用户名: 密码: 验证码:
半空间垂直界面裂纹及圆夹杂对SH波的散射
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通常,在生产人工材料与结构时,将很难避免产生各种复杂的缺陷,例如孔洞、夹杂和裂纹。含有介质缺陷的材料在受到外力荷载作用时,由于材料的几何不连续性,将在缺陷附近产生动应力集中情况,进而决定材料的破坏程度。因此,为了满足理论与工程上的需要,研究缺陷附近的动应力集中分布情况是非常有意义的。由于SH波是弹性波散射理论中最简单的计算模型,因此具有相对比较成熟的理论。但是,仍然有许多其他边值问题的解析解答没有被解决。因此,基于线弹性理论,本文分别对双相介质半空间中含有单个圆形弹性夹杂、多个圆形弹性夹杂(孔洞)以及界面裂纹和圆形弹性夹杂组成的复合缺陷对SH波散射问题的解析解答进行了研究,同时给出介质缺陷附近的动应力集中情况以及半空间地表位移幅值的分布情况。本论文所涉及的主要工作可以概括为以下三个部分:
     (1)第一部分主要研究了双相介质半空间垂直界面附近圆形弹性夹杂对SH波散射问题的解析解答,其主要应用了复变函数和Green函数方法。首先,构造适合此问题的Green函数,即:在一个含有圆形弹性夹杂的四分之一空间,在其垂直边界上作用一个任意的出平面线源荷载,此线源荷载在空间中产生的位移函数的解答。其可以被看成是由入射波和散射波的位移表达式组成的。前者可以采用“虚设点源”的方法构造,其满足四分之一空间水平边界应力自由条件,后者可以采用“镜像”的方法够造,其满足两个直角边界应力自由条件。然后,利用圆形弹性夹杂周边的位移和应力连续性边界条件,求解散射波表达式中未知系数。其次,采用“镜像”的方法分别构造SH波入射下满足边界条件的入射波、反射波、折射波以及散射波的位移表达式。然后,采用界面“契合”的思想将双相介质半空间沿着垂直界面划分为两部分,为了满足界面处的连续性条件,需要在剖分面两侧分别施加未知的出平面载荷,然后利用界面处位移和应力连续性条件建立可以确定未知外力系的第一类Fredholm积分方程组,考虑到散射波的衰减性质,采用离散方法求解未知力系。最后,通过具体算例给出圆形弹性夹杂周边动应力集中系数和半空间表面位移幅值的分布情况,分别讨论它们随无量纲参数变化的分布情况。
     (2)第二部分主要研究了双相介质半空间垂直界面附近多个圆形弹性夹杂对SH波散射问题的解析解答,其主要应用了复变函数和多极坐标移动技术。首先,构造适合此问题的Green函数,即:在含有多个圆形弹性夹杂的四分之一空间,在其垂直边界上作用一个任意的出平面线源荷载,此线源荷载在空间中产生的位移函数解答。其次,采用界面“契合”的思想将双相介质半空间沿垂直界面处分开,在剖分面处施加外力荷载以满足界面处的连续性条件,同时利用Green函数表达式建立定解积分方程组。最后,通过具体的算例给出圆形弹性夹杂(孔洞)周边动应力集中情况,分别讨论它们随无量纲参数变化的分布情况。
     (3)第三部分主要研究了双相介质半空间垂直界面裂纹及其附近圆形弹性夹杂对SH波散射问题的解析解答,其主要应用了复变函数和Green函数的方法。首先,构造适合此问题的Green函数,其与第一部分求解过程相同。其次,利用裂纹“切割”技术构造界面裂纹,即先将双相介质半空间沿垂直界面处剖开,在想要出现裂纹的地方施加与SH波作用下此处原有应力大小相等、方向相反的出平面应力。同时,需要在垂直界面其他位置施加外力荷载以满足界面处连续性条件,然后利用Green函数表达式建立定解积分方程组。最后,通过具体算例给出圆形弹性夹杂周边和III型裂纹尖端动应力集中系数和动应力力强度因子,分别讨论它们随无量纲参数变化的分布情况。
Generally, it is hard to avoid various complicated defects when working with the manualmaterials and structures, such as circular holes, inclusions and cracks. Under the externalforce, the material which contains defects will take place the phenomenon of dynamic stressconcentration near the defects because of the geometrical discontinuity. What’s more, itdecides the level of damage. So it is very significant to investigate dynamic stress state nearthe defects to satisfy the theoretical and the engineering needs. As the simplest one among thecalculative models of scattering problems of elastic waves, SH waves scattering problem hasrelative mature theories. However, there are still many boundary value problems unsolved. Inthis paper, the analysis solutions of the scattering of SH waves by the single circular elasticinclusion, the multiple circular elstic inclusions (holes) and the composite defects constitutedof the interfacial crack and circular elastic inclusion are considered respectively based on thelinear elastic theory. Meanwhile, some examples for dynamic stress concentration factor ofthe defects and the amplitude of ground surface displacement in half space are given. Themainwork in present paper can be summarized into three parts as follows:
     (1) In part one, complex function and Green’s function methods are used toinvestigate the analysis solution of the scattering of SH-wave by the bi-material elastic halfspace which contains the vertical interface and a circualr elastic inclusion. Firstly, Green’sfunction is constructed to meet the needs of the problems, which is an essential solution ofdisplacement field for an elastic quarter plane containing a elastic cylindrical inclusion whilebearing out-of-plane harmonic line source load at any point of its vertical boundary. In thispaper, the method of fictitious line source force is used to constructe the expression ofincident waves which satisfies the stress free condition at the horizontal boundary in quarterplane, and the expression of scattering waves which satisfies the stress free conditions at thetwo vertical boundaries can