用户名: 密码: 验证码:
脓毒症相关性脑病的临床及基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     脓毒症相关性脑病(Sepsis associated encephalopathy,SAE)是指由于全身炎症反应引起的弥漫性大脑功能障碍。且需排除直接颅内感染、脑出血、脑栓塞、肝性脑病、肺性脑病等其它脑病。临床上主要表现为精神状态的急剧恶化,如认知障碍,意识混乱、定向障碍、激动、木僵或昏迷。脓毒性脑病是ICU中患者发生脑病的最主要形式。近年来,随着脓毒症研究的不断深入,临床上也逐渐发现合并脓毒症相关性脑病患者预后明显变差,但由于其诊断标准尚未确定、临床镇静药物的使用、患者本身普遍存在器质性脑部疾病及神经系统存在潜在的损害性疾病等综合因素,导致脓毒性脑病的发病率,流行病学,发病机制都在争论当中。本研究将首先在临床目前诊断条件下,调查脓毒症相关性脑病的流行病学情况,明确其发生率及对预后的影响,同时探讨其影响因素。在此基础上,在动物试验阶段建立通过监测神经生物学评分、脑电图、体感诱发电位早期诊断脓毒症相关性脑病的动物模型,为临床脓毒症相关性脑病诊断提供依据,并进一步研究目前认为在缺血缺氧性脑损伤中起到保护作用脑红蛋白,在脓毒症相关性脑病中的表达改变,并明确其是否对脓毒症相关性脑病具有脑保护作用,为脓毒症相关性脑病的临床防治提供新的治疗方向。
     方法:
     第一部分:2008年-2011年入住重症监护病房的323例脓毒症患者,在排除91例患者后,232例患者被分为有脓毒症相关性脑病组及无脓毒症相关性脑病组,回顾性分析患者的一般资料(性别,年龄,基础疾病,疾病种类),重要生命体征(体温、心率、血压、呼吸),疾病严重程度评分(APACHE Ⅱ评分),格拉斯哥昏迷评分(GCS评分),病原学资料,感染部位,生化检查指标如:白细胞计数(WBC)、中性粒细胞百分比(N%)、血红蛋白(HB)、血小板(PLT)、总蛋白(TP)、白蛋白(ALB)、总胆红素(TBIL)、直接胆红素(DBIL)、谷丙转氨酶(ALT)、尿素氮(BUN)、血肌酐(Scr)、血糖(BS)、甘油三酯(TG)、胆固醇(CHO)、PH、氧分压(Pa02)、二氧化碳分压(PaCO2)、中心静脉血氧饱和度(SCVO2)、C-反应蛋白(CRP)、降钙素原(PCT)及机械通气时间,住ICU时间及28天病死率差异。第二部分:30只大鼠称重、编号分别在造模前10天放置脑电监测电极。10天后,大鼠称重、编号、随机分组,大鼠用盲肠结扎穿孔模型(CLP)方法诱发脓毒症,观察大鼠神经行为学改变,监测CLP后4、6、8、12、24小时脑电图,并记录脑电波形改变分析及体感诱发电位分析数值。脓毒症组大鼠按24小时内有无脑电图和诱发电位改变分为脓毒症无脑病组和脓毒症性脑病组,24小时后处死观察病脑组织理改变及电镜下超微结构改变。评价通过监测24小时大鼠神经行为学改变,脑电图及体感诱发电位改变建立早期脓毒症相关性脑病动物模型的可行性。第三部分;各部分研究大鼠均称重、编号分别在造模前10天放置脑电监测电极。1.Ngb在脓毒症相关性脑病大鼠中的表达:50只大鼠分为三组,假手术组(n=8只),42只大鼠行CLP手术,24小时死亡20只,存活22只大鼠根据神经行为学评分、脑电监测和体感诱发电位分为:脓毒症无脑病组(n=12);脓毒症相关性脑病组(n=10);2.hemin上调Ngb表达对脓毒症相关性脑病影响:60只大鼠分为三组,假手术组(n--8只),52只大鼠行CLP手术,并随机分为脓毒症组(n=26)及脓毒症+hemin组(n=26只),脓毒症+hemin组在造模后及造模后12小时腹腔注射hemin50mg/kg。24小时根据神经行为学评分、脑电监测和体感诱发电位诊断有无脓毒症相关性脑病发生。最后纳入研究假手术组(n=8只),脓毒症相关性脑病组(n=6只),脓毒症相关性脑病+hemin组(n=5只);3.反义寡核苷酸抑制脓毒症相关性脑病大鼠Ngb基因表达对脓毒症相关性脑病影响:100只大鼠分为三组,假手术组(n=8只),92只大鼠行CLP手术,并随机分为脓毒症组(n=26)及脓毒症+反义寡核苷酸组(n=26只),脓毒症+正义寡核苷酸组(n=20只),脓毒症+人工脑脊液组(n=20只);脓毒症+反义寡核苷酸组在造模后及造模后12小时侧脑室注射预实验中确定的AS-ODNS剂量8u1,脓毒症+正义寡核苷酸组,脓毒症+人工脑脊液组分别在相同时间点脑室注射正义寡核苷酸及人工脑脊液8ul。24小时根据神经行为学评分、脑电监测和体感诱发电位诊断有无脓毒症相关性脑病发生。最后纳入研究假手术组(n=8只),脓毒症相关性脑病组(n=6只),脓毒症相关性脑病+AS-ODNS剂量组(n=6只),脓毒症相关脑病+正义寡核苷酸组(n=5只),脓毒症相关脑病+人工脑脊液组(n=4只)。各部分实验研究都检查24小时脑组织光镜病理及电镜超微结构改变,应用ELISA,免疫组化法,Western bloting印记分析法,RT-PCR检测血及脑组织Ngb表达,并检测大鼠SOD, MDA改变及脑组织TUNEL凋亡情况。
     结果:
     1.脓毒症相关性脑病组心率,动脉血乳酸,血清钠明显高于无脓毒症相关性脑病组,血小板,血清白蛋白,PH值明显低于无脓毒症相关性脑病组,(P<0.05)。其余各种指标均无显著性差异(P>0.05)感染病原学检出比例,脓毒症相关性脑病组为70.7%(29/41),无脓毒症相关性脑病组为44.5%(85/191),差异具有显著性(P=0.003)。脓毒症相关性脑病组不动杆菌属、铜绿假单胞菌、嗜麦芽窄食单胞菌、金黄色葡萄球菌、屎肠球菌的感染比例明显高于无脓毒症相关性脑病组,差异具有统计学意义(P<0.05),其余细菌学种类比例无差异。
     2.232例患者中,41例(17.67%)发生脓毒症相关性脑病,脓毒症相关性脑病组机械通气时间为(8.2士13.8)天明显高于无脓毒症相关性脑病组(2.9+5.7)天,P=0.021。脓毒症相关性脑病组住ICU时间为(12.4±15.5)天明显高于无脓毒症相关性脑病组(7.1±7.6)天,P=0.042。脓毒症相关性脑病组28天死亡率为56.1%(23/41)明显高于无脓毒症相关性脑病组35.1%(67/191)P=0.013。
