用户名: 密码: 验证码:
水产品中三类药物多残留的HPLC和UPLC-MS/MS分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水产品中药物残留问题是世界各国普遍关注的食品安全热点之一,建立有效的药物残留分析方法是对水产品中药物残留进行监测和控制的前提和基础。由于水产品基质的复杂性和水产养殖用药的特殊性,使水产品药物残留检测存在一些困难和问题。一方面相关法规对一些新出现或在水产养殖中新使用的药物设定了限量要求,但缺少合适的检测方法,如水产品中喹乙醇标示残留物3-甲基喹嗯啉-2-羧酸(MQCA)和阿苯达唑及其代谢物等;另一方面一些已有的多残留检测方法存在检测时间较长、前处理成本高,灵敏较低等问题,如水产品中磺胺类药物残留的检测。如何解决这些问题,满足国内外越来越严格的法规要求,是目前研究的重点和热点。解决这些问题对于提高行业检测水平,保证水产品质量安全均具有重要的意义。
     本论文针对目前水产品药残检测存在的问题,以喹乙醇标示残留物MQCA、阿苯达唑及其代谢物和磺胺类药物残留等为研究对象,深入研究了水产品药物多残留的样品前处理技术和高效液相色谱(HPLC)、超液相色谱-串联质谱(UPLC-MS/MS)分析方法。在样品前处理方法研究中使用了近年来引起广泛关注的碳纳米管萃取和基质固相分散等技术,有效提高了前处理效率。在检测过程中使用了多同位素内标稀释技术,以提高方法回收率和精密度。仪器分析过程中采用UPLC进行快速色谱分离,用串联质谱进行结构解析和准确定量。
     1.针对目前缺乏合适的喹乙醇标示残留物MQCA检测方法的问题建立了水产品中喹乙醇标示残留物的氢氧化钠水解-HPLC检测方法和盐酸水解-UPLC-MS/MS定量分析方法。
     建立的MQCA的氢氧化钠水解-HPLC检测方法具有除杂彻底、线性范围大、仪器配备要求低等特点。方法前处理采用氢氧化钠水解,可彻底去除蛋白等杂质。方法采用普通C18柱等度洗脱进行色谱分离,紫外检测器检测。方法在4-200μg/kg添加范围内平均回收率为80.0%-86.7%;日内相对标准偏差(RSD)为3.26-6.47%,日间RSD为2.54-7.54%;方法定量限为4.0μg/kg。与普通的液液萃取和偏磷酸水解-HPLC方法相比回收率分别提高了18.3%和11.9%。
     建立的MQCA盐酸水解-UPLC-MS/MS检测方法具有定量准确、分析时间短、灵敏度和精密度高等特点。针对MQCA残留在水产品基质中呈结合态,难以充分提取的问题,创新使用盐酸水解前处理方法,可有效释放并提取与基质呈结合态的MQCA。方法与碱水解和酶水解方法相比回收率分别提高了19.2%和10.4%,精密度分别提高了3.17%和1.59%。色谱分离采用UPLC梯度洗脱仅需5min,显著缩短了分析时间。利用质谱母离子和子离子扫描方法确定了合适的定性和定量特征离子,并推导了MQCA的质谱裂解过程。采用同位素标准品D4-QCA作为内标,显著降低了基质影响,提高了方法的回收率和精密度。方法的平均回收率为92.7-104.3%;日内RSD小于5.54%,日间RSD小于5.64%;方法具有较高的灵敏度,检出限(LOD)和定量限(LOQ)分别为0.1μg/kg和0.25μg/kg,显著低于目前已有的方法。利用建立的盐酸水解-UPLC-MS/MS检测方法对60个鱼肉样品进行了检测,有1个阳性样品检出。
     2.利用多同位素内标稀释定量技术,在乙酸乙酯快速提取、PS-DVB固相萃取和碳纳米管萃取三种前处理方法的基础上建立了水产品中阿苯达唑及其代谢物阿苯达唑砜、阿苯达唑亚砜和阿苯达唑-2-氨基砜的三种UPLC-MS/MS多残留分析方法。
     针对阿苯达唑及其三种代谢物之间的pKa值相差较大,在不同水产品中基质效应不同而导致的提取不完全、回收率相差大等问题,首次使用多同位素内标稀释定量技术,提高了方法回收率和精密度。三种同位素内标物在实验过程中与各自分析物同等稀释、浓缩和损耗,可显著缩小由分析物性质不同引起的回收率和精密度差异以及基质干扰。方法与先前报道的非那西汀内标法、艾司唑仑内标法相比回收率均有大幅提高,表现出了优异的准确度和重现性。
     利用串联质谱母离子和子离子扫描方法确定了合适的定性和定量特征离子,在此基础上推导了阿苯达唑阿苯达唑亚砜、阿苯达唑砜和阿苯达唑-2-氨基砜的质谱裂解过程。三种方法均使用UPLC进行色谱分离,可在4min内完成液-质联用分析,具有高通量分析的特点。
     水产品中阿苯达唑及其代谢物的乙酸乙酯快速提取-UPLC-MS/MS定量分析方法快速、简便,适用于新鲜鱼、虾等基质相对简单的水产品。通过比较甲醇、乙腈和乙酸乙酯的提取效率,确定了在碱性条件下用乙酸乙酯提取的快速前处理方法。方法平均回收率为92.8~113.7%;日内RSD小于7.01%,日间RSD小于6.38%;LOD为0.03-0.05μg/kg, LOQ为0.1-0.2μg/kg。
     利用PS-DVB固相萃取柱的亲水性基团对阿苯达唑类药物保留较强的性质,建立了水产品中阿苯达唑及其代谢物的PS-DVB固相萃取-UPLC-MS/MS定量分析方法。方法有较高的灵敏度,适合于基质复杂、脂肪含量高的鱼和鱼干等样品分析。在前处理研究中,比较了C,8. HLB、 PS-DVB固相萃取柱的效果,发现PS-DVB固相萃取柱的苯乙烯-二乙烯基苯聚合物亲水性基团对阿苯达唑类药物残留的保留最好。在此基础上对PS-DVB固相萃取的淋洗、洗脱条件进行了优化,建立了固相萃取净化方法。方法平均回收率在92.4~109.0%之间;日内RSD小于8.77%,日间RSD小于7.31%;LOD为0.02-0.04μg/kg,LOQ为0.08-0.15μg/kg。
     利用多壁碳纳米管对阿苯达唑类残留特异的吸附性质,首次建立了一种基于新型材料碳纳米管萃取的阿苯达唑及其代谢物的UPLC-MS/MS检测方法。在前处理方法中研究了不同尺寸多壁碳纳米管对阿苯达唑及其代谢物的吸附和洗脱性能,开发了一种新型碳纳米管固相萃取柱,并优化了固相萃取条件。与传统的固相萃取柱相比,本研究制备的碳纳米管固相萃取柱成本仅为其十分之一,且对分析物富集和净化效果显著。由于碳纳米管高效的富集和净化效果,在建立的三种方法中碳纳米管萃取UPLC-MS/MS方法灵敏度最高。方法平均回收率在95.2~104.0%之间;日内RSD小于5.99%,日间RSD小于6.98%;LOD为0.02-0.04μg/kg, LOQ为0.06-0.12μg/kg。
     利用建立的UPLC-MS/MS分析方法对100个水产样品进行了检测,有2个草鱼阳性样品和1个鳗鲡阳性样品检出。
     3.为了解决目前磺胺类药物残留检测中存在的前处理过程复杂、定量不稳定和成本较高的问题,建立了水产品中磺胺类药物残留的MSPD-HPLC在线柱后衍生荧光检测方法和碳纳米管萃取-UPLC-MS/MS检测方法。
     建立的水产品中磺胺类药物残留的MSPD-HPLC在线柱后衍生荧光检测方法快速、简便,具有较高的灵敏度和精密度。MSPD前处理方法采用中性氧化铝作为基质分散剂,无需分散剂的平衡和淋洗步骤,与常用的MSPD方法相比更为快速和简便。在荧光检测的基础上发展了在线柱后衍生-荧光检测方法,无需人工加入衍生试剂,缩短分析时间,并提高了方法的灵敏度和精密度。方法使用内标法定量,8种磺胺类残留平均回收率为83.8~112.4%,日内RSD小于9.79%,日间RSD小于9.28%;方法的LOD在2.0~8.0μg/kg之间,LOQ在5.0~20μg/kg之间。
     建立了水产品中磺胺类药物残留的碳纳米管萃取-UPLC-MS/MS检测方法。多壁碳纳米管具有比表面积大,吸附容量大的特点,利用这一性质可对磺胺类多残留组分充分富集萃取。研究首先确定了碳纳米管的用量,然后优化了吸附洗脱条件,最终建立了一种碳纳米管萃取前处理新方法。与传统的固相萃取柱相比,碳纳米管固相萃取对磺胺多组分残留的吸附容量更大,富集和洗脱过程更为稳定。方法使用UPLC进行色谱分离,可在10min内将10种磺胺有效分离,与常规高效液相色谱法相比明显缩短了分析时间。利用串联质谱母离子和子离子扫描方法确定了合适的定性和定量特征离子。方法使用两种同位素内标进行定量,获得了较好的回收率和精密度。10种磺胺类药物在0.5~100μg/kg范围内平均回收率为82.2~117.6%;日内RSD小于11.7%,日间RSD小于12.8%;10种磺胺类药物残留的LOD在0.1~0.2μg/kg之间,LOQ在0.3~0.5μg/kg之间。
     用建立的MSPD-HPLC-在线柱后衍生荧光检测法对240个水产样品进行了检测,有7个阳性样品检出。阳性样品品种包括鲈鱼、罗非鱼、大菱鲆、对虾、甲鱼等。阳性样品超标的药物为磺胺甲基异嗯唑、磺胺噻唑、磺胺甲基嘧啶和磺胺喹噁啉。
     通过研究建立了水产品中三类药物残留的快速、准确、灵敏的HPLC和UPLC-MS/MS定量分析方法。各方法的准确度和精密度均符合残留分析质量控制程序的要求,定量限均满足国内外药物残留限量的要求。本研究可为水产品中药物残留的检测和监控提供分析手段和理论依据,对药物残留检测新方法开发、水产品安全评价具有重要指导意义和借鉴价值。