be obtained with the aid of image method. Then, the unknowncoefficients can be determined by the continuous conditions of the stresses and displacementsaound the circular ealstic inclusion edge. Secondly, the expressions of the incident waves, thereflected waves and the refracted waves, which satisfy the boundary cinditions, can beconstructed using the image method. Then, the bi-material media is divided into two partsalong the vertical interface using the idea of interface “conjunction”, and the undetermined anti-plane forces are loaded at the linking sections respectively to satisfy continuity conditions.So a series of Fredholm integral equations of first kind for determining the unknown forcescan be set up through continuity conditions on interface. In the light of attenuationcharacteristic of the scattering waves, the unknown forces can be obtained by the method ofdirect discrete. Finally, some examples for dynamic stress concentration factor around thecircular elastic inclusion edge and the amplitude of ground surface displacement are given.Numerical results discuss the distribution of dynamic stress concentration factor andamplitude of ground surface with the changes of the nondimensional parameters.
     (2)In part two, complex method and multi-polar coordinates technology are used toinvestigate the analysis solution for the multiple circular inclusions near the vertical interfacedisturbed by SH waves in bi-material half space. Firstly, the Green’s function should beconstructed in this problem, which is an essential solution to the displacement field for anelastic quarter plane with multiple circular inclusions disturbed by out-plane harmonic linesource loading at vertical surface. Secondly, the bi-material media is divided into two partsalong the bi-material interface based on the idea of interface “conjunction”, and the verticalsurfaces of the quarter space are loaded with undetermined anti-plane forces in order to satisfydisplacement continuity and stress continuity conditions at linking section. Then, the integralequations for determining the unknown forces can be set up through continuity conditions andthe Green’s function. Finally, some examples for dynamic stress concentration factor aroundthe circular elastic inclusion (hole) edge and the amplitude of ground surface displacement aregiven. Numerical results discuss the distribution of dynamic stress concentration factor withthe changes of the nondimensional parameters.
     (3)In part three, complex method and Green’s function method are used toinvestigate the analysis solution for the circular inclusions and the vertical interfacial crackdisturbed by SH waves in bi-material half space. Firstly, the Green’s function should beconstructed in this problem, which is the same as the part one. Secondly, the interfacial crackis constructed with the aid of the crack-division technique. The detail is as follows: the bi-material media is divided into two parts along the vertical interface, and a pair of oppositeforces which are equal to the original stresses disturbed SH waves. Meanwhile, a series of theunknown forces must be loaded at the linking sections except the region of the crack to satisfycontinuity conditions. Then, the integral equations for determining the unknown forces can be set up through continuity conditions. Finally, some examples for dynamic stress concentrationfactor around the circular elastic inclusion edge and the dynamic stress intensity factors formode III at the crack tip are given. Numerical results discuss the distribution of dynamicstress concentration factor and the dynamic stress intensity factors with the changes of thenondimensional parameters.