     3.根据神经生物学评分改变及脑电图a波减少,delta波明显增加,诱发电位P1振幅明显降低,S-P1和N1-P2潜伏期明显延长可早期诊断脓毒症相关性脑病。存活脓毒症大鼠24小时内6只大鼠出现神经行为学、脑电图及诱发电位改变,确定为脓毒症相关性脑病,其发病率为46%。
     4.脓毒症相关性脑病大鼠血及脑组织中Ngb高表达,主要定位于额叶皮质和海马,血SOD、MDA明显增加,TUNEL显示细胞凋亡增加,同时病理光镜及电镜下显示神经元损伤,线粒体肿胀,核固缩,可见凋亡小体。
     5.氯化血红素预处理脓毒症相关性脑病大鼠,可上调血及脑组织中Ngb基因表达,降低血SOD、MDA水平,Tunel显示细胞凋亡减少,同时病理光镜及电镜下显示神经元损伤较脓毒症相关性脑病组减轻。
     6.反义寡核苷酸干预脓毒症相关性脑病大鼠,可抑制血及脑组织中Ngb基因表达,明显增加血SOD、MDA水平,Tunel显示细胞凋亡明显增多,同时病理光镜及电镜下显示神经元损伤较脓毒症相关性脑病组明显加重。
     结论:
     1.脓毒症相关性脑病发病率高,合并脓毒症相关性脑病患者死亡率明显增加,正确认识脓毒症相关性脑病与无脓毒症相关性脑病间的差异,积极临床干预危险因素对降低发病率和病死率有重要意义。
     2.通过神经生物学评分,脑电监测及体感诱发电位监测可早期发现脓毒症相关性脑病,大鼠脓毒症相关性脑病模型制作成功。
     3.大鼠脓毒症相关性脑病发病率高,24小时已出现显著变化,可作为后续研究观察时间点。脓毒症相关性脑病病理改变主要为神经元损伤,线粒体肿胀及凋亡改变,未见明显脓肿坏死。
     4.脓毒症相关性脑病大鼠脑组织及血中均高表达Ngb基因,且主要位于大脑额叶和海马区。
     5.氯化血红素可上调大鼠脑组织Ngb基因表达,减轻脓毒症相关性脑病脑损伤。
     6.应用AS-ODNs-Ngb可抑制脓毒症相关性脑病大鼠Ngb基因表达,并加重脓毒症相关性脑病脑损伤。
     7.脓毒症相关性脑病大鼠脑组织和血中Ngb基因高表达,起到脑保护作用,其具体的机制尚有待于进一步研究。
OBJECTIVE:
     Sepsis associated encephalopathy (SAE) is a diffuse cerebral dysfunction resulted by systemic inflammatory response, without clinical or laboratory evidence of other encephalopathy including direct brain infection, cerebral hemorrhage, cerebral embolism, hepatic encephalopathy and pulmonary encephalopathy. Its main clinical manifestation is an acute deterioration of mental status, such as cognitive impairment, confusion, disorientation, agitation, stupor or coma. SAE is the most common form of encephalopathy in critical ill patients. Recently, with further study on sepsis, it has been found that SAE is associated with worse prognosis. However, comprehensive factors, for example, without diagnostic standards for SAE, clinical usage of sedative drugs, common underlying diseases such as organic brain diseases and potential nervous system injuring diseases, result in controversies on the incidence, epidemiology and mechanisms of SAE. This study investigated the epidemiology of SAE under current clinical diagnostic condition, demonstrated the effect of its incidence on prognosis, and analyzed its risk factors. Based on these results, we then established SAE animal models, used neurobiology score, electroencephalography (EEG), somatosensory evoked potentials for its early diagnosis, thus provide evidence for clinical diagnosis of SAE. Further, we studied Neuroglobin (Ngb), which has been found to protect again hypoxia ischemia brain injury, detected the change of its expression, demonstrated its brain protective role in SAE, thus provided an new perspective for the prevention and treatment of SAE.