The issue of veterinary residues in aquatic products is one of the food safety problems throughout the world by widespread concern. Effective detection methods are the first requirement for survey and control veterinary residues. The complexity of matrices and particularity of veterinary in aquaculture, brings some difficulties for the analysis of veterinary residues. On one hand, residue limits of relevant regulations on new veterinary drugs used in aquaculture were already set, but there still lack of suitable analysis methods, for example, analysising the olaquindox marker residue methyl-3-quinoxaline-2-carboxylic acid (MQCA) and albendazole and its metabolites. On the other hand, there are still several shortages in some existing methods, such as time-consuming, higher cost and lower sensitivity, like analysis method of sulfonamides(SAs) in aquatic products. How to solve these problems, meet more and more strict regulations and requriments domestic and abroad, is the study hotspot and focus. Resolving these problems, it is great significance for heightening detecting ability and ensuring safety of aquatic products.
     In this paper, sample pre-treatments, HPLC and UPLC-MS/MS methods for determination of marker substance of olaquindox, albendazole and its metabolites, SAs in aquatic product was studied. Some novel technology such as carbon nanotubes (CNTs) extraction, matrix solid-phase dispersion (MSPD) were explored to improve the extract efficient in sample pre-treatment procedure. Multi-isotope dilution technique was used to obtain better recovery and lower RSD. During the instrumental analysis, UPLC was used for rapid chromatographic separation, and tandem mass was used for structural elucidation and quantitative analysis.
     1. Sodium hydroxide hydrolysis HPLC and hydrochloric acid hydrolysis UPLC-MS/MS methods were developed for the quantification of MQCA in aquatic products, aming at the lack of suitable analysis method at present.
     The major advantages of sodium hydroxide hydrolysis-HPLC method include removing impurities completely, wide linear range and low requirements for analytical instruments and equipments. In this method, hydrolysis by sodium hydroxide, it was remove protein completely. Analyte was separated by LC isocratic elution mode and detected by ultraviolet detector. The average recoveries of MQCA, spiked at level of4-200μg/kg, were80.0-86.7%, with the intra-day RSD3.26-6.47%and inter-day RSD2.54-7.54%. The limit of quantitation(LOQ) for MQCA was4.0μg/kg. Compared with liquid-liquid extraction (LLE) and phosphate Acid hydrolysis-HPLC method, recoveries of the method increased by18.3%and11.9%, precision of the method increased by1.14%and0.56%, respectively.
     Acid hydrolysis-UPLC-MS/MS method characterized by accurate quantification, high sensitivity, good precision and short analysis time, hydrochloric acid was used to hydrolysis and release MQCA bound protein in this method. Compared with alkaline hydrolysis and enzymatic digest method, the recoveries increased by19.2%and10.4%, precision increased by3.17%and1.59%, respectively. The chromatographic separation was achieved in less than5min by UPLC, reduced the run time significantly. MS scan and daughter scan modes was used to selected qualitative and quantitative ions, the fragmentation pathways of MQCA was also studied. Isotope internal standard D4-QCA was used to decrease the interference of matrix and increase recovery and precision. The average recoveries of MQCA were92.7-104.3%, with the intra-day and inter-day RSDs less than5.54%and5.64%, respectively. The LOD and LOQ for MQCA were0.1μg/kg and0.25μg/kg, which were lower than the existing methods. The developed method was applied to the analysis60batch of fish, one of them was confirmed positive for MQCA.
