用户名: 密码: 验证码:
乌头碱型生物碱的模拟炮制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有毒中药对于疑难杂症常有独特疗效,炮制后可减毒存效用于临床,这是中医用药的特色之一。阐明有毒中药炮制机理是规范炮制工艺、提高饮片质量标准、减少临床不良反应的核心和难点问题,也是有毒中药饮片能否从经验范畴走向科学化和现代化的关键。中药发挥作用的药效成分复杂,在炮制过程中发生成分的水解、分解、结合、络合等反应,而且非主要药效毒性成分也会与药效毒性成分之间发生反应或者影响其反应的过程,通过单体成分或成分群在模拟饮片的炮制条件下炮制,可以将复杂问题简单化,研究简单环境下的反应规律后,逐步扩展到饮片的整体炮制,明确炮制过程中成分变化途径及其规律,为从分子水平阐明饮片炮制机理提供实验依据。中药模拟炮制是指将中药饮片中的主要药效、毒性成分或组分,模拟饮片的炮制条件进行炮制,研究炮制前后的成分变化,结合药理毒理实验研究,为阐明饮片炮制的科学内涵提供依据。附子、川乌、草乌等乌头属有毒中药临床应用广泛,其成分-毒理-药理研究较清楚,但炮制减毒存效机理尚不十分明确。通过毒效成分乌头碱型生物碱的模拟炮制研究,结合量子化学计算的方法和高效液相色谱-质谱联用等现代分析技术,能够更加清楚的证明炮制过程中的成分变化,为中药炮制机理研究提供新的思路和方法。
     本文分析了双酯型生物碱乌头碱、次乌头碱等在不同模拟炮制条件下的反应产物,结合量子化学计算预测和验证未知产物结构,推测反应机理和计算反应的历程,通过分析附子饮片在炮制过程的成分变化规律,明确实验和理论计算模拟炮制与饮片炮制过程中成分变化的相关性,深入分析阐释炮制减毒存效机理。主要研究内容有以下三个方面:
     1在不同溶剂中的模拟炮制研究
     比较乌头碱在水中加热不同时间的HPLC色谱图,发现:通过水解、分解等反应,乌头碱含量降低,且生成多种产物,各种产物的含量随时间变化规律不一致。苯甲酰乌头原碱是主要产物,但是与乌头碱的含量变化趋势并不呈正相关关系,炮制的过程中存在成分的相互转化和反应平衡,随着时间的延长,产物数量逐渐减少。采用液质联用技术确定了3种水解和分解产物的结构。次乌头碱在水中分解速度较乌头碱明显变慢,苯甲酰次乌头原碱是主要产物,但是二者的变化趋势并不呈比例关系,苯甲酰次乌头原碱随时间延长增加速度较慢,而次乌头碱的减少速度较快,在加热过程中反应不断发生,苯甲酰次乌头原碱生成速度和分解速度有差异,呈现逐渐增加再降低的趋势。质谱分析发现了次乌头碱、焦次乌头碱、次乌头原碱和脱水次乌头原碱等4种水解或分解产物。
     比较乌头碱在稀乙醇中加热不同时间与在水中加热不同时间的HPLC色谱图,发现:乌头碱在稀乙醇中分解速度和在水中类似,在加热过程中分解较快,生成多种产物,在炮制的过程中存在反应平衡。质谱研究鉴定了5种反应产物,其中8-乙氧基-14-苯甲酰基乌头原碱和8-乙酰基-14-乙氧基乌头原碱两种醇解产物为乌头碱与乙醇反应的特征产物。中乌头碱在稀乙醇中加热不同时间与乌头碱有类似的反应发生,加入乙醇使加热后的产物更加复杂。质谱鉴定了5种成分,其中8-乙氧基-14-苯甲酰基中乌头原碱和8-乙酰基-14-乙氧基中乌头原碱两种醇解产物为中乌头碱与乙醇反应的特征产物。这些醇解产物的发现为附子、川乌等有毒中药加酒炮制或制备药酒的研究提供了指标成分。
     比较乌头碱在甲醇中加热不同时间的HPLC色谱图,可见乌头碱加热后产生了新成分,经过液质联用分析发现在甲醇中通过加热主要发生醇解反应,生成8-甲氧基-14-苯甲酰基乌头原碱,这是乌头碱与甲醇反应的特征产物。次乌头碱在甲醇和水加热样品中检测到8-甲氧基-14-苯甲酰基次乌头原碱和8-甲氧基次乌头原碱两种醇解产物。这些醇解产物的发现为川乌等乌头属有毒中药在化学成分及含量测定的研究中,分析溶剂的选择及其对主要成分变化的影响提供了依据。
     2附子饮片炮制前后化学成分的比较研究
     为验证模拟炮制的变化在实际中药饮片炮制中是否存在,制备附子的生品和制品,采用液质联用的方法,分析了附子炮制前后成分的变化,对比生附片和制附片的成分组成,有22个成分为生、制附片共有,生附片具有的9个成分在制品中没有检测到,制附片中有17个成分是炮制后新产生的。根据附子、川乌、草乌等乌头属中药中所含乌头碱类成分的结构特点,及炮制过程中的成分水解或分解规律,预测了炮制后可能产生的成分结构及质谱信息。
     3模拟炮制产物的量子化学计算研究
     在初步根据质谱信息推测了产物结构的基础上,结合单体模拟炮制的结果和量子化学计算,进一步确定反应产物结构和反应历程。通过比较不同基组计算结果,确定了采用DFT/B3LYP/6-31G(d)的量子化学计算方法。采用高斯和Materials Studio两种方法,计算了焦乌头碱的结构,结果表明焦乌头碱应是C15羰基式结构,与已有文献报道一致。又采用高斯计算推测了焦中乌头碱、焦次乌头碱和脱水乌头原碱的结构。采用Materials Studio软件中的Dmol3模块,函数设置采用GGA和BLYP,计算了乌头碱二步水解的反应历程,找到了中间体和过渡态,得到了反应能垒。
