用户名: 密码: 验证码:
基于高分辨距离像的雷达自动目标识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达自动目标识别技术在军事和民用上都有着巨大的应用价值。宽带雷达高分辨距离像(HRRP)具有目标结构信息丰富、易于获取的特点,是雷达目标识别重要的发展方向之一。本文以探寻稳健、实用的识别算法为目标,围绕HRRP目标识别的关键问题,系统地研究了姿态敏感性、特征提取、噪声背景下的稳健识别和序列识别问题,为HRRP目标识别的实用化进行了有益的探索。主要研究内容和创新点如下:
     1.基于散射点模型理论,研究了不同方位角下等角域划分对目标识别的影响,通过对HRRP方位敏感性较强的方位角区域细分,以相邻HRRP的互相关系数为基准自适应地划分角域,弥补了最大相关模板匹配法(MCC-TMM)均匀划分角域的缺陷,改善了识别性能。
     2.针对HRRP目标识别中简单套用经典概率分布模型存在的“模型失配”问题,研究了逆向云模型的建模问题,给出了云滴确定度和逆向云隶属度的计算方法,提出了基于逆向云模型的雷达目标识别方法。仿真表明,相比经典的Gaussian模型,该方法具有识别精度高、对训练数据量依赖性小、对目标姿态变化不敏感、抗噪性能好等优点。
     3.当目标在某一角域内的散射特性失配时,其对应角域HRRP能量呈现非线性分布特性。针对这一问题,提出了一种基于核主分量分析(KPCA)重构的雷达目标识别方法。该方法在等角域划分下利用核主分量分析提取每个角域内HRRP的特征子空间,再将测试样本投影到各角域特征子空间中进行重构,最后通过计算最小重构误差来判别测试样本的类别。相比主分量分析重构方法和最大相关系数模板匹配法,核主分量分析重构方法可以松弛角域划分范围,降低角域划分的精度要求,同时也具有较好的抗噪性能。
     4.针对传统的线性判别分析(LDA)算法应用于HRRP特征提取时存在的“四个缺陷”(要求假设待分类数据服从具有相同协方差矩阵的高斯分布;降维后的特征子空间维数受限;在计算散射矩阵时没有突出边界样本在目标识别中的作用;待分类样本的维数大于或接近于样本个数时,容易造成所谓的“小样本问题”),研究了HRRP非参数特征提取方法:(1)提出了基于非参数特征分析(NFA)和逆向云模型相结合的HRRP目标识别方法。NFA算法在计算散射矩阵时用局部KNN均值代替类均值;利用样本的局部信息来构建类间散射矩阵,增加了类间散射矩阵的秩;通过权函数增强了训练数据中类边界样本在分类中的作用。弥补了LDA算法的前三个应用缺陷。利用逆向云模型作为分类器改进了概率论和模糊数学在处理不确定性问题方面的不足,更加符合目标HRRP经过特征提取后特征子空间模糊分布的实际情况;(2)提出了基于非参数最大间隔准则的雷达目标识别方法。该方法结合最大间隔准则和非参数化方法的优点,采用“以差化商”的方法解决了LDA算法的“小样本”问题,用非参数的方法计算类内和类间散射矩阵弥补了LDA算法的其它三种应用缺陷。
     仿真实验表明,相比参数的特征提取方法,所提出的非参数特征提取方法可以增加HRRP样本的类内聚合性和类间可分性,从而提高目标识别率和抗噪性能。
     5.针对传统的HRRP识别方法对噪声环境适应性差的问题,提出了一种噪声背景下的HRRP目标识别方法。该方法通过分析不同信噪比下幂次变换(PT)参数的选取对识别效果的影响,利用线性回归的方法给出参数选取的经验公式;结合信噪比实时估算,研究了基于自适应幂次变换的数据预处理方法。根据自相关小波变换的时移不变性特性和较好的抗噪性能,构造自相关小波SVM分类器。仿真实验表明,该方法在目标识别率和噪声稳健性方面远优于高斯核SVM分类器。
     6.为获得更加稳健、可信的识别效果,设计了HRRP序列的雷达目标识别模型,并根据该模型详细论述了雷达目标的序列识别方法;针对模型中的主干环节,基于概率推理理论,引入灰色关联算子,构造了HRRP序列目标识别算法中MYCIN的不确定因子,提出了一种基于HRRP序列的雷达目标识别方法。与单样本的识别算法相比,所提出的算法具有识别精度高、稳定性好、抗干扰能力强等优点,具有较好的工程应用前景。
The radar automatic target recognition is of great value in military and civilian use.High-Resolution Range Profile(HRRP) is characterized by rich information and accessibility,so itis one of the most important developments of radar target recognition. This thesis intends to explorerobust and practical recognition algorithms and the critical problems of HRRP recognition, includingtarget-aspect sensitivity, feature extraction, the robust recognition under noise background andsequence recognition, which is a useful exploration of the application of HRRP’ target recognition.
     The main contents and the new ideas are as follows:
     1. According to the scattering center model, the impacts of the equiangular division underdifferent target-aspect on the target recognition is studied in this paper. A new frame segmentationmethod based on cross correlation coefficient is proposed. Comparing with the Max CorrelationCoefficient-Template Matching Method (MCC-TMM), the presented method can efficiently improverecognition performance.