     METHODS:
     Part1:All323septic patients admitting to the ICU in a single University Hospital from2008-2011were screened and91patients were excluded. Then the232included patients were divided into two groups, based on whether the patients had SAE or not. Differences between baseline information (gender, age, underlying diseases, disease types), vital signs (temperature, heart rate, blood pressure, breath), severity of disease (APACHE II score), Glasgow coma score (GSC score), etiological information, the sites of infection, biochemical indices:white blood cell count (WBC), neutrophil percentage (N%), hemoglobin (HB), platelets (PLT), total protein (TP), albumin (ALB), total bilirubin (TBIL), direct bilirubin (DBIL), alanine aminotransferase (ALT), blood urea nitrogen (BUN), serum creatinine (Scr), blood sugar (BS), triglyceride (TG), cholesterol (CHO), PH, partial pressure of oxygen (PaO2), carbon dioxide partial pressure (PaCO2), central venous oxygen saturation (SCVO2), C-reactive protein (CRP), procalcitonin (PCT) and mechanical ventilation time, ICU time and28-day mortality were retrospectively analyzed.
     Part2:30rats were weighted, numbered, and placed with EEG monitoring electrodes10days before establishing models.10days later, rats were weighted, numbered, and randomized. Rat models of sepsis were made by cecal ligation and puncture (CLP). Observed the changes of their neurological behaviors, monitored the EEG at4,6,8,12,24hours after CLP, and recorded the values of EEG waveform change analysis and somatosensory evoked potentials. Rat models of sepsis were divided into sepsis+non-SAE group and SAE group based on whether EEG or somatosensory evoked potentials changed within24hours. Rats were sacrificed24hours later, brain tissue pathological and electron microscopy ultrastructural changes were observed. Thus we evaluate the feasibility of establishing early SAE animal model by monitoring the changes of neurological behaviors, EEG and somatosensory evoked potentials.
     Part3:Rats were weighted, numbered, and placed with EEG monitoring electrodes10days before establishing models.
     1Expression of Ngb in SAE group:50rats were divided into3groups, sham operation group (n=8);42rats underwent CLP surgery, in which20died within24hours, and the22survived rats were divided into sepsis+non-SAE group (n=12) and SAE group (n=10), according to neurobiology score, EEG and somatosensory evoked potentials.
     2Hemin up-regulating Ngb expression and its effect on SAE:60rats were divided into3groups, sham operation group (n=8);52rats underwent CLP surgery, and were randomly divided into sepsis group (n=26) and sepsis+hemin group (n=26). Sepsis+hemin group were intraperitoneal injected hemin50mg/kg right after and12hours after modeling. The onset of SAE were diagnosed by neurobiology score, EEG and somatosensory evoked potentials within24hours. Finally, we include sham operation group (n=8), SAE group (n=6), SAE+hemin group (n=5) into our study.
     3Antisense oligonucleotide nucleotide (AS-ODNS) inhibiting Ngb gene expression in SAE rats and its effect on SAE:100rats were dividied into3groups, sham operation group (n=8);92rats underwent CLP surgery, and were randomly divided into sepsis group (n=26), sepsis+AS-ODNS group (n=26), sepsis+S-ODNS group (n=20), sepsis+artificial cerebrospinal fluid (n=20). Sepsis+AS-ODNS group were intracerebroventricular injected AS-ODNS8ul right after and12hours after modeling, and the dose were determined by our pre-experiment; sepsis+S-ODNS group and sepsis+artificial cerebrospinal fluid group were intracerebroventricular injected S-ODNS or artificial cerebrospinal fluid8ul respectively at the same time points. The onset of SAE were diagnosed by neurobiology score, EEG and somatosensory evoked potentials within24hours. Finally, we include sham operation group (n=8), SAE group (n=6), SAE+AS-ODNS group (n=6), SAE+S-ODNS group (n=5) and sepsis+artificial cerebrospinal fluid group (n=4) into our study.
     Brain tissue pathology and electron microscopy ultrastructure changes within24hours were examined. ELISA, immunohistochemistry, Western blotting, RT-PCR were used to detect Ngb expression in blood and brain tissue, and to examine the changes of SOD, MDA and TUNEL apoptosis in brain.
     RESULTS:
     1Compared with non-SAE group, heart rate, arterial blood lactate and serum sodium was significantly higher, and platelets, serum albumin and PH value was significantly lower in SAE group (P<0.05). Other indices were not significantly different between two groups (P>0.05). Pathogen detection rate was70.7%(29/41) in SAE group and44.5%in non-SAE group (85/191), and the difference was significant (P=0.003). The infection rates of Acinetobacter, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Staphylococcus aureus and Enterococcus faecium were significantly higher in SAE group (P<0.05), and there were no significant differences in other bacterial species.
