, A., J. Lee, et al. (2006). "Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production." The Plant Cell 18(11): 3252-3274.
    Maser, P., Y. Hosoo, et al. (2002). "Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants." Proceedings of the National Academy of Sciences of the United States of America 99(9):6428-6433.
    Maser, P., S. Thomine, et al. (2001). "Phylogenetic relationships within cation transporter families of Arabidopsis." Plant Physiology 126(4):1646-1667.
    Massaeli, H., J. Guo, et al. (2010). "Extracellular K+ is a prerequisite for the function and plasma membrane stability of HERG channels." Circulation Research 106(6): 1072-1082.
    Mengel, D. B. and S. A. Barber (1974). "Rate of nutrient uptake per unit of corn root under field conditions." Agronomy Journal 66(3):399-402.
    Mengel, K. and E. A. Kirkby (1980). "Potassium in crop production." Advances in Agronomy 33:59-110.
    Mengel, K., P. Robin, et al. (1983). "Nitrate reductase activity in shoots and roots of maize seedlings as affected by the form of nitrogen nutrition and the pH of the nutrient solution." Plant Physiology 71(3):618-622.
    Miflin, B. J. and D. Z. Habash (2002). "The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops." Journal of Experimental Botany 53(370):979-987.
    Migge, A., E. Carrayol, et al. (2000). "Leaf-specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seedlings." Planta 210(2): 252-260.
    Morey, K. J., J. L. Ortega, et al. (2002). "Cytosolic glutamine synthetase in soybean is encoded by a multigene family, and the members are regulated in an organ-specific and developmental manner." Plant Physiology 128(1):182-193.
    Moshelion, M., D. Becker, et al. (2002). "Diurnal and circadian regulation of putative potassium channels in a leaf moving organ." Plant Physiology 128(2):634-642.
    Munson, R. D. (1985). Potassium in agriculture, American Society of Agronomy
    Nakamura, R. L., W. L. McKendree Jr, et al. (1995). "Expression of an Arabidopsis potassium channel gene in guard cells." Plant Physiology 109(2):371-374.
    Nieves-Cordones, M., M. Martinez-Cordero, et al. (2007). "An NH4+-sensitive component dominates high-affinity K+uptake in tomato plants." Plant Science 172(2): 273-280.
    Nussaume, L., M. Vincentz, et al. (1995). "Post-transcriptional regulation of nitrate reductase by light is abolished by an N-terminal deletion." The Plant Cell 7(5):611-621.
    Okamoto, M., J. J. Vidmar, et al. (2003). "Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana:responses to nitrate provision." Plant and Cell Physiology 44(3):304-317.
    Olday, F. C., B. A. V, et al. (1976). "A physiological basis for different patterns of nitrate accumulation in two spinach cultivars." Journal of the American Society for Horticultural Science 101(3):217-219.
    Orsel, M., A. Krapp, et al. (2002). "Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression." Plant Physiology 129(2):886-896.
    Petraglia, T. and R. J. Poole (1980). "ATP levels and their effects on plasmalemma influxes of potassium chloride in red beet." Plant physiology 65:969-972.
    Pettersen, R. I., S. Torre, et al. (2010). "Effects of intracanopy lighting on photosynthetic characteristics in cucumber." Scientia Horticulturae 125(2):77-81.
    Pettigrew, W. T. (2008). "Potassium influences on yield and quality production for maize, wheat, soybean and cotton." Physiologia Plantarum 133(4):670-681.
    Pettigrew, W. T. and W. R. Meredith (1997). "Dry matter production, nutrient uptake, and growth of cotton as affected by potassium fertilization." Journal of Plant Nutrition 20(4):531-548.
    Pier, P. A. and G. A. Berkowitz (1987). "Modulation of water stress effects on photosynthesis by altered leaf K+." Plant Physiology 85(3):655-661.
    Pilot, G., F. Gaymard, et al. (2003). "Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant " Plant Molecular Biology 51(5):773-787.
    Qiu, Q. S., Y. Guo, et al. (2004). "Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway." Journal of Biological Chemistry 279(1):207-215.
    Rajasekhar, V. K., G. Gowri, et al. (1988). "Phytochrome-mediated light regulation of nitrate reductase expression in squash cotyledons." Plant Physiology 88(2):242-244.
    Reddy, K. S., H. A. Mills, et al. (1991). "Corn responses to post-tasseling nitrogen deprivation and to various ammonium/nitrate ratios." Agronomy Journal 83(1):201-203.