     2.In the radar target recognition based on the statistic model, the problem of model mismatch isexisted when using classical parametric probability density model to describe the statistical propertiesof HRRP. Due to this problem, this thesis studies the modeling of the backward cloud model, andfigures out the algorithms of the certainty degree of cloud drop and the backward cloud membership,and proposes the radar target recognition method based on backward cloud model. Simulation resultsdemonstrate that the proposed approach is effective for radar target identification. Compared withGaussian models, it has advantages of higher identification accuracy, better anti-noise performance,more relaxed requirements for azimuth division, and can also achieve good recognition results in thecase of fewer training samples.
     3. When scatter feature within one angular sector mismatches, the HRRP energy within itscorresponding angular sector shows the feature of non-linear distribution. In view of this, an approachbased on kernel principle component analysis reconstruction is proposed in this thesis. Kernelprinciple component analysis is used to extract eigen subspace in every equiangular sector for a start,and then test sample is reconstructed by projecting it onto the eigen subspace of each angular sector,finally, the type of test sample is determined by the minimum reconstruction error. Simulations resultsshow that the proposed approach relaxes the angular sector, requires lower angular division precision, and meanwhile it has a better anti-noise performance compared with principle component analysisreconstruction method and MCC-TMM.
     4. As an effective feature extraction method in radar target HRRP recognition community, LinearDiscriminant Analysis (LDA) faces four main shortcomings. First, it relies on the assumption that thesamples in each class satisfy Gaussian distribution with the same covariance matrix; Second, thedimension of the eigen subspace has an upper limit after dimension reduction; Third, the effect ofboundary samples are not highlighted when calculating scatter matrix; Fourth, when the dimensionof samples is more than or close to the number of samples, the so-called “Small Sample Sizeproblem” is likely to emerge. To tackle these problems, the methods of nonparametric featureextraction are studied in this paper:(1) a radar target recognition method based on nonparametricfeature analysis (NFA) and backward cloud mode is proposed. NFA algorithm uses the local KNNmean instead of class mean when calculating scatter matrix; the rank of between-class scatter matrixis increased when it’s calculated with samples’ local information; the effect of class boundary samplesare strengthened by weighting function. So the first three defects of LDA algorithm can be offset inNFA. The deficiency of probability theory and fuzzy mathematics in dealing with uncertain problemsis improved by using backward cloud model, it is more consistent with the fuzzy distribution of eigensubspace’s for the target HRRP after feature extraction;(2) a radar target recognition method based onNonparametric Maximum Margin Criterion (NMMC) is proposed. This method integrates theadvantages of maximum margin criterion and nonparametric feature extraction. The quotientoperation is replaced by difference operation in NMMC, in order to solve the problem of small samplesize in LDA algorithm, and the other three application defects of LDA algorithm are offset by usingnonparametric method to calculate within-class and between-class scatter matrix.
     Compared with parametric feature extraction, the simulation experiment demonstrates thatnonparametric feature extraction could increase within-class polymerization and between-classdivisibility, so it can improve target recognition rate and noise robustness.
     5. As traditional algorithms are not robust to noise, this thesis proposes HRRP’s targetrecognition against the noisy environment. In this method, the formula of parameter’s selection isgiven by analyzing the impacts of power transformation parameter’s selection with different SNRs onrecognition effect, and the data-preprocessing based on adaptive power transformation is studiedintegrating the estimation method for real-time SNR. And an auto-correlation wavelet support vectormachine is proposed as the classifier, the kernel of which is constructed with a compactly supportedwavelet satisfies the translation invariant property. The simulation results show that the proposed algorithm is of better noise-robustness and higher recognition rate compared with Gaussian kernelSVM.
     6. To achieve steadier and more reliable recognition result, a sequence model of HRRP for radartarget recognition was designed in the thesis. For the backbone of this model, a radar targetrecognition algorithm is proposed based on HRRP’s sequence. In this method, grey incidence operatoris introduced into the probability-reasoning theory, and the calculation method of MYCIN’s uncertainfactor is given based on the framework of Bayes theory. Compared with recognition algorithms with asingle sample, the proposed algorithm has good prospects for engineering applications with higherrecognition rate, better stability, and stronger anti-interference.
引文
[1] George W. Stimson.Introduction to Airborne Radar (Second Edition).Raleigh: SciTech,1998.
    [2] Skolnik M..Introduction to Radar Systems (Second Edition).New York: McGraw-Hill,1980.
    [3] Ralph Strong.Radar: The Evolution Since World War II.IEEE A&E SystemsMagazine,2005,(1).
    [4]陈宗骘.现代雷达.北京:国防工业出版社,1988:1~23.
    [5] Nebabin V. G...Methods and techniques of radar recognition.Boston: Artech House,1997.
    [6] Barton D.K.. Sputnik Ⅱ as observed by C band radar. IRE National Conference,1959,7(5):67~73.
    [7]杜兰.雷达高分辨距离像目标识别方法研究,[博士学位论文].西安:西安电子科技大学,2007.