     2In232patients included,41had SAE (17.67%), mechanical ventilation time of SAE group (8.2±13.8days) was significantly higher than that of non-SAE group (2.9±5.7days), P=0.021. ICU time was significantly longer in SAE group (12.4±15.5days vs.7.1±7.6days, P=0.042), and28days mortality of SAE group (56.1%,23/41)was significantly higher than that of non-SAE group (35.1%,67/191), P=0.013.
     3SAE could be early diagnosed by neurobiology score, reduced a wave and markedly increased delta wave on EEG, reduced amplitudes of evoked potentials P1, and significantly prolonged latency of S-P1and N1-P1. In survived septic rats,6had changes on neurological behaviors, EEG and somatosensory evoked potentials, thus were diagnosed as SAE. The incidence of SAE was46%.
     4Ngb expression was high in blood and brain tissue of SAE group, mainly localized in the frontal cortex and hippocampus. Blood SOD, MDA were significant higher and apoptosis was increased, while light microscopy and electron microscopy show neuronal damage, mitochondrial swelling, nuclear condensation, and apoptotic bodies could be seen.
     5Pretreating SAE rats with Chloride hemin could up-regulate Ngb gene expression in blood and brain tissue, reduce blood SOD, MDA and decrease apoptosis. Light microscopy and electron microscopy also show reduced neuronal damage than SAE group.
     6Intervening SAE rats with AS-ODNS could inhibit Ngb gene expression in blood and brain tissue, markedly increase blood SOD, MDA level and apoptosis. Light microscopy and electron microscopy also show aggravated neuronal damage than SAE group.
     CONCLUSION:
     1The incidence of SAE is high. Mortality is significantly higher in patients with SAE. Thus, a correct understanding of the differences between SAE and non-SAE, and active clinical interventions on its risk factors are of great significance on reducing incidence and mortality.
     2SAE can be early diagnosed by neurobiology score, EEG and somatosensory evoked potentials. SAE rat models are successfully established.
     3The incidence of SAE is high in septic rats. Significant changes can be detected within24hours, which can be used as observing time point in further studies. The main pathological changes are neuronal damage, mitochondrial swelling and apoptosis, but no obvious abscess and necrosis.
     4Ngb gene expression is high in brain and blood of SAE rats, and mainly localized in the frontal cortex and hippocampus.
     5Chloride hemin could up-regulate Ngb gene expression in brain tissue, and reduce SAE related brain injury.
     6AS-ODNS-Ngb can inhibit Ngb gene expression and deteriorate SAE related brain injury.
     7The mechanisms of high Ngb gene expression in SAE rats'brain tissue and its brain protective effect are still unclear and waiting for further study.
引文
[1]Wilson JX, Young GB. Progress in clinical neurosciences:sepsis-associated encephalopathy:evolving concepts. Can J Neurol Sci.2003;30 (2):98-105.
    [2]Eggers V, Schilling A, Kox WJ, et al. Septic encephalopathy.Diagnosis and therapy. Anaesthesist.2003;52(4):294-303.
    [3]Chelazzi C, Consales G, De Gaudio AR. Sepsis associated encephalopathy. Curr Anaesth Crit Care.2008;19(1):15-21.
    [4]Sprung CL, Peduzzi PN, Shatney CH, et al. Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Crit Care Med.1990;18 (8):801-806
    [5]Levy MM, Fink MP, Marshall JC, et al.2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med.2003;29 (4):530-538.
    [6]Bartynski WS, Boardman JF, Zeigler ZR, et al. Posterior reversible encephalopathy syndrome in infection, sepsis and shock.[J].Am J Neuroradiol 2006,27(10):2179-2190.
    [7]Siami S, Annane D, Sharshar T. The encephalopathy in sepsis. Crit Care Clin. 2008;24(1):67-82
    [8]Nicholas W. S. Davies Mohammad K. Sharief Robin S.et al. Infection-associated encephalopathies:their investigation, diagnosis, and treatment. J Neurol (2006) 253:833-845
    [9]Young G B, Bolton C F, Archibald Y M, et al. The electroencephalogram in sepsis-associated encephalopathy [J]. J Clin Neurophysiol,1992,9(1):145-152.
    [10]Zauner C, Gendo A, Kramer L, et al. Impaired subcortical and cortical sensory evoked potential pathways in septic patients [J]. Crit Care Med,2002,30(5):1136-1139.
    [11]D'Avila J C, Santiago A P, Amancio R T, et al. Sepsis induces brain mitochondrial dysfunction[J]. Crit Care Med,2008,36(6):1925-1932.
    [12]Pytel P, Alexander J J. Pathogenesis of septic encephalopathy [J]. Curr Opin Neurol,2009,22(3):283-287.
    [13]Sumi N, Nishioku T, Takata F, et al. Lipopolysaccharide-activated microglia induce dysfunction of the blood-brain barrier in rat microvascular endothelial cells co-cultured with microglia [J]. Cell Mol Neurobiol,2010,30(2):247-253.
    [14]Berg RM, Taudorf S, Bailey DM, et al. Cerebral net exchange of large neutral amino acids after lipopolysaccharide infusion in healthy humans. Crit Care. 2010;14(1):R16.
    [15]Ilker M. Kafa, Murat Uysal, Sinan Bakirci, et al. Sepsis induces apoptotic cell death in different regions of the brain in a rat model of sepsis. [J] Acta Neurobiol Exp 2010,70:246-260
    [16]Taccone F S, Castanares-Zapatero D, Peres-Bota D, et al. Cerebral autoregulation is influenced by carbon dioxide levels in patients with septic shock[J]. Neurocrit Care,2010,12(1):35-42.