引文
[1]鲍亦兴,毛昭宙著.刘殿魁,苏先樾译.弹性波的衍射与动应力集中.北京:科学出版社,1993:3-24页
    [2]王铎,马兴瑞,刘殿魁.弹性动力学最新进展.北京:科学出版社,1995:11-23页
    [3] Pao Y.H. Elastic Waves in Solids. ASME Journal of Applied Mechanics,1983,50(4):1152-1164P
    [4]黎在良,刘殿魁.固体中的波.北京:科学出版社,1995:286-348页
    [5]王铎,汪越胜.界面动力学研究近况.上海力学,1993,14(4):1-15页
    [6]洪善桃.关于弹性波近代发展的概述.上海力学,1986,7(3):66-77页
    [7]胡聿贤.地震工程学.北京:地震出版社,1988:1-8页
    [8]胡聿贤,周锡元.地震工程跨世纪发展趋势.工程抗震,1999(1):329页
    [9]巴振宁,张君英.局部场地对弹性波影响的解析研究进展.低温建筑技术,2006,3:86-87页
    [10]胡超,李凤明,黄文虎.纤维复合材料中弹性波散射与动应力.应用数学与力学,2003,24(7):715-722页
    [11]陈桂才,吴东流,程茶园,郭广平.复合材料缺陷的红外热波无损检测.宇航材料工艺,2004,1:55-58页
    [12]袁胜忠.弹性波在地质勘探中的应用.华东交通大学学报,2004,21(1):47-50页
    [13] Sezawa K. Scattering of Elastic Waves and Some Allied Problems. Bulletin ofEarthquake Research Institute. Tokyo Imperial University,1927,3:19P
    [14] Wolf A. Motion of a Rigid Sphere in an Acoustic Wave Field. Geophysics,1945,10:91P
    [15] Nagase M. Diffraction of Elastic Waves by a Spherical Surface. Journal of thePhysical. Society of Japan,1957,11(3):279-301P
    [16] Knopoff L. Scattering of Compressional Waves by Spherical Obstacles. Geophysics,1959,24(1):30P
    [17] Kato K. Reflections of Sound Wave due to a Hollow Cylinder in an Elastic Body.Mem Inst Sci Indus Res, Vol9Osaka University, Japan,1952
    [18] Nishimura G., Jimbo Y.A. Dynamic Problem of Stress Concentration Stresses in theVicinity of a Spherical Matter Included in an Elastic Solid under Dynamical Force. JFraculty of Engineering, University of Tokyo,1955,24:101P
    [19] White R.M. Elastic Wave Scattering at a Cylindrical Discontinuity in a Solid. TheJournal of the Acoustical Society of America,1958,30(8):771P
    [20] Baron M.L., Mattews A.T. Diffraction of a Pressure Wave by a Cylindrical Cavity inan Elastic Medium. ASME Journal of Applied Mechanics,1961,28:347P
    [21] Pao Y.H., Mow C.C. Dynamic Stress Concentration in an Elastic Plate with RigidCircular Inclusion. Proc4th National Cong of Appl Mech,1962:235P
    [22] Mow C.C., Mente L.J. Dynamic Stresses and Displacements around CylindricalDiscontinuities due to Plane Harmonic Shear Waves. J Appl Mech,1963,39(4):598P
    [23] Trifunic M.D. Scattering of SH-wave by a Semi-Cylindrical Canyon. EarthquakeEngineering and Structure Dynamics,1973:267-281P
    [24] Lee V.W., Trifunac M.D. Response of Tunnels to Incident SH-waves. Journal ofEngineering Mechanics, ASCE,1979,105:643-659P
    [25] Jain D.L., Kanwal R.P. Scattering of Elastic Waves by Circular Cylindrical Flaws andInclusions. Journal of Applied Physics,1979,59(6):4067-4109P
    [26] Jain D.L., Kanwal R.P. Scattering of Elastic Waves by an Elastic Sphere. InternationalJournal of Engineering Science,1980,18(9):1117-1127P
    [27] Liu D.K., Han F. Scattering of Plane SH-waves by a Cylindrical Canyon of ArbitraryShape. Soil Dynamics and Earthquake Engineering,1991,10(5):249-255P