     2. Three UPLC-MS/MS methods were developed to determine albendazole(ABZ), albendazole sulfoxide, albendazole sulfone and albendazole2-aminosulfone in aquatic products by using multi-isotope dilution technique.The pre-treatments of the three method were based on rapid extraction by ethyl acetate, PS-DVB SPE and CNTs extraction, respectively.
     The differences of pKa values between ABZ and its metabolites induce incomplete extraction efficiency and significant difference in recoveries. The first use of internal standard quantitative technique of multi-isotope dilution to improve recovery and precision in this method. Three isotope internal standards was used to correct the matrix effect and variations in dilutions, evaporation, degradation, recovery and precision. The result shows good accuracy and reproducibility. Compared with the methods of eralier reported using estazolam and phenacetin as internal standards, the recovery of this method increased significantly.
     MS scan and daughter scan modes was used to selected qualitative and quantitative ions, the fragmentation pathways of ABZ and its metabolites was also studied. The chromatographic separation was achieved in4min by UPLC, which is suitable for high-throughput analysis.
     Ethyl acetate rapid extraction combind with UPLC-MS/MS method is rapid, simple and suitable for samples of fresh fish and shrimp. Three solvents, methanol, acetonitrile and ethyl acetate were tested in a side-by-side comparison. Ethyl acetate under the alkaline condition was selected as the best extraction solvent for the sample preparation. The average recoveries of the method were92.8-113.7%, with the intra-day and inter-day RSDs less than7.01%and6.38%. The LOD and LOQ for ABZ and its metabolites were in the range of0.03-0.05μg/kg and0.1-0.2μg/kg, respectively.
     A PS-DVB SPE combined with UPLC-MS/MS method was developed for determination of ABZ and its metabolites in aquatic products. The method is sensitive and suitable for fish samples with complex matrix or high fat. Three types of SPE columns C18, HLB, PS-DVB were tested and compared, and PS-DVB SPE column showed the best purification effect. Then, the washing and eluting conditions were optimized. The average recoveries of the method were92.4-109.0%, with the intra-day and inter-day RSDs less than8.77%and7.31%. The LOD and LOQ for ABZ and its metabolites were in the range of0.02-0.04μg/kg and0.08-0.15μg/kg, respectively.
     A novel CNTs extraction combined with UPLC-MS/MS method was developed for determination of ABZ and its metabolites based on the adsorption property of MWCNTs. The absorbing and eluting behaviour for different size of MWCNTs was studied. Furthermore, a new type of solid phase extraction column using MWCNTs as sorbent was developed, and the SPE conditions were further optimized. Compared with conventional SPE columns, the cost was only1/10, and showed better enrichment and purification effect. The method of CNTs extraction-UPLC-MS/MS shows the best sensitivity among three new methods. The average recoveries of this method were95.2-104.0%, with the intra-day and inter-day RSDs less than5.99%and6.98%. The LOD and LOQ for ABZ and its metabolites were in the range of0.02-0.04μg/kg and0.06-0.12μg/kg, respectively.
     The developed ethyl acetate rapid extraction-UPLC-MS/MS method was applied to the analysis100batch of aquatic products, two grasscrab sample and one eel sample were confirmed positive.
     3. MSPD-HPLC online postcolumn derivatization fluorescence detection method and CNTs SPE-UPLC-MS/MS method were developed to determine SAs in aquatic products, aiming at the issues of complex pre-treatment, inaccuracy in quantitative analysis and high cost of analysis.
     MSPD-HPLC online postcolumn derivatization fluorescence detection method is rapid, simple, sensitive and with high precision, neutral alumina was used as dispersant in MSPD pre-treatment. By this method, SAs could be isolated by only one step, without the sorbent conditioning and sorbent-tissue matrix washing. Online postcolumn derivatization and fluorescence detection method was established based on HPLC-FLD method. In this method, derivatizing agent don't need to be added manually, which reduce the analysis time and improve sensitivity and precision of the method. Internal standard was used in quantitative analysis, and the average recoveries of this method were83.8-112.4%, with the intra-day and inter-day RSDs less than9.79%and9.28%. The LOD and LOQ for MQCA were in the range of2.0-8.0μg/kg and5.0-20μg/kg, respectively.
     A CNTs SPE-UPLC-MS/MS method was developed for determination of ten SAs by using the MWCNTs'property of high surface area and adsorption. First, the amount of CNTs was ascertained, then the absorbing and eluting conditions were optimized. Finally, the pre-treament method of CNTs SPE was established. Compared with conventional SPE columns, CNTs SPE showed bigger adsorption capacity, more stable properties of enrichment and elution. The chromatographic separation was achieved in10min by UPLC, reduced the run time significantly. The average recoveries of ten SAs, spiked at level of0.5-100μg/kg, were82.2-117.6%, with the intra-day and inter-day RSDs less than11.7%and12.8%. The LOD and LOQ for SAs were in the range of0.1-0.2μg/kg and0.3-0.5μg/kg, respectively.
     The developed MSPD-HPLC method by online postcolumn derivatization and fluorescence detection was applied to the analysis240batch of aquatic products, seven samples were confirmed positive. The species of positive samples were perch, tilapia, turbot, shrimp and turtle. The positive drugs were sulfamethoxazole, sulfathiazole, sulfamerazine and sulfaquinoxaline.
     HPLC and UPLC-MS/MS methods for determination of three kinds of veterinary residues in aquatic products were developed in this paper. The accuracy and precision of these methods all keep in accordance with Method Validation and Quality Control Procedures, and all the LOQs meet the demands of MRL prescribed by domestic and abroad regulations. These methods are suitable for the determination and confirmation of veterinary residues in aquatic products and can be used for residue control programs. It also has a great value for development of new analytical methods and evaluation on safety of aquatic products.
引文
[1]蔡友琼,于慧娟.养殖水产品中药物残留问题及对策[J].现代渔业信息,2004,19(12):21-24.
    [2]王玉堂,吕永辉.目前允许使用的渔药构成与释析[J],中国水产,2008,1:61-67.
    [3]高华鹏,殷居易,李永夫等.鳗鱼中氯霉素残留的UPLC-MS/MS检测方法研究[J].中国兽药杂志,2007,41(11):20-23.
    [4]王媛,蔡友琼,贾东芬等.高效液相色谱法检测水产品中硝基呋喃类代谢物残留量[J].分析实验室,2009,28(12):86-90.