    [17]Michal Sitinaa,Zdenek Turekb, Renata Parizkovab, etal.Preserved cerebral microcirculation. Clinical Hemorheology and Microcirculation 2011,47(1): 37-44
    [18]Taccone F S, Su F, Pierrakos C, et al. Cerebral microcirculation is impaired during sepsis:an experimental study [J]. Crit Care,2010,14(4):R140.
    [19]Ilker M. Kafa, Sinan Bakirci, Murat Uysal, etal. Alterations in the brain electrical activity in a rat model of sepsis-associated encephalopathy. [J] Brain research 1354(2010):217-226
    [20]Iacobone E, Bailly-Salin J, Polito A, et al. Sepsis-associated encephalopathy and its differential diagnosis. Crit Care Med.2009; 37(10 Suppl):S331-336.
    [1]Siami S,Annane D,Sharshar T.The encephalopathy in sepsis. Crit Care Clin,2008,24:67-82
    [2]Hubband WJ, Choudhry M, Schwacha MGCecal ligation and puncture Shock,2005,24(suppl 1):52-57.
    [3]汤耀卿,李磊.脓毒症动物模型制作方略及应用[J].中华实验外科杂志,2006(12):1433-1434.
    [4]Chelazzi C,Consales G.,De Gaudio,et al. Sepsis associated encephalopathy. Curr. Anaesth. Crit Care,2008(19):15-21.
    [5]Eidelman, L.A., Putterman, D., Putterman, C., Sprung, C.L.,.The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 1996 (14): 470-473.
    [6]Wilson, J.X., Young, G.B.Progress in clinical neurosciences:sepsis-associated encephalopathy:evolving concepts. Can. J.Neurol.2003,30:98-105.
    [7]Rosengarten B, Hecht M, Auch D, Ghofrani HA, Schermuly RT, Grimminger F, Kaps M Microcirculatory disfunction in the brain preceded changes in evoked potentials in endotoxin-induced sepsis syndrome in rats. Cerebrovasc Dis,2007, 23:140-147.
    [8]Ohnesorge H, Bischoff P, Scholz J, Yekebas E, Shulte am Esch J.Somatosensory evoked potentials as predictor of systemic inflammatory response syndrome in pigs? Intensive Care Med,2003,29:801-807.
    [9]Ilker M. Kafa, Murat Uysal, Sinan Bakirci.Sepsis induces apoptotic cell death in different regions of the brain in a rat model of sepsis. Acta Neurobiol Exp 2010, 70:246-260.
    [10]Ilker M. Kafa, Sinan Bakirci, Murat Uysal, M. etal. Alterations in the brain electrical activity in a rat model of sepsis-associated encephalopathy. [J] brain research 2012:217-226.
    [1]Bartynski WS, Boardman JF, Zeigler ZR, et al. Posterior reversible encephalopathy syndrome in infection, sepsis and shock [J]. Am J Neu rorad io,l 2006,27 (10):2179-2190.
    [2]Burmester T,Gerlach F,Hankeln T.Regulation and role of neuroglobin and cytoglobin under hypoxia.Adv Exp Med Biol.2007,618:169-180
    [3]Hundahl CA,Allen GC,Nyengaard JR,et a 1.Neuroglobin in the rat brain localization.Neuroendbcfinology.2008,88(3):173-182
    [4]Shao G,Gong KR,Li J,et al.Antihypoxic Effects of Neuroglobin in Hypoxia-Preconditioned Mice and SH-SY5Y Cells. Neurosignals,2009,1 7(3):196-202
    [5]Yu Z,Fan X,Lo EH,et al.Neuroprotective roles and mechanisms ofNeuroglobin. Neurol Res,2009,31(2):122-127
    [6]Wang X,Liu J,Zhu H, et al.Effects of neuroglobin overexpression on acute brain injury and brain-term outcomes after focal cerebral ischemia. Stroke,2008, 39(6):1869-1874
    [7]Wilson JX, Young GB. Sepsis-associated en cephalopathy:Evolving concepts[J]. Can J Neurol Sci,2003,30:98-105.
    [8]Sun Y,Jin K, Mao XO et al.. Neuroglobin is up-regulated by and protects neurous from hypoxic-ischemic injury.Proc Nail Aead Sei U S A.2001,98(26):15306-15311.
    [9]Sun Y, Jin K, Peel A, et al. Neuroglobin protects the brain from experimental stroke in vivo. Proe Nail Aead Sei U S A.2003,100(6):3497-3500.
    [10]Shang A, zhou D, zhang C, et al. increased neuroglobin levels inthe cerebral conex and serum after ischemia-reperfusion insults.[J]. Brain Res,2006, 1078(1):219-226.
    [11]杜显刚,官鹏,陈雪梅,等.大鼠脑外伤后大脑皮质脑红蛋的定量研究[J].中国法医学杂志,2005,21(3):129—132.
    [12]孙江丽, 孙志扬.心肺复苏大鼠脑红蛋白缺氧诱导因子-1α的表达变化.[J].中国急救医学杂志,2011,31(9):819—822.