    [8]丁鹭飞,耿富录.雷达原理(第三版).西安:西安电子科技大学出版社,2002.
    [9]周立伟,刘玉岩.目标探测与识别.北京:北京理工大学出版社,2004.
    [10]吴顺君,梅晓春.雷达信号处理和数据处理技术.北京:电子工业出版社,2008.
    [11]史颖超,李侠,程东升,等.窄带雷达飞机目标识别方法综述.舰船电子工程,2010,32(2):45~49.
    [12] Chen J S, Wallton E K. Comparison of two target classification techniques. IEEE Trans on AES,1986,22(1):15~21.
    [13]王伟,张汉华,姜卫东,等.低分辨雷达的目标特征提取方法.国防科技大学学报,2002,24(2):31~35.
    [14]黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社,2005.
    [15] Carrara W.G., Goodman R.S., Majewski R.M.. Spotlight Synthetic Aperture Radar SignalProcessing Algorithms. Norwood, MA: Arthech House,1995.
    [16] Mitchell R.A., Dewall R.. Overview of high range resolution radar target identification. InProceedings of Automayic Target Recognition Working Group.1994.
    [17] Eesterkamp J.. A Framework for1D HRR ATR evaluation. AFRL Technical Report. Aug.1998.
    [18] Xing M D, Bao Z, Pei B. The properties of high-resolution range profiles. Optical Engineering,2002,41(2):493~504.
    [19]杜兰,刘宏伟,保铮.一种利用目标雷达高分辨距离像幅度起伏特性的特征提取新方法.电子学报,2005,33(3):411~415.
    [20] Du L, Liu H.W., Bao Z., et al. A compound statistical model based radar HRRP targetrecognition. Proceedings of the2nd International Symposium on Neural Networks, Chongqing,PEOPLES R CHINA, F May30-Jun01,2005.
    [21] Liu H.W., Bao Z.. Radar HRR Profiles Recognition Based on SVM with Power-Transformed-Correlation Kernel. Lecture Notes in Computer Science.2004,3174(1):531~536.
    [22] Chen B., Liu H.W., Bao Z.. Optimizing the Data-dependent Kernel under a Unified KernelOptimization Framework. Pattern Recognition.2008,41(6),2107~2119.
    [23] Du L., Liu H.W., Bao Z.. Radar HRRP statistical recognition. Parametric model and modelselection. IEEE Trans.On Signal Processing.2008,56(5):1931~1944.
    [24] Du L., Liu H.W., BAO Z., et al. Radar automatic target recognition using complexhigh-resolution range profiles. IET Radar Sonar and Navigation,2007,1(1):18~26.
    [25]柴晶,刘宏伟,保铮.加权KNN分类器在HRRP库外目标拒判中的应用.系统工程与电子技术,2010,32(4):718~723.
    [26] Yun Z., Yu X.L., Liu B.Y.. Radar target recognition based on KLLE and a KNRD classifier.IEEE Transactions on Signal Processing,2010,6(2):47~57.
    [27]周代英,杨万麟.雷达目标一维距离像识别中的修正正则子空间法.系统工程与电子技术,2001,23(10):11~49.
    [28] Yu X.L., Wang X.Q., Liu B.Y.. Supervised kernel neighborhood preserving projections for radartarget recognition. Signal Processing,2008,88(9):2335~2339.
    [29] Yu X.L., Wang X.Q.. Kernel uncorrelated neighborhood discriminative embedding for radartarget recognition. Electronics Letters,2008,44(2):154~155.
    [30] Chen H.Y., Liu Y.X., Li X., et al.. Mathematics of synthesizing range profile. IEEE Transactionson Signal Processing,2007,55(5):1950~1955.
    [31]郭雷,肖怀铁,赵宏钟等.宽带全极化雷达目标HRRP极化特征提取与优选.自然科学进展,2009,19(7):784~792.
    [32] Hou K., Deng B., Liu Y.X., et al.. High resolution range profile analysis based on multicarrierphase-coded waveforms of OFDM radar. Journal of systems Engineering and Electronics,2011,22(3):421~427.
    [33] Chen H.Y., Liu Y.X., Jiang W.D., et al.. A new approach for synthesizing range profile ofmoving target via stepped-frequency waveforms. IEEE Geoscience and Remote Sensing Letters,2006,3(3):406~409.
    [34] Chen H.Y., Jiang W.D., Liu Y.X., et al.. Nonuniform stretch processing for range profile of targetwith micro-motion. Progress in Nature Science,2006,16(11):1205~1213.
    [35] Zhao Q., Principle J.C., Support vector machines for SAR automatic target recognition. IEEETrans.A.E.S.,2001,37(2):643~654.
    [36] Novak L.M., Owirka G.J., Weaver A.L.. Automatic target recognition using enhanced resolutionSAR data. IEEE Trans. A.E.S.,1999,35(1):157~175.
    [37] D.E. Dudgeon, R.T. Lacoss.An Overview of automatic target recognition. The LincolnLaboratory Journal,1993,6(1):3~10.
    [38] Punkle P, Nguyen L.H., Mc Clellan J.H.. Multi aspect target detection for SAR imagery usinghidden markov models. IEEE Trans A.E.S.,2001,39(1):46~55.