    [5]李俊锁,邱月明,王超等.兽药残留分析[M].上海:上海科学技术出版社,2002:228-264.
    [6]杨守国,李兆新,王清印等.高效液相色谱法检测海水养殖环境中喹诺酮类药物残留[J].渔业科学进展,2010,31(2):95-101.
    [7]穆春兰.磺胺类药物致肾损害的研究[j].黑龙江医药,2006(4):312.
    [8]Littefiled N A, Sheldon W G, Allen R, et al. Chronic Toxicity/Carcinogenicity Studies of Sulphamethazine in Fischer 344/N Rats:Two Generation Exposure[J]. Food Chem Toxicol,1990, 28(3):157~167.
    [9]Cribb A E, Miller M, Tespro S P, et al. Peroxidase-dependent oxidation of sulfonamides by monocytes and neutrophils from humans and dogs[J]. Mol Pharmacol,1990,38(5):744-751
    [10]Alexander F. An introduction to veterinary pharmacology Third Edition [M]. London: Longman Group Ltd,1976:329.
    [11]Jones L M. Veterinary Pharmacology and therapeutics,4th ed [M]. Ames:Iowa State University Press,1977.
    [12]Enlhardt, D A. Effect of oral administration of forazolidone (Furoxone) on growth, hemoglobin level, packed cell volume and initial egg production of eg gand meat-type replacement pullets[J]. Vet.bull.,1975,45(10):765.
    [13]McKellar Q A, Scott E W. The benzimidazole anthelmintic agents-a review[J]. J Vet Pharmacol Ther,1990,13(3):223-247.
    [14]Hajee C A, Haagsma N. Liquid chromatographic determination of mebendazole and its metabolites, aminomebendazole and hydroxymebendazole, in eel muscle tissue[J]. J AOAC Int, 1996,79(3):645-651.
    [15]徐英江,田秀慧,张秀珍.超高效液相色谱串联质谱法对水产品中8种雌激素的测定[J].分析测试学报,2010,29(2):152-156.
    [16]Joint Expert Committee on Food (Technical Series, vol.851), FAO/WHO, Geneva,1995.
    [17]European Commission (EC) No.2788/98, Off. J. Eur. Commun.1998,347,31-34.
    [18]Ding MX, Wang YL, Zhu HL, et al. Effects of cyadox and olaquindox on intestinal mucosal immunity and on fecal shedding of Escherichia coli in piglets[J]. J Anim Sci, 2006,84(9):2367-2373.
    [19]Zou J, Chen Q, Tang S, et al. Olaquindox-induced genotoxicity and oxidative DNA damage in human hepatoma G2 (HepG2) cells[J]. Mutat Res,2009,676(1-2):27-33.
    [20]Jeong SH, Song YK, Cho J H. Risk assessment of ciprofloxacin, flavomycin, olaquindox and colistin sulfate based on microbiological impact on human gut biota[J]. Regul Toxicol Pharmacol, 2009,53(3):209-216.
    [21]Provisional MRLs List,2007, http://www.mhlw.go.jp/english/topics/foodsafety/ positivelist060228/index.html.
    [22]张小军,郑斌,陈雪昌.高效液相色谱-荧光检测法测定水产品中4种磺胺类药物残留量[J].食品科学,2009,30(8):235-237.
    [23]Jennaot MA, Cnatwell FF. Solvent Microextraction into a Single Drop [J]. Anal. Chem,1996, 68(13):2236-2240.
    [24]Sun X, Zhu F, Xi J, et al. Hollow fiber liquid-phase microextraction as clean-up step for the determination of organophosphorus pesticides residues in fish tissue by gas chromatography coupled with mass spectrometry [J]. Mar Pollut Bull,2011,63(5):102-7
    [25]李宏利,徐长庆.食品中药物残留检测样品前处理技术进展[J].食品研究与开发,2009,30(6):178-179.
    [26]钱卓真,苏秀华,魏博娟,等.高效液相色谱法同时测定水产品中6种喹诺酮药物的残留[J].食品科学,2010,31(6):185-189.
    [27]任惠丽,杨元昊,田强兵,等.高效液相色谱法测定水产品中泰乐菌素残留量[J].中国卫生检验杂志,2011,21(10):2371-2372.
    [28]Tao Y F, Chen D M, Chao X Q.Simultaneous determination of malachite green, gentian violet and their leuco-metabolites in shrimp and salmon by liquid chromatography-tandem mass spectrometry with accelerated solvent extraction and auto solid-phase clean-up[J]. Food Control, 2011,22(8):1246-1252
    [29]祝颖,张虹.UPLC-MS/MS法同时检测水产品中喹诺酮类药物残留[J].中国食品学报,2010,10(2):206-213.
    [30]Galarini R, Fioroni L, Moretti S.Development and validation of a multi-residue liquid chromatography-tandem mass spectrometry confirmatory method for eleven coccidiostats in eggs [J]. Analytica chimica Acta,2011,700(2):167-176
    [31]Zhu W, Yang J, Wei W.Simultaneous determination of 13 aminoglycoside residues in foods of animal origin by liquid chromatography-electrospray ionization tandem mass spectrometry with two consecutive solid-phase extraction steps[J]. Journal of Chromatography A,2008,1207(1-2): 29-37
    [32]李春风,岳振峰,赵凤娟,等.液相色谱串联质谱测定水产品中吩噻嗪类药物残留的研究[J].中国兽医学报,2010,30(3):384-387.
    [33]Yang Y, Shao B, Zhang J.Determination of the residues of 50 anabolic hormones in muscle, milk and liver by very-high-pressure liquid chromatography-electrospray ionization tandem mass spectrometry [J]. Journal of Chromatography B,2009,877(5-6):489-496
    [34]Bianchi F, Careri M, Musci M, Mangia A. Fish and food safety:Determination of formaldehyde in 12 fish species by SPME extraction and GC-MS analysis. Food Chemistry,2007, 100(3):1049-1053.
    [35]Boison JO, Lee SC, Gedir R G. A determinative and confirmatory method for residues of the metabolites of carbadox and olaquindox in porcine tissues[J]. Anal Chim Acta,2009,637(1):128-134.
    [36]Barker S A, Long A R, Short C R. Isolation of drug residues from tissues by solid phase dispersion [J].Chromatogr A,1989,475(2):353-361
    [37]王舒婷,慕慧,张艳伟,等.兽药多残留分析中前处理与检测技术研究进展[J].中国兽药杂志,2008,42(8):43-46.
    [38]胡艳云.食品中有害残留物检测的前处理技术与色谱分析技术研究[D].中国科学技术大学,2006.