    [28] Lee V.W., Karl J. Diffraction of SV Waves by Underground, Circular, CylindricalCavities Soil Dynamics and Earthquake Engineering,1992,11:445-456P
    [29] Lee V.W., Karl J. On Deformations of near a Circular Underground Cavity Subjectedto Incident Plane P Waves. European Journal of Earthquake Engineering,1993,1:29-36P
    [30] Davis C.A., Lee V.W., Bardet J.P. Transverse Response of Underground Cavities andPipes to Incident SV Waves. Earthquake Engineering and Structural Dynamics,2001,30:383-410P
    [31] Lee W.M., Chen J.T. Scattering of Flexural Wave in Thin Plate with Multiple CircularHoles by Using the Multipole Trefttz Method. International Journal of Solids andStructures,2010,47:1118-1129P
    [32]纪晓东,梁建文,杨建江.地下圆形衬砌洞室在平面P波和SV波入射下动应力集中问题的级数解.天津大学学报,2006,39(5):511-517页
    [33]纪晓东,梁建文, Lee V.W.地下圆形衬砌洞室在平面P波入射下的动应力集中:三级级数解.世界地震工程,2010,26(3):115-122页
    [34]林宏,史文谱,刘殿魁. SH波入射时浅埋结构的动力分析.哈尔滨工程大学学报,2001,22(6):83-87页
    [35]林宏,刘殿魁.半无限空间中圆形孔洞周围SH波的散射.地震工程与工程振动,2002,22(2):9-16页
    [36]刘殿魁,林宏. SH波对双相介质界面附近圆形孔洞的散射.固体力学学报,2003,24(2):197-204页
    [37]齐辉,王艳,刘殿魁.半无限空间界面附近SH波对圆形衬砌的散射.地震工程与工程振动,2003,23(3):41-46页
    [38]宋天舒,刘殿魁,付国庆.含刚性圆柱夹杂压电介质的动力反平面特性.哈尔滨工程大学学报.2003,24(5):574-577页
    [39] Song T.S., Li D., Sun L.L. Dynamic Anti-plane Behaviors of Interacting CircularCavities in an Infinite Piezoelectric Medium. ASME International MechanicalEngineering Congress and Exposition, Proceedings.2009,11:199-204P
    [40] Gautensen A.K., Achenbach J.D. McMaken H. Surface Wave Rays in ElastodynamicDiffraction by Cracks. Journal of the Acoustical Society of America,1978,63(6):1824-1831P
    [41] Achenbach J.D., Keer L.M., Mendelsohn D.A. Elastodynamic Analysis of an EdgeCrack. Journal of Applied Mechanics, Transactions ASME,1980,47(3):551-556P
    [42] Mal A.K. Interaction of Elastic Waves with a Penny-shaped. International Journal ofEngineering Science,1970,8(5):381-388P
    [43] Itou S. Diffraction of an Antiplane Shear Wave by Two Coplanar Griffith Cracks in anInfinite Elastic Medium. International Journal of Solids and Structures,1980,16(12):1147-1153P
    [44] Srivastava K.N., Palaiya R.M., Karaulia D.S. Interaction of Shear Waves with TwoCoplanar Griffith Cracks Situated in an Infinitely Long Elastic Strip. InternationalJournal of Fracture,1983,23(1):3-14P
    [45] Angle Y.C., Achenbach J.D. Reflection and Transmission of Elastic Waves by aPeriodic Array of Cracks: Oblique Incident. Wave Motion,1985,7(4):375-397P
    [46] Achenbach J.D., Li Z.L. Reflection and Transmission of Scalar Waves by a PeriodicArray of Screens. Wave Motion,1986,8(3):225-234P
    [47] Achenbach J.D., Li Z.L. Propagation of Horizontally Polarized Transverse Waves in aSolid with a Periodic Distribution of Cracks. Wave Motion,1986,8(4):371-379P