    [39] F.Seisuke, H.Haruto. A wavelet-based texture feature setapplied to classification ofmultifrequence polarm etric SAR images. IEEE Transactions on Geoscience and RemoteSensing,2002,37(5):2282-2286.
    [40]宦若虹,杨汝良.基于小波域NMF特征提取的SAR图像目标识别方法.电子信息学报,2009,31(03):588~591.
    [41] C.Enderli, L.Savy. Application of the Deflection Criterion to Classification of Radar SARImages. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(9):1668~1673.
    [42]冯德军,王雪松,陈志杰,等.酉ESPRIT超分辨ISAR成像方法.电子学报,2005,33(12):1~4.
    [43] Iwamoto M., Fujisaka T.. Autofocus algorithm of inverse synthetic aperture radar using entropy.Electronics and Communications in Japan, Part1,2000,83(2):97~106.
    [44] Wong S., Riseborough E, Duff G.. Experimental investigations on the distortion of ISAR imagesusing different radar waveforms. Technical Memorandum,2004,TM2003-196, Defense R&DCanada, Ottawa, Canada.
    [45] Yamamoto K., Iwamoto M. and Fujisaka T., et al., An ISAR imaging algorithm for multipletargets of different radial velocity[J]. Electronics and Communications in Japan, Part1,2003,86(7):1~10.
    [46] J PALMER. ISAR Imaging using an Emulated Multistatic Radar System. IEEE Transactions onAerospace and Electronic Systems (S0018-9251),2005,41(4):1464~1473.
    [47] Maki A, Fukui K, Kawawada Y. Automatic ship identification in ISAR imagery: an on-linesystem using CMSM. IEEE Radar,2002206~211.
    [48] Musman.S., Kerr.D., Bachmamm. c. Automatic recognition of ISAR ship images. IEEETransaction on Aerospace and Electronic Systens,1996,32(4):1392~1404.
    [49]候庆禹.基于高分辨距离像的雷达自动目标识别方法研究,[博士学位论文].西安:西安电子科技大学,2009.
    [50] Li H J, Farhat N H,Shen Y,et al.. Image understanding and Prediction in Microwave diversityimaging. IEEE Trans. On A.P.,1989,37(8):1048~1057.
    [51] Li H.J., Liu T.Y., Yang S.H.. Superhigh image resolution for microwave imaging. Int.J.Imaging Systems and Teehnol,1990,(2):37~46.
    [52] Li H.J., Yang S.H., Using range Profiles as feature vectors to identify aerospace objects. IEEETrans. A.P.,1993,41(3):261~268.
    [53] Liao X.J., Bao Z., Xing M.D.. On the Aspect Sensitivity of High Resolution Radar RangeProfiles and Its Reduction Methods. The Record of IEEE2000International Radar Conference.Washing: IEEE,2000:310~315.
    [54]陈凤,杜兰,保铮等.雷达高分辨距离像自动目标识别方法的改进.电子与信息学报,2007,29(6):1450~1454.
    [55] Williams R., Westerkamp J., Gross D. et al.. Automatic Target Recognition of Time CriticalMoving Targets1D High Range Resolution(HRR) Radar. IEEE AES System Magazine,2000,15(4):37~43.
    [56]杜兰,刘宏伟,保铮.利用目标方位信息改善雷达距离像识别性能.系统工程与电子技术,2004,26(8):1040~1043.
    [57] Zhu J.H., Zhou J.J., Wu J.. Optimizing the Weighted High-Resolution Range Profile for RadarTarget Recognition. Transactions of Nanjing University of Aeronautics&Astronautics,2011,28(2),157~162.
    [58]袁莉,刘宏伟,保铮.雷达高分辨距离像分类器的参数自适应学习算法.电子与信息学报,2008,30(1):198~202.
    [59] Du L., Liu H.W., Bao Z.. Radar HRRP statistical recognition. Parametric model and modelselection. IEEE Trans.On Signal Processing,2008,56(5):1931~1944.
    [60] Chen B., Liu H.W., Bao Z.. Adaptively Segmenting Angular Sectors for Radar HRRP AutomaticTarget Recognition. EURASIP Journal on Applied Signal Processing,2008,(2008): ID641709.
    [61] Li H.J., Wang Y.D., Wang L.H.. Matching score Properties between Range Profile ofhigh-resolution radar targets. IEEE Trans A.P.,1996,44(4):444~452.
    [62] Kosir P., Dewall R., Mitchell R.A multiple measurement approach for feature alignment. Proc.IEEE1995Nat. Aerospace and Electronics Conf. NAECON1995:94~101.
    [63] Zwart J., Heiden R., Gelsema S., et al.. Fast translation invariant classification of HRR rangeprofiles in a zero phase representation. Inst. Elect. Eng. Proc. Radar Sonar Navig.2003,150(6):411~418.
    [64]陈渤,刘宏伟,保铮.一种基于零相位表示法的雷达高分辨距离像识别方法.西安电子科技大学学报,2005,32(5):657~662.