    [39]Kubala H, Drincic D, Bazulic J. Matrix.Solid-Phase Dispersion Extraction and Gas Chromatographic Determination of Chloramphenicol in Muscle Tissue[J].Agric. Food Chem, 2003,51(4):871-875.
    [40]Blasco C, Pico Y, Manes J,et al. Determination of fungicide residues in fruits and vegetables by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry [J]. Chromatogr. A,2002,947(2):227-235.
    [41]Anastassiades M, Lehotay S, Stajnbaher D, et al. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and "Dispersive Solid-Phase Extraction" for the Determination of Pesticide Residues in Produce[J].AOAC Int,2003,86 (2):412-431
    [42]Kishida K, Fuurswa N. Matrix solid-phase dispersion extraction and high-performance liquid chromatographic determination of residual sulfonamides in chicken [J]. Chromatogr A,2001,937(1-2),49-55.
    [43]Labadie P, Alliot F, Bourges C, et al. Determination of polybrominated diphenyl ethers in fish tissues by matrix solid-phase dispersion and gas chromatography coupled to triple quadrupole mass spectrometry:Case study on European eel (Anguilla anguilla) from Mediterranean coastal lagoons[J]. Analytica Chimica Acta,2010,675 (2):97-105
    [44]Kinsella B, Lehotay S, Mastovska K, et al. New method for the analysis of flukicide and other anthelmintic residues in bovine milk and liver using liquid chromatography-tandem mass spectrometry [J].Anal. Chim. Acta,2009,637 (1-2):196-207.
    [45]Pensado L, Casais MC, Mejuto MC.Application of matrix solid-phase dispersion in the analysis of priority polycyclic aromatic hydrocarbons in fish samples[J].Journal of Chromatography A,2005,1077(2):103-109
    [46]赵海香,邓维,尚艳芬,等.基于低毒溶剂的MSPD/HPLC法同时测定鱼肉中8种磺胺类药物残留[J].分析测试学报,2009,30(4):178-181.
    [47]赖克强,俞志根,陆勤丰,等.鱼肉中磺胺类和四环素类药物多残留分析方法的研究[J].食品工业科技,2010,30(6):350-352.
    [48]Boulaire S, Bauduret J, Andre F. Veterinary Drug Residues Survey in Meat:D An HPLC Method with a Matrix Solid Phase Dispersion Extraction [J]. J Agric Food Chem,1997, 45(6):2134-2142.
    [49]Valcarcel M, Cardenas S, Simonet B. Role of Carbon Nanotubes in Analytical Science [J]. Anal Chem,2007,79(13):4788-4797.
    [50]Merkoci A, Pumera M, Llopis X. New materials for electrochemical sensing VI:Carbon nanotubes[J]. TrAC Trends in Analytical Chemistry,2005,24(9):826-838.
    [51]武春霞,王春,王志.碳纳米管在分离科学中的应用研究进展[J].色谱,2011,29(1):6-14.
    [52]Suarez B, Simonet BM, Cardenas S.Surfactant-coated single-walled carbon nanotubes as a novel pseudostationary phase in capillary EKC[J]. Electrophoresis,2007,28(11):1714-1722
    [53]El-Sheikh AH, Sweileh JA, Al-Degs YS,et al.Critical evaluation and comparison of enrichment efficiency of multi-walled carbon nanotubes, C18 silica and activated carbon towards some pesticides from environmental waters [J].talanta,2007,74(5):1675-1680
    [54]Zhou QX, Xiao J, Ding YJ.Sensitive determination of fungicides and prometryn in environmental water samples using multiwalled carbon nanotubes solid-phase extraction cartridge[J].Analytica Chimica Acta,2007,602(2):223-228
    [55]Zhou Q, Xiao J. Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection[J].Chromatography,2006, 1125(2):152-159.
    [56]Min G, Wang S, Zhu H, et al.Multi-walled carbon nanotubes as solid-phase extraction adsorbents for determination of atrazine and its principal metabolites in water and soil samples by gas chromatography-mass spectrometry [J].Sci total environ,2008,396(1):79-85
    [57]Wang L, Zhao H, Qiu Y. Determination of four benzodiazepine residues in pork using multiwalled carbon nanotube solid-phase extraction and gas chromatography-mass spectrometry [J]. Chromatogr A,2006,1136(1):99-105.
    [58]韩宝武,范必威SPE-HPLC法测定牛奶中残留的四环素类抗生素[J].广州化工,2007,35(5):39-40,45.
    [59]Fang GZ, He JX, Wang S.Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork [J]. Chromatogr A,2006,1127(12):243-251
    [60]Cacho C, Turiel E, Martin-Esteban A, et al. Semio-covalent imprinted polymer using propazine methacrylate as template molecule for the clean-up of triazines in soil and vegetable samples[J]. Chrmatogr A,2006,1114(2):255-262.
    [61]Mei S, Wu D, Jiang M, et al. Determination of trace bisphenol A in complex samples using selective molecularly imprinted solid-phase extraction coupled with capillary electrophoresis[J]. Microchemical Journal 2011:150-155
    [62]李俊锁.兽药残留分析研究进展[J].中国农业科学,1997,30(5):81-87
    [63]陈洁文,柯常亮,甘居利.气相色谱法测定水产品中氯丹残留量[J].生态与农村环境学报,2011,27(3):98-102
    [64]王建华,陈世山.同时测定鱼肉中氯霉素和甲砜霉素残留量的毛细管气相色谱法[J].分析测试学报,2001,20(3):89-91.
    [65]黄冬梅,毕士川,于慧娟,等.气相色谱法测定南美白对虾中有机氯农药残留量[J].福建水产,2004,5(1):35-37
    [66]高钰一,沈美芳,宋红波,等.气相色谱法测定水产品中7种拟除虫菊酯的残留量[J].水产学报,2009,33(1):132-138
    [67]王建华,张艺兵.毛细管气相色谱法同时测定水产品中多氯联苯和有机氯农药残留量[J].化学分析计量,2003,12(2):13-15
    [68]王淼,李荣,邹世平.气相色谱法测定水产品中残留的呋喃丹[J].色谱,2008,26(6):775-777
    [69]Voegborlo RB, Matsuyama A, Adimado AA.Determination of methylmercury in marine and freshwater fish in Ghana using a combined technique of dithizone extraction and gas-liquid chromatography with electron capture detection[J]. Food chemistry,2011,1056(10):120-131
    [70]Hwang BS, Wang JT. A rapid gas chromatographic method for the determination of histamine in fish and fish products[J]. Food Chemistry,2003,82(2):329-334
    [71]李晓玉,付建,隋涛,等.气相色谱-质谱联用检测进出口水产品中氟乐灵残留[J].食品科学,2011,32(16):315-317.