    [48]章梓茂,马兴瑞,邹振祝,王铎.层状介质中多个非共面Griffith裂纹的弹性波散射问题研究.力学学报,1990,22(6):700-716页
    [49]章梓茂,马兴瑞,邹振祝,王铎.层状介质中多个非共面硬币形裂纹弹性波散射问题研究.力学学报,1991,23(6):685-699页
    [50] Bostrom A., Kvasha O.V. Elastic SH Wave Propagation in a Layered AnisotropicPlate with Periodic Interface Cracks: Exact Versus Spring Boundary Conditions.Journal of Mechanics of Materials and Structures,2010,5(1):67-78P
    [51] Sih G.C. Stress Distribution near Internal Crack Tips for Longitudinal ShearProblems. Journal of Applied Mechanics,1965,32(1):51-58P
    [52] Freund L.B., Achenbach J.D. Diffraction of a Plane Pulse by a Closed Crack at theInterface of Elastic Solids. ZAMM,1968,48:173-187P
    [53] Srivastava K.N., Gupta O.P., Palaiya R.M. Interaction of Elastic Waves in TwoBonded Dissimilar Elastic Half-planes Having Griffith Crack at Interface.International Journal of Fracture,1978,14(2):145-154P
    [54] Srivastava K.N., Palaiya R.M., Gupta O.P. Interaction of Longitudinal Wave with aPenny-shaped Crack at the Interface of Two Bonded Dissimilar Elastic Solids-II.International Journal of Fracture,1979,15(6):591-599P
    [55] Loeber J.F., Sih G.C. Transmission of Anti-plane Shear Waves Past and InterfaceCrack in Dissimilar Media. Engineering Fracture Mechanics,1973,5(3):699-725P
    [56] Zhang Ch. Dynamic Stress Intensity Factors for Periodically Spaced Collinear Anti-plane Shear Cracks between Dissimilar Media. Theoretical and Applied FractureMechanics,1991,15(3):219-227P
    [57] Zhang Ch. Reflection and Transmission of SH Wave by a Periodic Array of InterfaceCracks. International Journal of Engineering Science,1991,29(4):481-491P
    [58] Parton V.Z., Kudryavtsev B.A. Dynamic Problem of Fracture Mechanics for a Planewith an Inclusion. Mechanics of Deformable Bodies and Constructions (in Russian).Mashinostroyeniye, Moscow,1975:379-384P
    [59]汪越胜,王铎.剪切波作用下圆弧形界面裂纹的动应力强度因.固体力学学报,1993,14(4):362-367页
    [60]汪越胜,王铎. SH波对有部分脱胶衬砌的圆形孔洞的散射.力学学报,1994,26(4):462-469页
    [61]陆建飞,王建华,沈为平.曲线裂纹和反平面圆形夹杂相交问题.固体力学学报,2000,21(3):205-210页
    [62]史守峡,杨庆山,刘殿魁,齐辉. SH波对圆形夹杂与裂纹的散射及其动应力集中.复合材料学报,2000,17(3):107-112页
    [63]李宏亮,刘殿魁. SH波作用下圆形夹杂与裂纹的相互作用.哈尔滨工程大学学报,2004,25(5):618-623页
    [64]刘殿魁,陈志刚.椭圆孔边裂纹对SH波的散射及其动应力强度因子.应用数学与力学,2004,25(9):958-966页
    [65]杜永军,赵启成,黄燕,李宏亮,张彦河.裂纹对圆孔SH波散射与动应力集中系数的影响.哈尔滨工业大学学报,2005,37(8):1077-1079页
    [66]杨在林,闫培雷,刘殿魁. SH波对浅埋弹性圆柱及裂纹的散射与地震动.力学学报,2009,41(2):229-234页
    [67] Trifunac M.D. Surface Motion of a Semi-cylindrical Alluvial Valley for IncidentPlane SH Waves. Bulletin of the Seismological Society of America,1971,61(2):1755-1770P
    [68] Totorovska M.I., Trifunac M.D. Analytical Model for In-plane Building-foundation-soil Interaction: Incident P-SV-and Rayleigh Waves. Rep. No. CE90-01. Departmentof Civil Engineering, University of Southern California, Los Angeles, California,1990