     综上所述,本文采用高效液相色谱法和质谱法检测了双酯型生物碱在水、稀乙醇、甲醇等不同溶剂中的反应产物,分析了不同产物的结构和变化规律,找到了多种与乙醇、甲醇反应生成的新特征产物,对比了附子炮制前后的成分变化,证实炮制产生了多种成分,采用量子化学计算的方法进一步确定了模拟炮制产物的结构,计算了乌头碱的二步水解反应历程,为深入阐明乌头属中药的炮制机理提供了依据,可指导乌头类有毒中药的炮制工艺优化和质量标准提高。本文将实验和理论计算两种方法相结合并相互验证,成分模拟炮制与饮片炮制相结合进行验证,为中药炮制机理研究提供了思路和方法。
Toxic drugs often have a unique effect on incurable diseases, and are used after process, which functions in decreasing toxicity and increasing efficacy, in clinic. This phenomenon is the clinical characteristics of TCM. To clarify the processing mechanism of toxic Chinese medicine is not only the key and difficult problems in specifying processing technology, improving quality standards and reducing clinical adverse reactions, but also will be the key step of TCM to transit from the experience to science. Chinese medicine often plays a role in the efficacy of their complex compositions. During processing, the ingredients endure concocting hydrolysis, decomposition, reaction, and the non-reaction or response process take place between the main toxic ingredients, and which are of efficacy and pharmaco-dynamics of toxic components. Through monomer ingredient or constituent group of the processing conditions of the simulation pieces process, we can simplify complex issues to study the law of reaction in a simple environment, and gradually extend to the pieces of a whole processed, clearly processed up the process of composition variation, clarity pieces processing mechanism to provide a basis. Chinese medicine simulation process in the efficacy of TCM, toxic components, or components, simulation piece process condition, processing, composition changes before and after processing of the study, the combination of pharmacology and toxicology experiments provide the basis for the study, to clarify the mechanism of pieces process. Monkshood and Aconitum were widely used in clinical application of toxic drugs. Their composition-toxicology-pharmacology are more clearly studied, but decreasing toxicity and increasing efficacy of process is unclear. It can be stated more clearly using quantum chemistry calculation methods combined with high performance liquid chromatography-mass spectrometry and other modern analytical techniques changes in the process of TCM process. This paper tried to provide new ideas and methods.