    [72]覃东立,牟振波,陈中祥,等.凝胶渗透色谱和气相色谱-质谱法测定水产品中33种拟除虫菊酯[J].分析试验室,2011,10(9):30-34.
    [73]田良良,曹立民,王建华,等.水产品中丙酸睾酮激素的同位素稀释气相色谱-质谱法分析[J].中国渔业质量与标准,2011,12(3):55-61.
    [74]张秀珍,徐英江,宫向红,等.气相色谱质谱法同时测定水产品中8种雌激素类化合物[J].中国水产科学,2009,16(5):791-797.
    [75]Alaee M, Sergeant DB, Ikonomou MG,et al. A gas chromatography/high-resolution mass spectrometry (GC/HRMS) method for determination of polybrominated diphenyl ethers in fish[J]. Chemosphere,2001,44(6):1489-1495
    [76]王媛,蔡友琼,贾东芬等.高效液相色谱法检测水产品中硝基呋喃类代谢物残留量[J].分析试验室,2009(12):86-90.
    [77]龙洲雄,万春花,胡海山,等.高效液相色谱快速测定水产品中孔雀石绿、结晶紫及其无色产物的残留量[J].理化检验(化学分册),2010,3(4):368-370.
    [78]王静,杨洪生,张美琴,等.高效液相色谱-荧光检测法测定水产品中孔雀石绿代谢物残留量[J].理化检验(化学分册),2010,5(6):642-644.
    [79]Gehring T A, Griffin B, Williams R, et al.Multriesidue determination of sulfonamides in edible catfish,shrimp and salmon tissues by high-performance liquid chromatography with postcolumn derivatization and fluorescence detection[J]. J Chromatography, B,2006,840: 132-138.
    [80]Won S, Lee C, Chang H, et al. Monitoring of 14 sulfonamide antibiotic residues in marine products using HPLC-PDA and LC-MS/MS[J]. Food Control,2011,22:1101-1107.
    [81]徐维海,林黎明,朱校斌,等.水产品中14种磺胺类药物残留的HPLC法同时测定[J].分析测试学报,2004,23(5):122-124.
    [82]Wu Y, Yu H, Wang Y, et al. Development of a high-performance liquid chromatography method for the simultaneous quantification of quinoxaline-2-carboxylic acid and methyl-3-quinoxaline-2-carboxylic acid in animal tissues[J]. J Chromatogr A,2007,1146(1):1-7.
    [83]吕海涛,陈峰,姜悦.高效液相色谱法测定四环素类抗生药物中土霉素、强力霉素、四环素和金霉素[J].理化检验(化学分册),2007,43(1):18-20
    [84]钱卓真,苏秀华,魏博娟,吴成业.高效液相色谱法同时测定水产品中6种喹诺酮药物的残留[J].食品科学,2010,31(6):185-189
    [85]黄志勇,蔡洪基,黄高凌,等.水产品中四环素类抗生素残留量的高效液相色谱测定方法[J].福建分析测试,2005,14(1):2093-2095,2105.
    [86]郭霞.虾肌肉中氟苯尼考和氟苯尼考胺残留的高效液相色谱检测方法研究[J].中国兽药杂志,2008,42(7):13-16.
    [87]罗文婷,吴青,简伟明,钟璇琼.超高效液相色谱法测定水产品中违禁兽药氯霉素、呋喃唑酮和甲硝唑残留[J].分析化学,2009,9(6):877-880.
    [88]郭萌萌,李兆新,谭志军,等.超高效液相色谱法(UPLC)快速测定水产品中17种磺胺类抗生素残留[J].渔业科学进展,2010,31(5):97-104.
    [89]Jonsson G, Stokke TU, A Cavcic.Characterization of alkylphenol metabolites in fish bile by enzymatic treatment and HPLC-fluorescence analysis. [J]. Chemosphere,2008,71 (7):1392-1400
    [90]Silva VM, Veloso MC, Oliveira AS. Determination of simple bromophenols in marine fishes by reverse-phase high performance liquid chromatography (RP-HPLC) [J]. Talanta,2005,68 (2): 323-328
    [91]Mendes R, Cardoso C, Pestana C. Measurement of malondialdehyde in fish:A comparison study between HPLC methods and the traditional spectrophotometric test. [J]. Food Chemistry, 2009,112(4):1038-1045
    [92]应永飞,陈慧华,吴平谷.高效液相色谱-串联质谱在兽药残留分析中的应用[J].分析科学学报,2008,24(3):359-366.
    [93]丁磊,蒋俊树,顾亮,徐彦辉.高效液相色谱串联质谱法快速测定水产品中硝基呋喃类代谢物研究[J].现代农业科技,2010,16(11):336-337,345
    [94]余建新,胡小钟,林雁飞,王鹏,李亚飞,李晶.液相色谱-串联质谱联用法测定蜂蜜及水产品中硝基呋喃类抗生素代谢物残留量[J].分析科学学报,2004,20(4):382-384.
    [95]朱宽正,王鹏,林雁飞,萧松建,梅素容.液相色谱-串联质谱法同时测定水产品中孔雀石绿、结晶紫以及它们的隐色代谢物残留[J].色谱,2007,25(1):66-69.
    [96]朱万燕,刘玉芳,刘冰,等.同位素内标法测定水产品中孔雀石绿、结晶紫及其代谢产物[J].水产科学,2011,30(12):781-784.
    [97]孙玉增,徐英江,刘慧慧,等.液相色谱-串联质谱法测定海产品中21种磺胺类药物残留[J].食品科学,2010,31(2):120-123.
    [98]李佐卿,倪梅林,俞雪钧,章再婷,谢东华,殷居易,湛嘉.液相色谱-串联质谱法检测水产品中磺胺类和喹诺酮类药物残留[J].分析测试学报,2007,26(4):508-510,514.
    [99]蔡勤仁,冯家望,张毅,彭玉芬,薛良辰,杜志峰.液相色谱-串联质谱结合谱库检索法同时测定猪组织中12种类固醇激素[J].色谱,2011,29(8):712-717
    [100]Shaikh B, Rummel N, Gieseker C. Residue depletion of albendazole and its metabolites in the muscle tissue of large mouth and hybrid striped bass after oral administration [J]. Chromatography A,2009,1216(46):8173-8176.
    [101]连文浩.超高效液相色谱-串联质谱法测定鳗鱼中四环素类药物残留[J].理化检验(化学分册),2010,46(2):161-163.
    [102]王荣艳,贾丽,贾东芬,等UPLC-MS/MS法快速测定水产品中硝基呋喃类代谢物残留[J].分析试验室,2010,29(5):368-370.