    [65]裴炳南,保铮.用微分复时谱法实现雷达高分辨距离像对齐.电波科学学报,2002,17(2):103~108.
    [66]陈渤,刘宏伟,保铮.基于三种不同绝对对齐方法的分类器分析.现代雷达,2006,28(3):59~62.
    [67] Wong S.K.. Non-cooperative target recognition in the frequency domain. Inst. Elect. Eng. Proc.Radar Sonar Navig,2004,151(2):77~84.
    [68] Liao X.J., Bao Z.. Circularly integrated bispectra-novel shift invariant featuresfor high resolutionradar target recognition. IEEE Electronics Letters.1998,4(19):1879~1880.
    [69] Pei B.N., Bao Z.. Logarithm bispectrum based approach to high radar range profile forautomatic target recognition. Pattern recognition,2002,35(11):2643~651.
    [70]时宇,张贤达.基于局部双谱的高分辨距离像雷达目标识别.清华大学学报(自然科学版),2002,42(3):407~410.
    [71]曹向海,刘宏伟,吴顺君.基于奇异值分解的双谱降维研究.宇航学报,2007,28(5):1319~1322.
    [72]袁莉,刘宏伟,保铮.基于中心矩特征的雷达HRRP自动目标识别.电子学报,2004,32(12):2078~2081.
    [73]曹向海,刘宏伟,吴顺君.基于距离像幅度信息和Boosting的目标识别研究.系统工程与电子技术,2007,29(10):1628~1630.
    [74]陈凤,杜兰,刘宏伟,等.一种利用强度信息的雷达HRRP自动目标识别方法.电子学报,2009,37(3):459~463.
    [75] Webb A. R.. Gamma Mixture Models for Target Recognition. Patter Recognition.2000,33:2045~2054.
    [76] Richard O. Duda Peter E. et al..模式分类(第二版)(李宏东等译).北京:机械工业出版社,2003,9:134~145.
    [77]赵峰,张军英,刘敬,等.基于非参数化概率密度估计的雷达目标识别.电子与信息学报,2008,30(7):1740~1743.
    [78] Van der Heiden R., Groen F.C.A.. The box-cox metric for nearest neighbour classificationimprovement. Pattern Recognition,1997,30(2):273~279.
    [79] Jacobs S.P.. Automatic target recognition using high-resolution radar range profiles,
    [Dissertation for the Degree of Doctor of Science]. Washington: Washington University,1997.
    [80] Webb Andrew R. Gamma mixture models for target recognition. Pattern Recognition,2000,33(12):2045~2054.
    [81] Copsey Keith, Webb Andrew. Bayesian gamma mixture model approach to radar targetrecognition. IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1201~1217.
    [82]廖学军.基于高分辨距离像的雷达目标识别,[博士学位论文].西安:西安电子科技大学,1999.
    [83] Du L., Liu H.W., Bao Z., et al.. A two-distribution compounded statistical model for radar HRRPtarget recognition. IEEE Transactions on Signal Processing,2006,54(6):2226~2238.
    [84]朱劼昊,周建江,吴杰.基于半参数化概率密度估计的雷达目标识别.电子与信息学报,2010,32,(9):2161~2166.
    [85] de Sa Marques J P. Pattern Recognition Concepts. Methods and Applications. Berlin, Germany:Springer-Verlag,2002.
    [86] K. Kira, L.A. Rendell. The Feature Selection Problem: Traditional Methods and a NewAlgorithm.Proc of9th National Conf on AI,1992:129~134.
    [87]边肇祺,张学工.模式识别(第2版).北京:清华大学出版社,2000.
    [88]李辉,张安,于红梅.雷达目标识别发展回顾与实现中的关键理论.红外与激光工程,2007,36(9):343~346.
    [89]余贵水,卢建斌,魏钟记,等.基于一维距离像的雷达目标识别研究进展.现代雷达,2010,32(6):5~10.
    [90] Spoelstra J., Botha E. C.. New rotation-invariant features for radar target recognition. SignalProcessing,1996,55(3):351~367.
    [91]张静远,张冰.基于小波变换的特征提取方法分析.信号处理,2000,16(2):156~162.
    [92] Garcia C., Zikos G., Tziritas G.. Wavelet packet analysis for face recognition. Image and VisionComputing,2000,18(4):289~297.
    [93]王明高,王琰.基于小波提取特征的SVM目标识别.沈阳理工大学学报,2006,25(5):35~38.
    [94] Li J., Stoica P.. Efficientmixed-spectrum estimation with applications to target feature extraction.IEEE Trans on SP,1996,44(2):281~295.
    [95] Li J. Statisticalpattern recognition for synthetic aperture radar(SAR)/automatic targetrecognition(ATR).[S..l]:AirForce Research Laboratory,2001.
    [96] Li J., Halder B.. Computationally efficient angle estimation for signals with known waveforms.IEEE Trans. S.P.,1995,43(9):2155~2162.
    [97]裴炳南,汤清信,张涛.高分辨雷达目标的RELAX与MRELAX参数特征.郑州大学学报(理学版),2004,36(1):41~44.
    [98]陈江峰.基于HMM分类器和Relax算法特征提取的高分辨雷达目标自动识别问题研究,[博士学位论文].郑州:郑州大学,2003.