    [13]Hundahl C,Stoltenberg M,Fago A,et al. effects of short-term hypoxia on neuroglobin levels and localdization in mouse brain tissue.Neuropathol Appl neurobial,2005,31(6):610-617.
    [14]Ilker M. Kafa, Murat Uysal, Sinan Bakirci.Sepsis induces apoptotic cell death in different regions of the brain in a rat model of sepsis. Acta Neurobiol Exp 2010, 70:246-260.
    [15]Zhu Y,Sun Y,Jin K et al.Hemin induces neuroglobin expression in neural cells.Blood,2002,100:2494-8.
    [16]Jin RL,Li WB,Li QJ,et al.The role of extracellular signal-regulated kinases in the neuroprotection of limb ischemic preconditioning,Neurosci Res.2006,55(1): 65-73
    [17]Fordel E, Moens L,et al.Neuroglobin and cytoglobin expression in mice. Evidence for a correlation with reactive oxygen species scavenging. FEBS J,2007,274(5):1312-1317
    [1]Wilson, J.X. and G.B. Young, Progress in clinical neurosciences: sepsis-associated encephalopathy:evolving concepts. Can J Neurol Sci,2003. 30(2):p.98-105.
    [2]Bleck, T.P., et al., Neurologic complications of critical medical illnesses. Crit Care Med,1993.21(1):p.98-103.
    [3]Sprung, C.L., et al., Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Crit Care Med,1990.18(8):p.801-6.
    [4]Pytel P, Alexander J J. Pathogenesis of septic encephalopathy [J]. Curr Opin Neurol,2009,22(3):283-287.
    [5]Young G B, Bolton C F, Archibald Y M, et al. The electroencephalogram in sepsis-associated encephalopathy [J]. J ClinNeurophysiol,1992,9(1):145-152.
    [6]Zauner C, Gendo A, Kramer L, et al. Impaired subcortical and cortical sensory evoked potential pathways in septic patients[J]. Crit Care Med,2002,30(5):1136-1139.
    [7]戴新贵,艾宇航,蔡业平,等.脓毒性脑病的流行病学特点及高危因素分析[J].中国全科医学,2009(2).
    [8]王露,柴艳芬.脓毒性脑病发生及影响预后的危险因素分析[J].中国全科医学,2011(5):530-532.
    [9]汤耀卿,李磊.脓毒症动物模型制作方略及应用[J].中华实验外科杂志,2006(12):1433-1434.
    [10]张建,杜江,王斌.建立兔脓毒症模型方法研究[J].中国热带医学,2010(8):990-991.
    [11]Remick D G, Ward P A. Evaluation of endotoxin models for the study of sepsis[J]. Shock,2005,24 Suppl 1:7-11.
    [12]Sitina M, Turek Z, Parizkova R, et al. Preserved cerebral microcirculation in early stages of endotoxemia in mechanically-ventilated rabbits[J]. Clin Hemorheol Microcirc,2011,47(1):37-44.
    [13]Ilker M. Kafa, Sinan Bakirci, Murat Uysal, M. etal. Alterations in the brain electrical activity in a rat model of sepsis-associated encephalopathy. [J] brain research 2012:217-226.
    [14]Ilker M. Kafa, Murat Uysal, Sinan Bakirci,etal. Sepsis induces apoptotic cell death in different regions of the brain in a rat model of sepsis [J] Acta Neurobiol Exp 2010,70:246-260.
    [15]Johnson, D.R., et al., Inhibition of vagally mediated immune-to-brain signaling by vanadyl sulfate speeds recovery from sickness. Proc Natl Acad Sci U S A, 2005.102(42):p.15184-9.
    [16]Semmler, A., et al., Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol,2007.204(2):p.733-40.
    [17]Sharshar, T., et al., Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet, 2003.362(9398):p.1799-805.
    [18]Siami, S., D. Annane and T. Sharshar, The encephalopathy in sepsis. Crit Care Clin,2008.24(1):p.67-82, viii.
    [19]Dantzer, R., Cytokine-induced sickness behaviour:a neuroimmune response to activation of innate immunity. Eur J Pharmacol,2004.500(1-3):p.399-411.
    [20]Dantzer, R., et al., Neural and humoral pathways of communication from the immune system to the brain:parallel or convergent? Auton Neurosci,2000. 85(1-3):p.60-5.
    [21]Konsman, J.P., P. Parnet and R. Dantzer, Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci,2002.25(3):p.154-9.
    [22]Maes, M., Major depression and activation of the inflammatory response system. Adv Exp Med Biol,1999.461:p.25-46.
    [23]Szatmari, S., et al., Impaired cerebrovascular reactivity in sepsis-associated encephalopathy studied by acetazolamide test. Crit Care,2010.14(2):p. R50.
    [24]Shimojo, N., et al., Alterations of gene expressions of preproET-1 and ET receptors in brains of endotoxemic Sprague-Dawley rats. Exp Biol Med (Maywood),2006.231(6):p.1058-63.
    [25]Zhang, S.H., et al., [Protective effect of ONO-1078, a leukotriene receptor antagonist, on focal cerebral ischemia induced by endothelin-1 in rats]. Yao Xue Xue Bao,2004.39(1):p.1-4.
    [26]Murayama, T., et al., Regulation of inducible NO synthase expression by endothelin in primary cultured glial cells. Life Sci,1998.62(17-18):p.1491-5.