    [103]祝璟琳,杨弘,肖炜,等.超高效液相色谱-串联质谱联用测定罗非鱼肌肉中甲基睾丸酮残留[J].食品科学,2011,32(22):243-247.
    [104]苏建峰,连文浩,陈文凯.超高效液相色谱-串联质谱快速检测水产品中孔雀石绿及无色孔雀石绿[J].理化检验(化学分册),2007,43(11):937-939.
    [105]Dasenaki ME, Thomaidis N S. Multi-residue determination of seventeen sulfonamides and five tetracyclines in fish tissue using a multi-stage LC-ESI-MS/MS approach based on advanced mass spectrometric techniques[J]. Analytica chimica acta,2010,672 (1-2):93-102
    [106]Horie M, Takegami H, Toya K. Determination of macrolide antibiotics in meat and fish by liquid chromatography-electrospray mass spectrometry[J]. Analytica Chimica Acta,2003, 492(1-2):187-197
    [107]Paschoal J, Reyes F,Rath S. Quantitation and identity confirmation of residues of quinolones in tilapia fillets by LC-ESI-MS-MS [J]. Analytical and Bioanalytical Chemistry,2009, 394,(8):2213-2221
    [108]王霄旸,张丽芳,薛飞群,等.采用高效液相色谱-串联质谱法检测鲫鱼组织3-甲基喹嗯啉-2-羧酸残留量[J].中国兽医科学,2007,37(8):718-720.
    [109]Hutchinson MJ, Young PB, Kennedy D G. Confirmation of carbadox and olaquindox metabolites in porcine liver using liquid chromatography-electrospray, tandem mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2005,816(1-2):15-20
    [110]Bonato P S, de Oliveira A R, de Santana F J, et al. Simultaneous determination of albendazole metabolites, praziquantel and its metabolite in plasma by high-performance liquid chromatography-electrospray mass spectrometry[J]. J Pharm Biomed Anal, 2007,44(2):558-563.
    [111]Bonato P S, Lanchote V L, Takayanagui O M. Simultaneous liquid chromatography-tandem mass spectrometric determination of albendazole sulfoxide and albendazole sulfone in plasma[J]. J Chromatogr B,2003,783(l):237-245.
    [112]Dubaniewicz A, Trzonkowski P, Dubaniewicz-Wybieralska M, et al. Comparative analysis of mycobacterial heat shock proteins-induced apoptosis of peripheral blood mononuclear cells in sarcoidosis and tuberculosis[J]. J Clin Immunol,2006,26(3):243-250.
    [113]Yamada R, Kozono M, Ohmori T, et al. Simultaneous determination of residual veterinary drugs in bovine, porcine, and chicken muscle using liquid chromatography coupled with electrospray ionization tandem mass spectrometry[J]. Biosci Biotechnol Biochem, 2006,70(1):54-65.
    [114]Balizs G. Determination of benzimidazole residues using liquid chromatography and tandem mass spectrometry[J]. J Chromatogr B,1999,727(1-2):167-177.
    [115]Hu X Z, Wang J X, Feng Y Q. Determination of benzimidazole residues in edible animal food by polymer monolith microextraction combined with liquid chromatography-mass spectrometry[J]. J Agric Food Chem,2010,58(l):112-119.
    [116]Xia X, Dong Y, Luo P, et al. Determination of benzimidazole residues in bovine milk by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. J Chromatogr B, 2010,878(30):3174-3180.
    [117]Cvilink V, Skalova L, Szotakova B, et al. LC-MS-MS identification of albendazole and flubendazole metabolites formed ex vivo by Haemonchus contortus[J]. Anal Bioanal Chem, 2008,391(1):337-343.
    [118]Martinez V J, Garrido F A, Aguilera-Luiz M M, et al. Development of fast screening methods for the analysis of veterinary drug residues in milk by liquid chromatography-triple quadrupole mass spectrometry[J]. Anal Bioanal Chem,2010,397(7):2777-2790.
    [119]Stolker A A, Peters R J, Zuiderent R, et al. Fully automated screening of veterinary drugs in milk by turbulent flow chromatography and tandem mass spectrometry[J]. Anal Bioanal Chem, 2010,397(7):2841-2849.
    [120]Chen X, Zhao L, Xu H, et al. Simultaneous determination of albendazole and its major active metabolite in human plasma using a sensitive and specific liquid chromatographic-tandem mass spectrometric method[J]. J Pharm Biomed Anal,2004,35(4):829-836.
    [121]谭慧,麦琦.酶联免疫分析法测定水产品中氯霉素残留量[J].中国卫生检验杂志,2010,20(7):1649-1650.
    [122]胡拥明,梁沙莉,徐丽广,等.氯霉素免疫检测方法的建立[J].食品科学,2009,30(20):416-420.
    [123]赵新宇,王权,闫叶娜.建立水产品中己烯雌酚残留ELISA检测方法[J].中国畜牧兽医,2010,37(10):43-47.
    [124]檀尊社,陆恒,邵伟,张少恩.胶体金免疫层析法快速检测水产品中四环素类药物残留[J].西北农业学报,2010,19(8):32-37
    [125]何方洋,万宇平,丁双阳,等.链霉素胶体金快速检测试纸条的研制[J].中国动物检疫,2008,25(5):29-31.
    [126]郑晶,黄晓蓉,李耀平,等.鳗鱼中恩诺沙星残留量的酶联免疫检测方法[J].食品科学,2004,25(10):247-250.
    [127]Lynch MJ, Mosher FR, Schneider RP, et al. Determination of carbadox-related residues in swine liver by gas chromatography/mass spectrometry with ion trap detection[J]. J Assoc Off Anal Chem,1991,74(4):611-618.
    [128]Chen W, Jiang Y, Ji B,et al. Automated and ultrasensitive detection of methyl-3-quinoxaline-2-carboxylic acid by using gold nanoparticles probes SIA-rt-PCR[J]. Biosens Bioelectron,2009,24(9):2858-2863.
    [129]Wu Y, Engen JR, Hobbins W B. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry[J]. J Am Soc Mass Spectrom, 2006,17(2):163-167.
    [130]esiunaite G K, Naujalis E, Padarauskas A. Matrix solid-phase dispersion extraction of carbadox and olaquindox in feed followed by hydrophilic interaction ultra-high-pressure liquid chromatographic analysis[J]. J Chromatogr A,2008,1209(1-2):83-87.
    [131]Aguera A, Lopez S, Fernandez-Alba AR, et al. One-year routine application of a new and rapid method based on ultra performance liquid chromatography-tandem mass spectrometry to the analysis of selected pesticides in citrus fruits[J]. Anal Sci,2009,25(4):535-540.