    Reintanz, B., A. Szyroki, et al. (2002). AtKC1, a silent Arabidopsis potassium channel a-subunit modulates root hair K+ influx. Proceedings of the National Academy of Sciences of the United States of America.99:4079-4084.
    Remans, T., P. Nacry, et al. (2006). "A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis." Plant Physiology 140(3):909-921.
    Rigas, S., G. Debrosses, et al. (2001). "TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs." The Plant Cell 13(1):139-151.
    Romanowska, E., B. Wroblewska, et al. (2006). "High light intensity protects photosynthetic apparatus of pea plants against exposure to lead." Plant Physiology and Biochemistry 44(5-6):387-394.
    Ruan, J., F. Zhang, et al. (2000). "Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensis L." Plant and Soil 223(1):65-73.
    Rubio, F., G. E. Santa-Maria, et al. (2000). "Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells." Physiologia Plantarum 109(1):34-43.
    Rufty Jr, T. W., W. A. Jackson, et al. (1982). "Inhibition of nitrate assimilation in roots in the presence of ammonium:the moderating influence of potassium." Journal of Experimental Botany 33(6):1122-1137.
    Santa-Maria, G. E., F. Rubio, et al. (1997). "The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter." The Plant Cell 9(12):2281-2289.
    Schachtman, D. P. and J. I. Schroeder (1994). "Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants." Nature 370:655-658.
    Schleyer, M. and E. P. Bakker (1993). "Nucleotide sequence and 3'-end deletion studies indicate that the K+-uptake protein kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus." Journal of Bacteriology 175(21):6925-6931.
    Schoknecht, G., P. Spoormaker, et al. (2002). "KCO1 is a component of the low-acuolar (SV) ion channel." FEBS Letters 511(1-3):28-32.
    Schroeder, J. I., J. M. Ward, et al. (1994). "Perspectives on the physiology and structure of inwardrectifying K channels in higher plants:Biophysical implications for K uptake." Annual Review of Biophysics and Biomolecular Structure 23(1):441-471.
    Schwacke, R., A. Schneider, et al. (2003). "ARAMEMNON, a novel database for Arabidopsis integral membrane proteins." Plant Physiology 131(1):16-26.
    Sentenac, H., N. Bonneaud, et al. (1992). "Cloning and expression in yeast of a plant potassium ion transport system." Science 256(5057):663-665.
    Serrano, R. (1989). "Structure and function of plasma membrane ATPase." Annual Review of Plant Physiology and Plant Molecular Biology 40(1):61-94.
    Shi, H., M. Ishitani, et al. (2000). "The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter." Proceedings of the National Academy of Sciences of the United States of America 97(12):6896-6901.
    Shimazaki, K.-i., M. Doi, et al. (2007). "Light Regulation of Stomatal Movement." Annual Review of Plant Biology 58(1):219-247.
    Siewe, R. M., B. Weil, et al. (1996). "Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum." Journal of Biological Chemistry 271(10):5398-5403.
    Singh, R. P. and H. S. Srivastava (2006). "Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen." Plant Science 66(3):413-416.
    Smith, V. R. (1993). "Effect of nutrients on CO2 assimilation by mosses on a sub-Antarctic island." New Phytologist 123(4):693-697.
    Spalding, E. P., R. E. Hirsch, et al. (1999). "Potassium uptake supporting plant growth in the absence of AKT1 channel activity." The Journal of General Physiology 113(6): 909-918.
    Suenaga, A., K. Moriya, et al. (2003). "Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants." Plant and Cell Physiology 44(2):206-211.
    Sylvia, M. (1996). Biology, Wm. C. Brown Publishers.
    Szczerba, M. (2008). Physiology of potassium nutrition in cereals:fluxes, compartmentation, and ionic interactions. Ph.D, University of Toronto.
    Sze, H. (1985). "H+-translocating ATPases:Advances using membrane vesicles." Annual Review of Plant Physiology 36(1):175-208.
    Szyroki, A., N. Ivashikina, et al. (2001). "KAT1 is not essential for stomatal opening." Proceedings of the National Academy of Sciences of the United States of America 98(5): 2917-2921.
    Tachibana, S. (1987). "Effect of root temperature on the rate of water and nutrient absorption in cucumber cultivars and figleaf gourd." Journal of The Japanese Society for Horticultural Science 55:461-467.