     This paper analyzed the diester alkaloids in the different simulation process under the conditions of the reaction products, predicted and verified the unknown structure of the product using quantum chemical calculations, and suggested the course of the reaction mechanism and the calculation of reaction, the composition variation through the analysis of raw aconite pieces in the process of concocting clear experimental and theoretical computer simulation. There were in-depth analysis to explain the decreasing toxicity and increasing efficacy. The main contents are as follows:
     1 A simulation process study in different solvents
     Several different reaction products were found during aconitine heated in water at different times of chromatography, by hydrolysis, decomposition reaction, aconitine to produce a variety of products. And product content is inconsistent with the laws of time. The benzoyl aconitum is the main product, but the trend of aconitine is not in correlates with the reaction equilibrium, and with time, the product gradually reduced. LC-MS identified three kinds of hydrolysis and the structure of the decomposition products. Obvious of the decomposition rate hypaconitine aconitine in water is obviously slower than aconitine. The benzoyl hypaconitine is the main product, but two trends are not proportional to the benzoyl aconitine extended over time to increase slower, faster, and reduce the speed of hypaconitine reactions continue to occur during the heating process, benzoyl Aconitum original alkali to generate speed and there are differences in decomposition rate, showing a gradual deceleration increase in the trend of lower.4 compounds were identified using mass spectrometry.
     Heating at different times of aconitine in dilute ethanol and heated in water at different times of the chromatograms, and found that aconitine in dilute ethanol decomposition rate and similar in water, decomposed faster in the heating process to produce a variety of product, concocted the reaction equilibrium. Using mass spectrometry, five kinds of reaction products were identified, among them,8-ethoxy-14-benzoylmesaconine and 8-acetyl-14-ethoxymesaconine are the alcoholysis products of aconitine ethanol response characteristics of the product. Aconitine in dilute ethanol, heated at different times and aconitine have a similar reaction, ethanol is added to the heating of the product is more complex. Mass spectrometry identified five kinds of ingredients,8-ethoxy-14-benzoyl aconitine original base and 8-acetyl-14-ethoxy Aconitum two original alkali alcohol solution product of aconitine ethanol response characteristics of the product. Alcoholysis products found for monkshood, Aconitum Aconitum is toxic drugs and liquor concocted or preparation of tincture of the index components.
     Aconitine is heated in methanol at different times, and HPLC shows that the aconitine heated ingredients, after the LC-MS analysis showed that by heating occurs mainly in methanol alcoholysis reaction to generate 8-methoxy-14-benzoylaconice, is the aconitine reaction of methanol and the characteristics of the product. Hypaconitine detected in samples of methanol and water heating to the 8-methoxy-14-benzoyl hypaconine and two kinds of alcohol-methoxy-hypaconitine original alkali decomposition products. The discovery of these glycolysis products Aconitum genus Aconitum and other toxic drugs provided a basis for the choice of solvent in the determination of research.
     2 Composition change before and after process
     To verify the simulation results, aconite sample before and after process were analyzed using LC-MS, there are 22 ingredients in the raw and processed pieces. During the process, 17 components were produced and 9 compounds were dispeared. According to the Aconitum structural characteristics of traditional Chinese medicine contained in the composition of Aconitum, monkshood, processed ingredients in the process of hydrolysis or decomposition of the law, that may ingredients after the processed ingredients and MS were predicted.
     3 Quantum chemical calculations of processed product
     Based on the structure identified by mass spectra and results of based on the results of simulation process, as well as quantum chemical calculations, reaction product structure and the reaction course were confirmed. To compare different basis sets DFT/B3LYP/6-31G (d) was identified. Gaussian calculations and Materials Studio are two ways to calculate the structure. The results show it is dehydrated aconitine. It is the same with paper reported in the literature, at the same time, dehydrated aconitine, dehydrated mesaconitine and dehydrated hypaconitine were calculated. Using Materials Studio software Dmo13 module, the GGA and BLYP were set, aconitine two-step hydrolysis reaction course was calculated, the intermediates and transition states and the reaction barrier were found.