    [132]Kinsella B, O'Mahony J, Malone E, et al. Current trends in sample preparation for growth promoter and veterinary drug residue analysis[J]. J Chromatogr A,2009,1216(46):7977-8015.
    [133]Novakova L, Matysova L. Advantages of application of UPLC in pharmaceutical analysis [J]. Talanta,2006,68(3):908-918.
    [134]Wren SAC. Peak capacity in gradient ultra performance liquid chromatography (UPLC) [J]. Journal of Pharmaceutical and Biomedical Analysis,2005,38(2):337-343.
    [135]殷居易,倪梅林,寿成杰,等.鸡肉中喹乙醇、卡巴多及其代谢物的残留检测[J].中国兽药杂志,2006,40(1):11-15.
    [136]欧阳姗,庞国芳,谢丽琪,等.动物组织中卡巴氧和喹乙醇以及相关代谢产物的液相色谱-串联质谱检测方法[J].分析测试学报,2008,27(6):590-594.
    [137]Hutchinson MJ, Young PY, Hewitt SA,et al. Development and validation of an improved method for confirmation of the carbadox metabolite, quinoxaline-2-carboxylic acid, in porcine liver using LC-electrospray MS-MS according to revised EU criteria for veterinary drug residue analysis[J]. Analyst,2002,127(3):342-346.
    [138]Sin D, Chung LPK, Lai M. Determination of quinoxaline-2-carboxylic acid, the major metabolite of carbadox, in porcine liver by isotope dilution gas chromatography-electron capture negative ionization mass spectrometry[J]. Anal. Chim. Acta 2004,508(2):147-158.
    [139]Wieling J.LC-MS-MS experiences with internal standards[J].Chromatogr.2002,55: 107-113.
    [140]Stokvis E, Rosing H, Beijnen J H. Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry:necessity or not?[J]. Rapid Commun Mass Spectrom,2005,19(3):401-407.
    [141]European Commission Decision 2002/657/EC, Off. J. Eur. Commun.2002,221:8
    [142]梅景良,吴聪明,程林丽,等.HPLC法同步检测鲤鱼、对虾中喹乙醇与MQCA残留[J].海洋科学,2008,35(11):41-47.
    [143]European Agency for the Evaluation of Medicinal Products, EMEA/MRL/247/97-FINAL, Albendazole summary report.1997
    [144]Delatour P, Parish R. Benzimidazole anthelmintics and relate dcompounds:Toxicity and evaluation of residues In Drug Residues in Animals. Orlando:Academic Press,1986:175~204
    [145]Brandon D L, Binder R G, Bates A H, et al. Monoclonal Antibody for Multiresidue ELISA of Benzimidazole Anthelmintics in Liver[J]. Journal of Agricultural and Food Chemistry, 1994,42(7):1588-1594.
    [146]Fletouris D J, Papapanagiotou E P, Nakos D S, et al. Highly Sensitive Ion Pair Liquid Chromatographic Determination of Albendazole Marker Residue in Animal Tissues[J]. Journal of Agricultural and Food Chemistry,2005,53(4):893-898.
    [147]于慧娟,惠芸华,黄冬梅等.反相离子对液相色谱法测定欧洲鳗鲡体中丙硫咪唑及其代谢物的残留量[J].分析科学学报,2008,24(6):673-676.
    [148]Batzias G C, Delis G A. Reversed-phase liquid chromatographic method with fluorescence detection for the simultaneous determination of albendazole sulphoxide, albendazole sulphone and albendazole 2-aminosulphone in sheep plasma[J]. J Chromatogr B,2004,805(2):267-274.
    [149]Guidance for Industry-ioanalytical method validation (2001) US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM), Rockville, MD, USA.
    [150]Roudaut B, Gamier M, Proceedings of EuroResidue IV Conference on Residues of Veterinary Drugs in Food, Veldhoven, The Netherlands,2000, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands,2000,5.-950.
    [151]Sorensen L K, Hansen H. Determination of fenbendazole and its metabolites in trout by a high-performance liquid chromatographic method[J]. Analyst,1998,123(12):2559-2562.
    [152]Abdel S M, Burk R. Novel application of modified multiwalled carbon nanotubes as a solid phase extraction adsorbent for the determination of polyhalogenated organic pollutants in aqueous solution[J]. Anal Bioanal Chem,2008,390(8):2159-2170.
    [153]Lu Y, Shen Q, Dai Z, et al. Multi-walled carbon nanotubes as solid-phase extraction adsorbent for the ultra-fast determination of chloramphenicol in egg, honey, and milk by fused-core C18-based high-performance liquid chromatography-tandem mass spectrometry[J]. Anal Bioanal Chem,2010,398(4):1819-1826.
    [154]Antonio C, Manuela N, Liquid chromatography-mass spectrometry methods for analyzing antibiotic and antibacterial agents in animal food products[J].Chromatography A,2002,947: 53-89
    [155]Nuria P N, Ester G I,Angel M, et al. Development of a group-specific immunoassay for sulfonamides Application to bee honey analysis[J]. Talanta,2007,71:923-933.
    [156]Reeves V. Confirmation of multiple sulfonamide residues in bovine milk by gas chromatography-positive chemical ionization mass spectrometry, Chromatogr B,1999,723 (1): 127-137.
    [157]Cannavan A, Hewitt S A, Blanchflower WJ,et al.Gas chromatographic-mass spectrometric determination of sulfamethazine in animal tissues using a methyl trimethylsilyl derivative[J]. Analyst,1996,121 (10):1457-1461.
    [158]Thomas S T, Donald K N. Determination of sulfomamides in honey by liquid chromatography-tandem mass spectrometry [J]. Anal. Chim. Acta,2005,551:168-176.
    [159]Kim D H, Lee D W. Comparison of separation conditions and ionization methods for the liquid chromatography-mass spectrometric determinationof sulfonamides[J]. Journal of Chromatography A,2003,984153-158.
    [160]孙伟红,冷凯良,王志杰等HPLC-MS/MS内标法同时测定水产品中18种磺胺类药物残留量[J].食品科学,2009,30(24):294-296.
    [161]Fuh M R, Chu S Y.Quantitative determination of sulfonamide in meat by solid-phase extraction and capillary electrophoresis [J]. Anal. Chim. Acta,2003,499:215-221.
    [162]Willem H, Monique B P, Urpo L, et al. Application of a multi-sulfonamide biosensor immunoassay for the detection of sulfadiazine and sulfamethoxazole residues in broiler serum and its use as a predictor of the levels in edible tissue [J]. Anal. Chim. Acta,2005,552:87-95.
    [163]农业部1077号公告-1-2008,水产品中17种磺胺类及15种喹诺酮类药物残留量的测定液相色谱—串联质谱法[S],中国标准出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700