    Talke, I. N., D. Blaudez, et al. (2003). "CNGCs:prime targets of plant cyclic nucleotide signalling?" Trends in Plant Science 8(6):286-293.
    Teixeira, J., S. Pereira, et al. (2005). "Glutamine synthetase of potato (Solarium tuberosum L. cv. Desiree) plants:cell-and organ-specific expression and differential developmental regulation reveal specific roles in nitrogen assimilation and mobilization." Journal of Experimental Botany 56(412):663-671.
    Tewari, A. K. and B. C. Tripathy (1999). "Acclimation of chlorophyll biosynthetic reactions to temperature stress in cucumber (Cucumis sativus L.)." Planta 208(3):431-437.
    Very, A. A. and H. Sentenac (2003). "Molecular mechanisms and regulation of K+ transport in higher plants." Annual Review of Plant Biology 54:575-603.
    Venema, K., A. Belver, et al. (2003). "A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants." Journal of Biological Chemistry 278(25):22453-22459.
    Wang, H., M. Gu, et al. (2009). "Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus." Journal of Photochemistry and Photobiology B-Biology 96(1):30-37.
    Wilkinson, J. Q. and N. M. Crawford (1991). "Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2." The Plant Cell 3(5):461-471.
    Yadav, R. S., R. Sammauria, et al. (2007). "Effect of nitrogen and potassium on the growth, yield and quality of garlic(Allium sativum) in light textured soils of Rajasthan." Indian Journal of Agricultural Science 77(3):168-169.
    Yamaya, T., H. Tanno, et al. (1995). "A supply of nitrogen causes increase in the level of NADH-dependent glutamate synthase protein and in the activity of the enzyme in roots of rice seedlings." Plant and Cell Physiology 36(7):1197-1204.
    Yang, Z., Q. Gao, et al. (2009). "Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.)." Journal of Genetics and Genomics 36(3):161-172.
    Yokoi, S., F. J. Quintero, et al. (2002). "Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response." The Plant Journal 30(5):529-539.
    Zhao, X. Q. and W. M. Shi (2006). "Expression analysis of the glutamine synthetase and glutamate synthase gene families in young rice(Oryza sativa) seedlings." Plant Science 170(4):748-754.
    于贤昌,邢禹贤,等.(1997).”黄瓜嫁接苗抗冷特性研究.”园艺学报24(4):348-352.
    孔祥生(2008).植物生理学实验技术.北京,中国农业出版社.
    毛伟华,龚亚明,等.(2007).”黄瓜硝酸还原酶cDNA片段的克隆及其在缺氮胁迫下的表达.”浙江农业学报19(3):160-163.
    工敬国和陈新平(1995).”土壤含水量和施钾深度对春小麦吸钾的影响.”北京农业大学学报21(增刊):66-70.
    田霄鸿和李生秀(2000).”几种蔬菜对硝态氮、铵态氮的相对吸收能力.”植物营养与肥料学报6(2):194-201.
    伍松鹏,张秀娟,等.(2006).”不同氮素形态比例对黄瓜幼苗生长和光合特性的影 响."安徽农业科学34(12):2697,2707.
    朱林,张春兰,等.(2002).”施用稻草等有机物料对连作黄瓜根系活力、硝酸还原酶、ATP酶活力的影响.”中国农学通报18(1):17-19.
    艾希珍,王秀峰,等.(2006).”钙对弱光亚适温下黄瓜光合作用的影响.”中国农业科学39(9):1865-1871.
    李俊良,李晓林,等.(2002).”山东寿光保护地蔬菜施肥现状及问题的研究.”土壤通报33(2):126-128.
    李宝珍(2007).水稻吸收和利用不同形态氮素的生理特征和相关基因的表达调控分析.博士,南京农业大学.
    沈文云,马德华,等.(1995).”弱光处理对黄瓜叶绿体超微结构的影响.”园艺学报22(4):397-398.
    汪建飞,董彩霞,等.(2006).”铵硝比和磷素营养对菠菜生长,氮素吸收和相关酶活性的影响.”土壤学报43(6):954-960.
    肖凯,张树华,等.(2000).”不同形态氮素营养对小麦光合特性的影响.”作物学报26(1):53-58.
    周静,崔键,等.(2008).”土壤水分对柑橘根和叶营养元素的影响.”中国果树(5):14-17.