     In summary, the reaction product of diester alkaloids were detected in water, dilute ethanol and methanol solvent using high performance liquid chromatography and mass spectrometry. The new features of the product generated by reaction were found by analysis the ethanol structure and variation of different products, to find a number of, methanol, compared to composition changes before and after processing of the aconite, processed up a variety of ingredients, using the method of quantum chemical calculations to further define the analog processed product structure, calculated aconitine of two-step hydrolysis reaction course, provide a basis for elucidating Aconitum Chinese medicine processing mechanism that can guide the toxic drugs of the Aconitum concocted process optimization and quality standards to improve. In this paper, the ideas and methods for the process mechanism of Chinese medicine was provided using experiment and theoretical calculation, simulation process and pieces process.
引文
[1]李伟,文红梅,崔小兵,等.白术的炮制机理及其倍半萜成分转化的研究[J].中国中药杂志,2006,(19):1600-1603.
    [2]周玥,雷海民,李飞,等.党参炮制原理探讨.世界中医药[J],2009,4(3):161-163.
    [3]吕文海,任涛,苏永汶,等.炮制抑制莱菔子中萝卜苷酶解转化的初步研究[J].中国中药杂志,2011,(8):980-983.
    [4]李丽,张村,肖永庆,等.大黄饮片模拟炮制研究[J].中华中医药杂志,2011,(8):1777-1780.
    [5]中国科学院中国植物志编辑委员会.中国植物志(27卷)[M].北京:科学出版社,1979.
    [6]傅立国.中国高等植物(第三卷)[M].青岛:青岛出版社,2000.
    [7]国家药典委员会.中华人民共和国药典[S].北京:中国医药科技出版社,2010.
    [12]李娅萍,田颂九,王国荣.鸟头类药物的化学成分及分析方法概况[J].中国中药杂志,2001,26(10):659-662.
    [13]王文祥.现代中药药理学[M].天津:天津科学技术出版社.1997.
    [14]符华林.我国乌头属药用植物的研究概况[J].中药材,2004,27(2):149-152.
    [15]陈信义,李峨,侯丽,等.乌头类生物碱研究进展与应用前景评述[J].中国中医药信息杂志,2004,11(10):922-923.
    [16]Hikino H, Takata H, Fujiwara M, et al. Mechanism of inhibitory action of mesaconitine in acute inflammations[J]. Eur J Phrmacol,1982,82(1-2):65-71.
    [17]Murayama M, Hikino H J. Stimulating actions on ribonucleic acid biosynthesis of aconitines, diterpenic alkaloids of Aconitum roots[J]. Ethnopharmacol,1984,12(1):25-33.
    [18]胡学军.乌头类中药及其制剂的镇痛作用[J].中医药研究,2001,17(4):56-58.
    [19]唐希灿,冯洁.3-乙酰乌头碱氢溴酸盐的镇痛和局部麻醉作用[J].中国药理学报,1981,2(2):82-84.
    [20]唐希灿,刘雪君,冯洁,等.3-乙酰乌头碱的镇痛活性及无身体依赖性[J].中国药理学报,1986,7(5):413-418.
    [21]唐希灿,郭新,冯洁.单胺类递质对3-乙酰乌头碱镇痛作用的影响[J].中国药理学报,1988,9(3):216-220.
    [22]马健,陆平成,牧野充弘,等.乌头碱对小鼠腹腔巨噬细胞Ia抗原表达影响的研究[J].中国药理学通报,1997,13(4):341-344.
    [23]张为亮,徐楚江,杨明,等.附子毒效关系的实验研究[J].广西中医药,1997,20(3):43-44.
    [24]中华人民共和国卫生部药政管理局,等.现代实用本草(上册).北京:人民卫生出版社,1997:75-79,496-502,519-525.
    [25]黄永融.乌头抗癌研究概述[J].福建中医药,1991,22(1):54-56.
    [26]张陆勇,季惠芳.关附甲素对心肌细胞电生理特性的影响[J].中国药科大学学报,1991,22(6):354-358.
    [27]裴德安.关附甲素对单个心肌细胞钠、钙通道的阻断作用[J].心功能杂志,1998,10(4):225-229.
    [28]Mitamura M, Horie S, Sakaguchi M, et al. Mesaconitine-induced relaxation in rat aorta: involvement of Ca2+ influx and nitric-oxide synthase in the endothelium[J]. Eur J Pharmacol, 2002,436(3):217-225.