    [69] Totorovska M.I., Trifunac M.D. The System Damping, the System Frequency and theSystem Response Peak Amplitudes during In-plane Buliding-soil Interaction.Earthquake Engineering Structure Dynamic,1992,2(12):127-144P
    [70] Liu D.K., Han F. Scattering of Plane SH-waves by Cylindrical Canyon of ArbitraryShapes in Anisotropic Media. Acta Mechanica Sinica,1990,6(3):256-266P
    [71]刘殿魁,许贻燕.各向异性介质中SH波与多个半圆形凹陷地形的相互作用.力学学报,1993,25(1):93-102页
    [72]袁晓铭,廖振鹏.圆弧形凹陷地形对平面SH波散射问题的级数解答.地震与工程振动,1993,13(2):1-11页
    [73]袁晓铭,廖振鹏.圆弧形沉积盆地对平面SH波的散射.华南地震,1995,15(2):1-8页
    [74]袁晓铭,廖振鹏.任意圆弧形凸起地形对平面SH波的散射.地震与工程振动,1996,16(2):1-13页
    [75]崔志刚,曹新荣,刘殿魁. SH波对半圆形凸起地形的散射.地震与工程振动,1998,18(1):140-146页
    [76]李彤,王国庆,刘殿魁. SH波在含圆形孔洞的半圆形凸起处的散射.地震工程与工程振动,2003,23(5):114-121页
    [77]刘刚,刘殿魁. SH波入射时浅埋圆孔附近等腰三角形凸起地形的地震动.固体力学学报,2007,28(1):60-66页
    [78]刘刚,刘殿魁. SH波对浅埋圆形弹性夹杂附近任意三角形凸起地形的散射.应用力学学报,2007,24(3):373-379页
    [79] Shi W.P., Liu D.K., Song Y.T. Scattering of Circular Cavity in Right-Angle PlaneSpace to Steady SH-wave. Applied Mathematics and Mechanics,2006,27(12):1619-1626P
    [80]史文谱,刘殿魁,宋永涛.直角平面区域内固定圆形刚性夹杂问题的Green函数解.固体力学学报,2006,27(2):207-212页
    [81]史文谱,陈瑞平,张春萍.直角平面内弹性圆夹杂对入射平面SH波的散射.应用力学学报,2007,24(1):154-159页
    [82]史文谱,王中训,褚京莲.二维直角平面内多个圆孔对稳态平面SH波的散射.船舶力学,2009,13(5):761-769页
    [83]折勇.直角域中圆形夹杂与裂纹反平面动力的相互作用.哈尔滨工程大学博士学位论文,2010
    [84]折勇,齐辉,杨在林. SH波对直角平面区域内圆形孔洞的散射与地震动.应用力学学报,2008,25(3):392-397页
    [85] Achenbach J.D., Gautesen A.K., McMaken H. Ray Method for Waves in ElasticSolids with Application to Scattering by Cracks. Pitman Advanced Publishing Progran,Boston,1982
    [86] Keer L.M., Luong W.C. Diffraction of Waves and Stress Intensity Factors in aCracked Layered Composite. Journal of the Acoustical Society of America.1974,56:1681-1686P
    [87]李星.积分方程.北京:科学出版社.2008:92-100页,151-152页
    [88]沈以淡.积分方程(第二版).北京:北京理工大学出版社.2002:142-150页
    [89] Todorovska M.I., Lee V.W. Surface Motion of Shallow Circular Alluvial Valleys forIncident Plane SH Waves-Analytical Solution. Soil Dynamics and EarthquakeEngineering,1991,10(4):192-200P
    [90] Wang G.Q., Liu D.K. Scattering of SH-wave by Multiple Circular Cavities in HalfSpace. Earthquake Engineering and Engineering Vibration,2002,1(1):36-44P
    [91]梁建文,巴振宁.弹性层状半空间中沉积谷地对入射平面SH波的放大作用.地震工程与工程振动,2007,27(3):1-9页
    [92]李刚,钟启凯,尚守平.平面SH波入射下深埋圆形组合衬砌洞室的动力反应分析.湖南大学学报,2010,37(1):17-22页
    [93] Tsaur D.H.,Chang K.H., Hsu M.S. An Analytical Approach for the Scattering of SHWaves by a Symmetrical V-shaped Canyon: Deep Case. Geophysical JournalInternational,2010,183(3):1501-1511P
    [94] Xia T., Sun M., Hua W. Multiple Scattering of Plane SH Wave by Double-row ofElastic Pile as Barries for Vibration Isolation.World Information on EarthquakeEngineering2011,27(1):142-147P