    [99]王伟.支持向量机及其在雷达目标识别中的应用研究,[博士学位论文].郑州:郑州大学,2006.
    [100]Lu R., Morris J. M.. Gabor expansion for adaptive echo cancellation. IEEE Signal ProcessingMagazine,1999,16(2):68~80.
    [101]Carin L., Ybarra G,. Bharadwaj P., et al.. Physics-based classification of targets in SAR imageryusing subaperture sequences. IEEE ICASSP.[S..l]: IEEE Press,1999.
    [102]McClure M. R., Carin L. Matching pursuits with a wavebased dictionary. IEEE Trans. on SignalProcessing,1997,45(12):2912~2927.
    [103]Sharma R.. Scatterer identification via a subaperture filtering approach.33rd AsilomarConference on Signal Systems and Computer. Pacifiv Grove, CA: IEEE Press,1999.
    [104]周代英.雷达目标一维距离像识别研究,[博士学位论文].西安:西安电子科技大学,2001.
    [105]Chen B., Liu H.W., Bao Z.. PCA and Kernel PCA for Radar High Range Resolution ProfilesRecognition.2005IEEE International Radar Conference in Arlington, Virginia USA,528~533.
    [106]李晓辉,黎湘,郭桂蓉.基于LDA算法的一维距离像特征提取.国防工业大学学报,2005,27(6):72~76.
    [107]刘敬,张军英,赵峰.基于direct LDA的幅度谱子空间雷达目标识别.系统工程与电子技术,2008,30(10):1815~1818.
    [108]Chai J., Liu H.W., Bao Z.. Generalized re-weighting local sampling mean discriminant analysis.Pattern Recognition,2010,43(10):3422~3432.
    [109]Liu H.L., Yang W.L.. Modified generalized discriminant analysis for radar HRRP recognition.5th International Conference on Microwave and Millimeter Wave Technology Proceedings.2007:840~843.
    [110]丛瑜,肖怀铁,付强.基于核主分量分析的高分辨雷达目标特征提取与识别.电光与控制,2008,15(2):31~35.
    [111]Chen B., Liu H.W., Bao Z.. General Kernel Optimization Model Based on Kernel FisherCriterion, ICNC2006, Xi’an, Springer Berlin, Lecture Notes in Computer Science2006,(4221),143~146.
    [112]Chen B., Liu H.W., Bao Z.. A Kernel Optimization Method Based on the Localized KernelFisher, Pattern Recognition,2008,41(3):1098~1109.
    [113]Francis R.B., Michael I.J.. Kernel independent component analysis. Journal of MachineLearning Research,2002,3(1):1~48.
    [114]贺知明,向敬成,黄巍.NMTI方法在宽带雷达系统中的应用.电子与信息学报,2003,25,(12):1628~1633.
    [115]贺知明,黄巍,张一冰,等.适用于宽带雷达的非相干杂波抑制方法.系统工程与电子技术,2004,26(5):572~574.
    [116]侯庆禹,刘宏伟,保铮.宽带目标识别雷达的杂波抑制.现代雷达,2007,29(9):44~47.
    [117]侯庆禹,刘宏伟,保铮.基于keystone变换方法的宽带目标识别雷达杂波抑制.系统工程与电子技术,2009,31(1):49~53.
    [118]侯庆禹,刘宏伟,保铮.一种新的宽带目标识别雷达杂波抑制方法.西安电子科技大学学报,2008,35(5):769~773.
    [119]Chen F., Du L., Liu H.W. et al.. An amplitude-scale and time-shift jointly optimization for RadarHRRP recognition. Proceeding of2008International Conference on Radar, Adelaide, Australia,2008,515~518.
    [120]陈凤.基于HRRP和JEM信号的雷达目标识别技术研究,[博士研究生学位论文].西安电子科技大学,2009.
    [121]Q.Y. Hou, H.W. Liu, F. Chen, et al.. Adaptive Statistical Model for Radar HRRP Recognition.IET Radar Conference2009,Guilin,China:1~4.
    [122]Liao X.J., Runkle P., Carin L.. Identification of ground targets from sequential high-range-resolution radar signatures. IEEE Trans. Aerospace and Electronic System,2002,38(4):1230~1242.
    [123]Runkle P.R., Bharadwaj P.K., Couchman L., et al. Hidden Markov models for multiaspect targetclassification, IEEE Trans. SP.1999,47(7):2035~2040.
    [124]Bharadwaj P., Runkle P.R., Carin L., et al.. Target identification with wave-based matchedpursuits and Hidden Markov models. IEEE Trans. On AP.1999,47(10):1543~1554.
    [125]Bharadwaj P, Runkle P.R., Carin L., et al.. Multiaspect classification of airborne targets viaphysics-based HMMs and matching pursuits. IEEE Trans. AES.2001,37(2):592~606.
    [126]裴炳南,保铮.基于目标散射中心和HMM分类的多视角雷达目标识别方法.电子学报,2003,31(5):786~789.
    [127]Pei B.N., Bao Z.. Radar target Recognition based on peak of HRR profiles and HMM classifier.IEEE Radar2002Proceeding, U.K. Oct,2002,414~418.