    [29]Chiao H, Pelletier S W,Desai H K, et al. Effect of diterpenoid alkaloids on cardiac sympathetic efferent and vagal afferent nerve activity[J]. Eur J Pharmacol,1995,283(1-3): 103-106.
    [30]Heubach J F, Schule A. Cardiac effects of lappaconitine and N-deacetyllappaconitine, two diterpenoid alkaloids from plants of the Aconitum and Delphinium species[J]. Planta Medica,1998,64:22-26.
    [31]Ameri A. Inhibition of stimulus-triggered and spontaneous epileptiform activity in rat hippocampal slices by the Aconitum alkaloid mesaconitine[J]. Eur J Phrmacol,1998, 342(2-3):183-191.
    [32]Ameri A, Seitz U. Effects of mesaconitine on [3H] noradrenaline uptake and excitablity in rat hippocampus[J]. Exp Brain Res,1998,121(4):451-456.
    [33]Ameri A. Inhibition of rat hippocampal excitability by the plant alkaloid 3-acetylaconitinemediated by interaction with voltage-dependent sodium channels[J]. Nannyn Schmiedebergs Arch Pharmacol,1997,355(2):273-280.
    [34]Wright S N. Irreversible block of humanheart(hHl) sodium channels by the plant alkaloid lappaconitine[J]. Mol Pharmacol,2001,59(2):183-192.
    [35]Ameri A, Metzmeier P,Peters T.Frequency-dependent inhibition of neuronal activity by lappaconitine in normal and epileptic hippocampal slices[J]. Br J Pharmacol,1996,118(3): 577-584.
    [36]Kimura M, Muroi M, Kimura I, et al. Hypaconitine, the dominant constituent responsible for the neuromuscular blocking action of the Iapanese-sino medicine "bushi"(aconite root)[J]. Jpn J Pharmacol,1988,48(2):290-293.
    [37]Muroi M, Kimura I, Kimura M. Blocking effects of hypaconitine and aconitine on nerve action potentiald in phrenic nerve-diaphragm muscles of mice [J]. Neuro pharmacology,1990,29(6):567-572.
    [38]王慧玉,孙晖,等.乌头属中药成分的构效关系研究进展[J].世界科学技术中-医药现代化,2011,13(6):1022-1025.
    [39]邓平,杨煜荣,张炜平,等.3,15-二乙酰苯甲酰乌头原碱的镇痛作用、毒性及与其类似 物的比较[J].中国药理学报,1994,15(3):239-243.
    [40]Gutser U T, Friese J, Heubach J F, et al. Mode of antinociceptive and toxic action of alkaloids of Aconitum species[J]. Naunyn Schmiedebergs Arcg Phrmacol,1998,357(1): 39-48.
    [41]Ameri A, Gleitz J, Peters T.Bicuculline-induced epilepdform activity in rat hippocampal slices:suppression by aconitum alkaloids[J]. Planta Medica,1997,63:228-232.
    [42]Seitz U, Ameri A. Different effects on [3H] noradrenaline uptake of the aconitum alkaloids aconitine,3-acetylaconitine, lappaconitine, and N-desacetyllappaeonitine in rat hippocampus[J].Biochem Pharmacol,1998,55(6):883-888.
    [43]Suzuki Y, Hayakawa Y,Oyama T, et al. Analgesic effect of benzoylmesaconine [J]. Nippon Yakurigaku zasshi,1993,102(6):399-404.
    [44]Suzuki Y, Oyama T,Ishige A, et al, Antinoeiceptive mechanism of the aconitine alkaloids mesaconitine andbenzoylmesaconine[J], PlantaMedica,1994,60:391-394.
    [45]Oyama T, Isono T, Suzuki Y, et al. Anti-nociceptive effects of aconiti tuber and its alkaloids[J]. America Journal of Chinese Medicine,1994,22(2):175-182.
    [46]Ameri A. Inhibition of rat hippocampal excitability by the Aconitum alkaloid, 1-benzoylnapelline, but not by napelline[J]. Eur J Pharmacol,1997,335(2-3):145-152.
    [47]Ameri A. Structure-dependent inhibitory action of the conitum alkaloids 14-benzoyltalitasamine and talitasamine in rat hippocmpal slices[J]. Naunyn Schmiedebergs Areg Phrmacol,1998,357(6):585-592.