    [27]Klipper, E., et al., Characterization of endothelin-1 and nitric oxide generating systems in corpus luteum-derived endothelial cells. Reproduction,2004.128(4): p.463-73.
    [28]Siami, S., D. Annane and T. Sharshar, The encephalopathy in sepsis. Crit Care Clin,2008.24(1):p.67-82,ⅷ.
    [29]Spain, D.A., et al., Nitric oxide synthase inhibition aggravates intestinal microvascular vasoconstriction and hypoperfusion of bacteremia. J Trauma,1994. 36(5):p.720-5.
    [30]Sharshar, T., et al., Brain lesions in septic shock:a magnetic resonance imaging study. Intensive Care Med,2007.33(5):p.798-806.
    [31]Nishioku, T., et al., Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell Mol Neurobiol,2009.29(3):p. 309-16.
    [32]Handa, O., J. Stephen and G. Cepinskas, Role of endothelial nitric oxide synthase-derived nitric oxide in activation and dysfunction of cerebrovascular endothelial cells during early onsets of sepsis. Am J Physiol Heart Circ Physiol, 2008.295(4):p. H1712-9.
    [33]Nishioku, T., et al., Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell Mol Neurobiol,2009.29(3):p. 309-16.
    [34]Jacob, A., et al., The role of the complement cascade in endotoxin-induced septic encephalopathy. Lab Invest,2007.87(12):p.1186-94.
    [35]Flierl, M.A., et al., Inhibition of complement C5a prevents breakdown of the blood-brain barrier and pituitary dysfunction in experimental sepsis. Crit Care, 2009.13(1):p. R12.
    [36]Han, L., et al., Use of medications with anticholinergic effect predicts clinical severity of delirium symptoms in older medical inpatients. Arch Intern Med,2001. 161(8):p.1099-105.
    [37]Comim, C.M., et al., Rivastigmine reverses habituation memory impairment observed in sepsis survivor rats. Shock,2009.32(3):p.270-1.
    [38]Kadoi, Y. and S. Saito, An alteration in the gamma-aminobutyric acid receptor system in experimentally induced septic shock in rats. Crit Care Med,1996.24(2): p.298-305.
    [39]Gunther, M.L., J.C. Jackson and E.W. Ely, The cognitive consequences of critical illness:practical recommendations for screening and assessment. Crit Care Clin, 2007.23(3):p.491-506.
    [40]Pandharipande, P.P., et al., Plasma tryptophan and tyrosine levels are independent risk factors for delirium in critically ill patients. Intensive Care Med,2009.35(11): p.1886-92.
    [41]Guerra-Romero, L., et al., Amino acids in cerebrospinal and brain interstitial fluid in experimental pneumococcal meningitis. Pediatr Res,1993.33(5):p.510-3.
    [42]Koppel, B.S., et al., Seizures in the critically ill:the role of imipenem. Epilepsia, 2001.42(12):p.1590-3.
    [43]Cebers, G., et al., Increased ambient glutamate concentration alters the expression of NMD A receptor subunits in cerebellar granule neurons. Neurochem Int,2001. 39(2):p.151-60.
    [44]James, J.H., Branched chain amino acids in heptatic encephalopathy. Am J Surg, 2002.183(4):p.424-9.
    [45]Sprung, C.L., et al., Amino acid alterations and encephalopathy in the sepsis syndrome. Crit Care Med,1991.19(6):p.753-7.
    [46]Berg, R.M., et al., Cerebral net exchange of large neutral amino acids after lipopolysaccharide infusion in healthy humans. Crit Care,2010.14(1):p. R16.
    [47]Mizock, B.A., et al., Septic encephalopathy. Evidence for altered phenylalanine metabolism and comparison with hepatic encephalopathy. Arch Intern Med,1990. 150(2):p.443-9.
    [48]Barichello, T., et al., Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Crit Care Med,2006.34(3):p.886-9.
    [49]Christians, E.S., L.J. Yan and I.J. Benjamin, Heat shock factor 1 and heat shock proteins:Critical partners in protection against acute cell injury. Crit Care Med, 2002.30(1 Supp):p. S43-S50.
    [50]D'Avila, J.C., et al., Sepsis induces brain mitochondrial dysfunction. Crit Care Med,2008.36(6):p.1925-32.
    [51]Wilson, J.X., Antioxidant defense of the brain:a role for astrocytes. Can J Physiol Pharmacol,1997.75(10-11):p.1149-63.
    [52]Galley, H.F., M.J. Davies and N.R. Webster, Ascorbyl radical formation in patients with sepsis:effect of ascorbate loading. Free Radic Biol Med,1996. 20(1):p.139-43.
    [53]Heneka, M.T., A. Schmidlin and H. Wiesinger, Induction of argininosuccinate synthetase in rat brain glial cells after striatal micro injection of immunostimulants. J Cereb Blood Flow Metab,1999.19(8):p.898-907.
    [54]Brown, G.C., Nitric oxide as a competitive inhibitor of oxygen consumption in the mitochondrial respiratory chain. Acta Physiol Scand,2000.168(4):p.667-74.
    [55]Bolanos, J.P., et al., Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem,1997. 68(6):p.2227-40.
    [56]McNaught, K.S. and P. Jenner, Extracellular accumulation of nitric oxide, hydrogen peroxide, and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition, and/or lipopolysaccharide-induced activation. Biochem Pharmacol,2000.60(7):p.979-88.