    [128]Fielding K. H., Ruck D. W.. Spatio-temporal pattern recognition using Hidden Markov Models.IEEE Trans. AES,1995,31(4):1292~1299.
    [129]Zhou D., Liu G., Wang J.. Spatio-temporal target identification method of high range resolutionradar. Pattern Recognition,2000,33(1):1~4.
    [130]Yuan L., Liu H.W., Bao Z.. Radar HRRP recognition based on the minimum Kullback-Leiblerdistance criterion. Journal of electronics(China),2007,24(2):199~203.
    [131]倪迎红,陈玲.雷达目标识别及发展趋势预测.电讯技术,2009,49(11):98~102.
    [132]Andersh D., Moore J., Kosanovich S., et al.. Xpatch4, the next generation in high frequencyelectromagnetic modeling and simulation software. Radar Conference,2000. The Record of theIEEE2000International, Alexandria, VA, USA,2000:844~849.
    [133]S. A. Gorshkov, S. P. Leschenko, V. M. Orlenko, et al.. Radar Target Backscattering SimulationSoftware and User’s Manual. Boston, MA: Artech House,2002.
    [134]J.M. Rius et al., GERCO: Graphical electromagnetic computing for RCS prediction in real time.IEEE Antennas and propagation Magazine,1993,35(2):7~17.
    [135]S.H.W. Simpson, P. Galloway, M. Harman. Applications of EpsilonTM: A Radar SignaturePrediction and Analysis Tool. International Radar Symposium IRS’98, Munich Germany.
    [136]黄德双.高分辨雷达智能信号处理技术[M].北京:机械工业出版社,2001.
    [137]刑孟道.基于实测数据的雷达成像方法研究,[博士学位论文].西安:西安电子科技大学,2002.
    [138]Du L., Liu H.W., Bao Z., et al.. Radar HRRP target recognition based on higher order spectra.IEEE Transactions on Signal Processing,2005,53(7):2359~2368.
    [139]李徳毅,杜鹢.不确定性人工智能.北京:国防工业出版社,2005.
    [140]刘常昱,冯芒,戴晓军,等.基于云X信息的逆向云新算法.系统仿真学报,2004,16(11):2417~2420.
    [141]罗自强,张光卫,李德毅.一维正态云的概率统计分析.信息与控制,2007,36(4):471~475.
    [142]李德毅,刘常昱.论正态云模型的普适性.中国工程科学,2004,6(8):28~34.
    [143]李洪兴,王培庄.模糊数学.北京:北京国防工业出版社,1994.
    [144]Huang C.W., Lee. K.C.. Application of ICA technique to PCA based radar target recognition.Progress in Electromagnetics Research,2010,105:157~170.
    [145]Peter Bajorski.. Statistical Inference in PCA for Hyperspectral Images. IEEE Journal of SelectedTopics in Signal Processing,2011,5(3):438~445.
    [146]Liao Kuo, Jiansheng Fu, Yang wanlin. A Refuse-recognition Method for Radar HRRP TargetRecognition Based on Mahalanobis Distance.2010International Conference on ComputerApplication and System Modeling,2010:503~506.
    [147]Du L., Liu H.W., Bao Z.. Radar HRRP statistical recognition based on hypersphere model.Signal Processing,2008,88(5):1176~1190.
    [148]Scholkopf B., Smola A., Muller K. R.. Nonlinear component analysis as a kernel eigenvalueproblem. Neural Computation,1998,10(5):1299~1319.
    [149]Scholkopf B., Mika S., Smola A., et al.. Kernel PCA pattern reconstruction via approximatepre-images, Proceedings of the8th International Conference on Artificial Neural Networks.Skovde, Sweden: Springer-Verlag,1998:147~152.
    [150]陈渤,刘宏伟,保铮等.一种针对雷达高分辨距离像识别的融合核优化算法.电子学报,2006,34(6):1146~1151.
    [151]Wang F., Zhu J.H., Zhang X.F., et al.. Aircraft Identification Based on CS and SVM Techniques.International Journal of Digital Content Technology and its Application,2011,5(1):95~100.
    [152]Liu J., Zhang J., Zhao F.. Feature for Distinguishing Propeller-Driven Airplanes from Turbine-Driven Airplanes. IEEE Transactions on Aerospace and Electronic Systems,2010,46(1):222~229.
    [153]Wu J., Zhou J.J., Zhu J.H.. A Radar Target Recognition Method Based on Wavelet PowerSpectrum and Power Offset.2nd International Asia Conference on Informatics in ControlAutomation and Robotics,2010:130~134.
    [154]Luo S., Li S.H.. Automatic target recognition of radar HRRP based on high order centralmoments features. Journal of electronics,26(2):184~190.
    [155]Zhu J.H., Zhou J.J., Gao Q.Y.. A Radar Target Recognition Method Based on CircularConvolution Coefficients of High-Resolution Range Profiles.2nd International Joint Conferenceon Computational Sciences and Optimization,2009:991~993.
    [156]Fukunaga K.. Introduction to Statistical Pattern Recognition(2ndedition). Academic Press,Boston, USA,1990.