    [48]Ameri A, Zimmermann T,Simmet T. Frequency-and structure-dependent inhibition of normal and epileptiform activity by 6-benzoyldeltamine in rat hippocmpal slices[J]. Eur J Pharmacol,1999.369(3):279-288.
    [49]Ameri A, Simmet T. Interaction of the structurally related aconitum alkaloids, aconitine and 6-benzoylhetemtisine, in the rat hippocampus[J]. Eur J Pharmacol,1999,386(2-3): 187-194.
    [50]Dzhakhangirov F N, Sultenkhodzhaev M N, Tashkhodzhaev B, et al, Diterpenoid alkaloids as a new class of antiarrhythmic agents[J]. Structure-activity relationship. Chemistry of Natural Compounds.1997,33(2):190-202.
    [51]Ritchie J M. Ann Rev Neurosci.1979,2:341-362.
    [52]彭波,杨华元.乌头、附子及其主要生物碱的研究进展.华西药学杂志,1993,8(3):158-161.
    [53]夏丽英主编,现代中药毒理学,天津科技翻译出版公司2005:389-390.
    [54]祁明馥.关于乌头附子炮制机理的另一种解释[J].中药材,1986,6:37-38.
    [55]Bisset N, G J, Ethnopharmacology. Arrow poisons in China. Part Ⅱ [J]. Aeonitum-Botany chemistry and pharmacology,1981,4:247-336.
    [56]黄勤安,张聿梅,何轶,等.乌头碱水解转化规律的研究[J].中国中药杂志,2007,32(20):2143-2145.
    [57]图雅,张贵君,刘志强,等.传统蒙药草乌炮制原理的电喷雾质谱研究[J].中药材,2008(2):204-206.
    [58]王勇,宋凤瑞,刘志强,等.草乌花煎煮过程中三酯型乌头生物碱的酯交换反应[J].中草药,2006,(8):1156-1158.
    [59]图雅,张贵君,王淑敏,等.草乌叶及其煎煮液中生物碱类药效组分的电喷雾串联质谱研究[J].中国中药杂志,2008,33(7):789-790.
    [60]刘永刚,刘倩,张宏桂,乔延江,.高效液相色谱-质谱联用法研究乌头碱的水解产物[J].中国新药杂志,2007,(4).
    [61]魏巍,李绪文,金永日.乌头碱水解产物的研究[J].分析化学,2009,37(A02):186-187.
    [62]刘永刚,于达亮,陈玉娟,等.HPLC-ESI-MS"法研究中乌头碱在水中的化学反应[J].中国新药杂志,2008,17(2):153-156.
    [63]郗瑞云,刘永刚,张宏桂,等.HPLC-MSn法研究次乌头碱在水中的化学反应[J].北京中医药大学学报,2007,(8):539-541.
    [64]李志勇,张硕峰,畅洪异,等.不同炮制时间附子饮片双酯型生物碱含量变化与饮片安全的相关性研究[J].中国中药杂志,2009,(9):1086-1089.
    [65]越皓,皮子凤,赵宇峰,等.电喷雾串联质谱分析附子炮制中的化学成分变化[J].分析化学,2007,35(7):959-963.
    [67]H. Thoms, The Calculation of Atomic Fields [J]. Pro. Camb. Phil. Soc.1927,23: 545.
    [68]R. Fermi, A Statistical Method for Determining Some Properties of the Atom[J]. Atti Accad Lincei,1927,6:602.
    [69]S. Miertus, E. Scrocco and J. Tomasi, Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of ab initio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys.1981,55:117.
    [70]V. Barone and M. Cossi。 Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A.1998,102:1995.
    [71]V. Barone, M. Cossi and J. Tomasi, Geometry optimization of molecular structures in solution by the polarizable continuum model J. Comp. Chem.1998,19:404.
    [72]J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian and M. J. Frisch, Solvent Effects.5. Influence of Cavity Shape, Truncation of Electrostatics,and Electron Correlation on Ab Initio Reaction Field Calculations. J. Phys. Chem.1996,100:16098.
    [73]陈兰慧,胡冬华,王道武,等.小檗碱质谱碎片离子稳定性分析及碎裂机理的量子化学 研究[J].高等学校化学学报,2006,27(5).