    [57]Messaris, E., et al., Time-dependent mitochondrial-mediated programmed neuronal cell death prolongs survival in sepsis. Crit Care Med,2004.32(8):p. 1764-70.
    [58]D'Avila, J.C., et al., Sepsis induces brain mitochondrial dysfunction. Crit Care Med,2008.36(6):p.1925-32.
    [59]Sharshar, T., et al., Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet, 2003.362(9398):p.1799-805.
    [60]Zhan, R.Z., N. Fujiwara and K. Shimoji, Regionally different elevation of intracellular free calcium in hippocampus of septic rat brain. Shock,1996.6(4):p. 293-7.
    [1]Burmester T, Weich B, Reinhardt S, Hankeln T. A vertebrate globin expressed in the brain. Nature.2000 Sep 28;407(6803):520-3.
    [2]Schmidt-Kastner R, Haberkamp M, Schmitz C, Hankeln T, Burmester T. Neuroglobin mRNA expression after transient global brain ischemia and prolonged hypoxia in cell culture. Brain Res.2006 Aug 4; 1103(1):173-80.
    [3]Greenberg DA, Jin K, Khan AA. Neuroglobin:an endogenous neuroprotectant. Curr Opin Pharmacol.2008 Feb;8(1):20-4.
    [4]黄飚,王德林.脑红蛋白的最新研究进展.广东医学,2010,11:1495-97.
    [5]Sun Y, Jin K, Peel A, Mao XO, Xie L, Greenberg DA. Neuroglobin protects the brain from experimental stroke in VIVO. Proc Natl Acad Sci USA.2003 Mar 18;100(6):3497-500.
    [6]Sitina M, Turek Z, Parizkova R, Lehmann C, Cerny V. Preserved cerebral microcirculation in early stages of endotoxemia in mechanically-ventilated rabbits. Clin Hemorheol Microcirc.2011;47(1):37-44.
    [7]Taccone FS, Su F, Pierrakos C, He X, James S, Dewitte O, Vincent JL, De Backer D. Cerebral microcirculation is impaired during sepsis:an experimental study. Crit Care.2010;14(4):R140.
    [8]Barichello T, Fortunato JJ, Vitali AM, Feier G, Reinke A, Moreira JC, Quevedo J, Dal-Pizzol F. Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Crit Care Med.2006 Mar;34(3):886-9.
    [9]Fordel E, Thijs L, Moens L, Dewilde S. Neuroglobin and cytoglobin expression in mice. Evidence for a correlation with reactive oxygen species scavenging. FEBS J.2007 Mar;274(5):1312-7.
    [10]Fordel E, Thijs L, Martinet W, Schrijvers D, Moens L, Dewilde S.Anoxia or oxygen and glucose deprivation in SH-SY5Y cells:a step closer to the unraveling of neuroglobin and cytoglobin functions. Gene.2007 Aug 15;398(1-2):114-22.
    [11]Jin K, Mao XO, Xie L, Khan AA, Greenberg DA. Neuroglobin protects against nitric oxide toxicity. Neurosci Lett.2008 Jan 10;430(2):135-7.
    [12]Li RC, Morris MW, Lee SK, Pouranfar F, Wang Y, Gozal D. Neuroglobin protects PC12 cells against oxidative stress. Brain Res.2008 Jan 23;1190:159-66.
    [13]Fordel E, Geuens E, Dewilde S, De Coen W, Moens L. Hypoxia/ischemia and the regulation of neuroglobin and cytoglobin expression. IUBMB Life.2004 Nov-Dec;56(11-12):681-7
    [14]Bianchi G, Di Giulio C, Rapino C, Rapino M, Antonucci A, Cataldi A. p53 and p66 proteins compete for hypoxia-inducible factor 1 alpha stabilization in young and old rat hearts exposed to intermittent hypoxia. Gerontology. 2006;52(1):17-23.
    [15]Riva C, Donadieu E, Magnan J, Lavieille JP. Age-related hearing loss in CD/1 mice is associated to ROS formation and HIF target proteins up-regulation in the cochlea. Exp Gerontol.2007 Apr;42(4):327-36.
    [16]Khromova NV, Kopnin PB, Stepanova EV, Agapova LS, Kopnin BP. p53 hot-spot mutants increase tumor vascularization via ROS-mediated activation of the HIF1/VEGF-A pathway. Cancer Lett.2009 Apr 18;276(2):143-51.
    [17]Rohwer N, Dame C, Haugstetter A, et al.Hypoxia-inducible factor 1alpha determines gastric cancer chemosensitivity via modulation of p53 and NF-kappaB. PLoS One.2010 Aug 10;5(8):e12038.
    [18]Raychaudhuri S, Skommer J, Henty K, Birch N, Brittain T. Neuroglobin protects nerve cells from apoptosis by inhibiting the intrinsic pathway of cell death. Apoptosis.2010 Apr; 15(4):401-11.
    [19]Brittain T, Skommer J, Raychaudhuri S, Birch N. An antiapoptotic neuroprotective role for neuroglobin. Int J Mol Sci.2010 May 27;11(6):2306-21
    [20]Burmester T, Hankeln T. Neuroglobin:a respiratory protein of the nervous system. News Physiol Sci.2004 Jun;19:110-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700