    [157]Bressan M., Vitria J.. Nonparametric Discriminant Analysis and Nearest Neighbor Classification.Pattern Recognition Letters,2003,24(15):2743~2749.
    [158]Li Z.F., Liu W., Lin D.H., Tang X.O.. Nonparametric Subspace Analysis for Face Recognition.Int. Conf. on computer Vision and Pattern Recognition,2005,961~966.
    [159]Li Z.F., Liu W., Lin D.H., et al.. Nonparametric Discriminant Analysis for Face Recognition.IEEE Transaction on Pattern Analysis on Machine Intelligence,2009,31(4),755~761.
    [160]Zhu M., Martinez A. M.. Subclass Discriminant Analysis. IEEE Trans. Pattern Analysis andMachine Intelligence.2006,28(8):1274~1286.
    [161]H. Li, T. Jiang, and K. Zhang. Efficient and Robust Feature Extraction by Maximum MarginCriterion. IEEE Trans. Neural Netw.,2006,17(1):157~165.
    [162]Jun Liu, Songcan Chen, Xiaoyang Tan, and Daoqiang Zhang. Comments on “Efficient andRobust Feature Extraction by Maximum Margin Criterion”. IEEE Trans. Neural Netw.,2007,18(6):1862~1864.
    [163]N. Saito, G. Beylkin. Multiresolution representations using the auto-correlation functions ofcompactly supported wavelets. Schlumberger-Doll Research, Ridgefield, CT, Tech. Rep.,Aug.1991. Expanded abstract in Proc. ICASSP-92,1992,4(3):381~384.
    [164]N. Saito, G. Beylkin. Multiresolution representation using the auto-correlation functions ofcompactly supported wavelets, IEEE Transactions on Signal Processing,1993,41(12):3584~3590.
    [165]冉启文,谭立英.小波分析与分数傅里叶变换及应用.北京:国防工业出版社,2003:6~42.
    [166]Mallat S.A Theory of multiresolution signal decomposition: the wavelet transform. IEEE Trans.On PAMI,1989,11(7):674~693.
    [167]S.Dubuc. Interpolation through an iterative scheme. J. Math. Anal. Appl.,1986,(114):185~204.
    [168]刘宏伟,杜兰,袁莉,等.雷达高分辨距离像目标识别研究进展.电子与信息学报,2005,27(8):1328~1334.
    [169]Chen B., Liu H.W., Bao Z.. Optimizing the Data-dependent Kernel under a Unified KernelOptimization Framework. Pattern Recognition.2008,41(6):2107~2119.
    [170]赵峰,张军英,刘敬.基于核最优变换与聚类中心的雷达目标识别.控制与决策,2008,23(7):735~740.
    [171]Chen G.Y., Gregory D.. Auto-correlation wavelet support vector machine and its applications toregression. Proceedings of the Second Canadian Conference on Computer and Robot Vision(CRV'05). British Columbia:IEEE,2005:246~252.
    [172]Micha l A. van Wyk. A Framework for Multiscale and Hybrid RKHS-Based Approximators.IEEE Transactions on Signal Processing,2000,48(12):3559~3568.
    [173]邓乃扬,田英杰.数据挖掘中的新方法—支持向量机.科学出版社,2004.
    [174]T.D. Bui, G.Y. Chen, L.Feng, An orthonormal-shell-Fourier descriptor for rapid matching ofpatterns in image database,International Journal of Pattern Recognition and ArtificialIntelligence,2001,15(8):1213~1229.
    [175]Williams, R.A., Westerkamp, J., et al.. Automatic Target Recognition of Time Critical MovingTargets Using1D High Rang Resolution (HRR) Radar[J]. IEEE AES Magazine,2000:37~43.
    [176]Heiden, R., The Box-Cox Metric for Nearest Neighbor Classification Improvement. PatternRecognition,1997:273~279.
    [177]Douglas M.Bates, Donald G.Watts.非线性回归分析及其应用(韦博成等译).北京:中国统计出版社,1997.
    [178]张文修,梁怡,徐萍.基于包含度的不确定推理.北京:清华大学出版社,2007:121~126.
    [179]Sun, Yu Sheng, Zheng, Cai Ling. Ma, Ping D-S evidence theory and its application in robotinformation fusion. Advanced Materials Research,2011,219-220:799~803.
    [180]雷阳,雷英杰,冯有前等.基于直觉模糊推理的目标识别方法.控制与决策,2011,26(8):1163~1168.
    [181]Wang H.Q., Chen P.. Intelligent diagnosis method for rolling element bearing faults usingpossibility theory and neural network. Computers&Industrial Engineering,2011,60(4):511~518.
    [182]Chen W.B., Liu X.L., Liu Y.J., et al.. A machine learning algorithm for expert system based onMYCIN model.2nd International Conference on Computer Engineering and Technology,2010:262~265.
    [183]钟文.不确定推理在多源信息融合中的若干应用研究,[博士学位论文].南京:南京理工大学,2002.
    [184]眭凌,罗本成,邵东国.基于D-S证据推理的项目投资综合决策模型与应用.系统工程,2002,20(1):71~76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700