    武新岩,郭建华,等.(2011).”不同氮素形态对黄瓜光合作用及果实品质的影响.”华北农学报26(2):223-227.
    姜振升,孙晓琦,等.(2010)."低温弱光对黄瓜幼苗Rubisco与Rubisco活化酶的影响.”应用生态学报21(8):2045-2050.
    胡笃敬,董任瑞,等.(1993).植物钾营养的理论实践.长沙,湖南科学技术出版社.
    徐进,俞劲炎,等.(1989).”土壤物理因素影响钾素转化和扩散的初步研究.”浙江大学学报(农业与生命科学版)15(4):396-402.
    浙江农业大学(1988).植物的钾素营养与钾肥.植物营养与肥料.浙江农业大学,农业出版社:101-122.
    袁丽金,巨晓棠,等.(2010).”设施蔬菜土壤剖面氮磷钾积累及对地下水的影响.”中国生态农业学报18(1):14-19.
    裴孝伯,张福墁,等.(2002).”不同季节日光温室黄瓜氮磷钾吸收规律的研究.” 安徽农业大学学报29(1):68-73.
    刘玉梅(2006).亚适温较弱光照条件下调控黄瓜光合作用的原理与技术研究.博士,山东农业大学.
    刘国顺,乔新荣,等.(2008).”弱光对烤烟干物质积累及矿质养分的影响.”西南农业学报21(1):130-133.
    卢颖林,李庆余,等.(2010).”不同形态氮素对番茄幼苗体内营养元素含量的影响.”中国农学通报(21).
    吴颂如,周燮,等.(1988).”水稻与黄瓜耐铵性生理分析.”南京农业大学学报11(2):17-23.
    孙菲菲,侯喜林,等.(2009).”不结球白菜硝酸还原酶基因BcNR的克隆及其在拟南芥中的转化.”中国农业科学42(2):577-587.
    师进霖,姜跃丽,等.(2009).”氮素形态对黄瓜幼苗生长及氮代谢酶活性影响.”中国农学通报25(22):225-227.
    张子山,张立涛,等.(2009).”不同光强与低温交叉胁迫下黄瓜PS Ⅰ与PS Ⅱ的光抑制研究.”中国农业科学42(12):4288-4293.
    张国发,史传奇,等.(2007).”结实期温度对不同粒位稻米镁,钾含量的影响.”大庆师范学院学报27(2):109-111.
    杨延杰,李天来,等.(2006).”弱光对不同类型番茄干物质积累及矿质营养分配的影响.”华北农学报21(3):121-124.
    杨晓玉(2008).硝酸盐胁迫对黄瓜幼苗氮同化影响的研究.硕士,山东农业大学.
    谢建昌和周健民(1999).”我国土壤钾素研究和钾肥使用的进展.”土壤(5):244-254.
    赵世杰(1998).植物生理学实验指导.北京,中国农业科技出版社.
    邓林和陈少良(2005)"ATPasee与植物抗盐性.”植物学通报22(增刊):11-21.
    郑朝峰(1986).”氮素形态对小麦叶片谷氨酸合成酶的影响.”植物生理学通讯(4):46-48.
    陆彬彬,周卫,等.(2002).”温度对水稻谷氨酰胺合成酶和NADH-谷氨酸合酶表达的影响.”武汉大学学报(理学版)48(2):239-242.
    陆景陵(2003).植物营养学.北京,中国农业大学出版社.
    陈靠山和周燮(1995).”脱落酸对线粒体Na+/K+-ATPase活性的影响.”植物学报37(5):368-373.
    陈亚华和沈振国(2000)."低温,高pH胁迫对水稻幼苗根系质膜,液泡膜ATP酶活性的影响.”植物生理学报26(5):407-412.
    陈艳丽,高新生,等.(2010).”不同形态氮素替代部分硝态氮对水培小白菜的生长和品质的影响.”中国农学通报26(15):306-309.
    鲍世颖,袁永泽,等.(2006)."2-酮戊二酸对水稻根部碳-氮代谢重要酶的活性影响.”武汉大学学报(理学版)52(6):763-766.
    黄有国(1996).植物细胞.植物生理补充教材.吴相钰,赵微平,匡廷云,王学臣.北京,中国植物学会生理专业委员会,北京植物生理学会:1-17.
    龚士琛(2003).”玉米幼苗硝酸还原酶活性受低温的影响.”玉米科学11(2):73-74,78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700