    [74]陈兰慧,金莲姬,苏忠民,等.乌头碱类生物碱电喷雾串联质谱行为及碎片离子稳定性的量子化学计算[J].高等学校化学学报,2005,26(12).
    [75]宋云龙,张万年,季海涛.喜树碱构象的量子化学研究及其与晶体结构的比较[J].中国药物化学杂志,2001,11(4).
    [76]廖显威,苏宇,刘珊,等.四种黄酮类化合物荧光光谱的量子化学研究[J].光谱学与光谱分析,2006,26(8).
    [77]申勇立,郝金库,曹映玉,等.白藜芦醇清理羟基自由基夺氢机理的量子化学研究[J].高等学校化学学报,2007,28(9).
    [78]梁瑞玲,刘天伟,屈凌波,等.基于过氧键裂解的青蒿素抗疟机制量子化学研究[J].药学学报,2006,41(6).
    [79]陈秀敏,李西平.对15种黄酮类化合物清除自由基活性的理论评价[J].云南大学学报(自然科学版),2008,30(1).
    [80]马波,李梦龙.黄酮体化合物抗肿瘤活性的量子化学研究[J].化学研究与应用,2002,14(2).
    [81]杜娟,李泽荣,李象远,等.量化参数在抗HIV黄酮类化合物毒性的构效关系中的应用[J].华西药学杂志,2005,20(2).
    [82]马晓东,李重九.紫草素衍生物定量构效关系的量子化学研究[J].中国农业大学学报,2006,11(4).
    [1]龚千锋.中药炮制学[S].北京:中国中医药出版社,2007.
    [2]国家药典委员会.中华人民共和国药典[S].北京:中国医药科技出版社,2010.
    [3]刘永刚,刘倩,张宏桂,乔延江,.高效液相色谱-质谱联用法研究乌头碱的水解产物[J].中国新药杂志,2007,(4).
    [4]郗瑞云,刘永刚,张宏桂,等.HPLC-MSn法研究次乌头碱在水中的化学反应[J].北京中医药大学学报,2007,(8):539-541.
    [1]赵宇峰,宋凤瑞,王曦烨,等.16-0-去甲基乌头碱的生物转化及电喷雾质谱研究[J].化学学报,2008,(5):525-530.
    [2]刘芳,于向红,李飞,等.HPLC测定附子及其炮制品中3种双酯型生物碱的含量[J].中国中药杂志,2006,(14):1160-1162.
    [3]陈彦琳,李飞.同乌炮制历史沿革研究[A].中华中医药学会第六届中药炮制学术会议论文集[C].中国山东淄博,2006:259-264.
    [4]包懿,宋凤瑞,刘志强等.乌头碱类双酯型二萜生物碱水解反应的电喷雾质谱分析[J].质谱学报,2009,30(1):1-5.
    [5]Desai HK, Joshi BS, Ross SA, Pelletier SW. Methanolysis of the C-8 acetoxyl group in aconitine-type alkaloids:a partial synthesis of Hokbusine A.J Nat Prod 52:720-725. (1989)
    [6]魏巍,李绪文,金永日.乌头碱水解产物的研究.分析化学,2009,37(10):D067-D068.
    [7]刘永刚,于达亮,陈玉娟,等.HPLC-ESI-MSn法研究中乌头碱在水中的化学反应[J].中国新药杂志,2008,17(2):153-156.
    [1]赵宇峰,宋凤瑞,王曦烨,等.16-O-去甲基乌头碱的生物转化及电喷雾质谱研究[J].化学学报,2008,(5):525-530.
    [2]Desai HK, Joshi BS, Ross SA, Pelletier SW. Methanolysis of the C-8 acetoxyl group in aconitine-type alkaloids:a partial synthesis of Hokbusine A.JNat Prod 52:720-725. (1989)
    [3]郗瑞云,刘永刚,张宏桂,等.HPLC-MSn法研究次乌头碱在水中的化学反应[J].北京中医药大学学报,2007,(8):539-541.
    [1]国家药典委员会.中华人民共和国药典[S].北京:中国医药科技出版社,2010.