    [95] Han F., Wang G.Z., Kang C.Y. Scattering of SH-waves on Triangular Hill Joined bySemic-cylindrical Canyon. Applied Mathematics and Mechanics (English Edition),2011,32(3):309-326P
    [96] Chen J.T.,Lee J.W., Shyu, W.S. SH-wave Scattering by a Semi-elliptical Hill Using aNull-field Boundary Integral Equation Method and a Hybrid Method. GeophysicalJournal International,2012,188(1):177-194P
    [97] Golub M.V., Zhang C., Wang Y.S. SH-wave Propagation and Scatteing inPeriodically Layered Composites with a Damaged Layer. Journal of Sound andVibration,2012,331(8):1829-1843P
    [98] Pao Y.H. Applied Mechanics in Science and Engineering. Applied Mechanics Review,1998,51(2):141-153P
    [99]林皋.地下结构抗震分析综述(上).世界地震工程,1999,15(2):1-10页
    [100] Wong H.L., Trifunac M.D. Scattering of Plane SH Waves by a Semi-elliptical Canyon.Earthquake Engineering and Structural Dynamics,1974,3(2):157-169P
    [101] Wong H.L., Trifunac M.D. Surface Motion of a Semi-elliptical Alluvial Valley forIncident Plane SH Waves. Bulletin of the Seismological Society of America,1974,64(5):1389-1408P
    [102] Todorovska M.I., Hayir A., Trifunac M.D. Antiplane Response of a Dike on FlexibleEmbedded Fundation to Incident SH-waves. Soil Dynamics and EarthquakeEngineering,2001,21(7):593-601P
    [103]梁建文,严林隽, Lee V.W.圆弧形谷地状沉积谷地对入射平面P波的散射解析解.地震学报,2001,23(2):167-184页
    [104]杨在林,孙柏涛,刘殿魁. SH波在浅埋可移动圆柱形刚性夹杂处的散射与地震动.地震工程与工程振动,2008,28(4):1-5页
    [105] Loeber J.F., Sih G.C. Diffraction of Antiplane Shear Waves by a Finite Crack. Journalof the Aoustical Society of America,1968,44(1):90-98P
    [106] Mal A.K. Interaction of Elastic Waves with a Griffith Crack. International Journal ofEngineering Science,1870,8(9):763-776P
    [107] Jain S.L., Kanwal R.P. Diffraction of Elastic Waves by Two Coplanar Griffith Cracksin an Infinite Elastic Medium. Internation Journal of Solid and Structures,1972,8(7):961-975P
    [108] Takakuda K. Diffraction of Plane Harmonic Waves by Cracks. Bulletin of the JSME,1983,26(214):487-493P
    [109] Huang J.Y., So H. Determination of Dynamic Stress Intensity Factors of MultipleCracks. International Journal of Fracture,1988,36(3):187-198P
    [110] Huang J.Y., So H. Diffraction of P Waves by Two Cracks at Arbitrary Position in anElastic Medium. Engineering Fracture Mechanics,1988,29(3):335-347P
    [111] So H., Huang J.Y. Determination of Dynamic Stress Intensity Factors of Two FiniteCracks at Arbitrary Positions by Dilocation Model. International Journal ofEngineering Science,1988,26(2):111-119P
    [112] Qi H., Shi Y., Liu D.K. Interaction of a Circular Cavity and a Beeline Crack in Right-angle Plane Impacted by SH-wave. Journal of Harbin Institute of Technology,2009,16(4):548-553P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700