    [2]Li Zhengbang, LuGuanghua, Chen Donglin, et al. Chemical study on the alkaloids of "cao wu"[J]. Natural Product Research and Development.1997,9(1):9-14.
    [3]Xiao Pei-Gen, Wang Feng-peng, Gao Feng,et al. A pharmacophylogenetic study of Aconitum L. (Ranunculaceae) form China [J]. Acta Phytotaxonomica Sinica. 2006,44(1):1-46.
    [4]Zhang Fan, Li Rui, Fu Ya, et al. Tandem mass spectrometry analysis of total alkaloid form the roots of Aconitum nagarum var. Lasiandrum. Journal of Instrumental Analysis. 2005,24(6):179-180.
    [5]Studies on the aconitine-type alkaloids in the roots of Aconitum Carmichaeli Debx. by HPLC/ESIMS/MSn[J].Yue H, Pi Z, Song F, Liu Z, Cai Z, Liu S.Talanta.2009,77(5):1800-1807.
    [6]Yue Hao, Pi Zi-Feng, Zhao Yu-Feng, et al. Analysis of Norditerpenoid Alkalods i n Processi ng Radix Aconiti Lateralis Preparata with Radix Glycyrrhizae Preparata by Electrospray Ionization Tandem Mass Spectrometry [J]. Chinese Journal of Analytical Chemistry.2007,35(7):959-963.
    [7]YUE Hao, PI Zi-Feng, SONG Feng-Rui, et al. Studies on the Components of Aconitum carmichaeli by Using HPLC/ESI-MSn[J]. ACTA CHIMICA SINICA.2008,66(2):211-215.
    [8]WANG Yong, LIU Zhi-qiang, SONG Feng-rui,et al.Study on Aconitum diterpenoid alkaloids from flowers of Aconitum kusnezoffi and its decoction by ESI-MS[J]. Acta Pharmaceutica Sinica 2003,38 (4):290-293.
    [9]SUN Yin, ZHANG Hong-gui, SHI Xiang-guo et al. study on metabolites of aconitine in rabbit urine. Acta Pharmaceutica Sinica [J]2002,37 (10):782
    [10]CHEN lan-hui,JIN lian-ji, SU zhong-min et al. ESI-MSn behavior and quantum chemistry of stability of fragment ions of diester-diterpenoid alkaloids(DDA). Chem. J. Chinese Universities [J]2005,26:2340-2344
    [11]HAO YUE,ZI-FENG PI,HUI-L IN L et al Studies on the Stability of Diester-diterpenoid Alkaloids from the Genus Aconitum L by High Performance Liquid Chromatography Combined with Electrospray Ionisation Tandem Mass Spectrometry (HPLC/ESI/MSn)[J] Phytochem Anal,2008,19:141-147
    [12]YUE Hao, PI Zi-feng, ZHAO Yu-feng et al Investigation of Aconi-tine-type Alkaloids from Processed Tuber of Aconitum carmiechaeli by HPLC-ESI-MS/MSn[J] CHEM RES CHINESE University,2007,23 (5):625-627
    [13]Jung-Hui Chen, Cheng-Yu Leea, Bing-Chung Liaua etal Determination of aconitine type alkaloids as markers in fuzi (Aconitum carmichaeli) by LC/ESI/MS[J] Journal of pharmaceuticaland Biomedical analysis,2008,48 (4):1105-1111.
    [14]Rina Kaneko, Satoshi Hattori, Shiho Furuta et al. Sensitive analysis of aconitine, hypaconitine, mesaconitine and jesaconitine in human body fluids and Aconitum tubers by LC/ESI-TOF-MS.[J]. Mass Spectrum.2006,41:810-814
    [1]魏巍,李绪文,金永日.乌头碱水解产物的研究.分析化学,2009,37(10):D067-D068.
    [2]刘永刚,于达亮,陈玉娟,等.HPLC-ESI-MSn法研究中乌头碱在水中的化学反应[J].中国新药杂志,2008,17(2):153-156.
    [3]郗瑞云,刘永刚,张宏桂,等.HPLC-MSn法研究次乌头碱在水中的化学反应[J].北京中医药大学学报,2007,(8):539-541.
    [1]陈兰慧.乌头碱等中药有效成分质谱行为的量子化学研究[D].:东北师范大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700