用户名: 密码: 验证码:
界面扩散受限条件下晶体生长形态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一个历史问题,制备形貌可控的微型和纳米结构的晶体物质的能力是走向材料应用的关键一步。在平衡条件下形成的无机晶体,其形貌是由晶体表面能的相对顺序习惯确定。然而,通过改变晶体晶面能顺序得到令人印象深刻的结构则很少被报道。在实际晶体生长过程中,扩散效应通常在复杂的异构和分层架构的形成起着重要的作用。最新进展表明,通过控制在空气/液体,液体/液体或固体/液体界面的晶体的生长过程中扩散效益可以合成复杂的晶体结构。
     液/液(L/L)界面是一个独特的环境,因为不连续的物理性质,化学性质,存在两种液体。液/液界面为各种材料的空心微粒的合成形成提供了一个理想的平台。,这一战略已经被证明在聚合物,无机和金属有机骨架胶囊的制备。然而,水溶性无机盐作为无机化合物的一大家族,如氯化物,亚硫酸盐和硫酸盐,通过界面合成复杂的晶体结构则较少的的报道。本实验成功的利用亚稳态水滴界面作为平台成功的取得了一系列的研究成果。具体研究内容如下:
     (1)亚稳态水滴界面生长斗状氯化钠单晶及其组装空心微球。
     氯化钠(NaCl),结晶化学的最经典的主题,一直是作为立方晶体的典型代表。同时,改变氯化钠的结晶习性获得令人印象深刻的结构未实现。在此,我们报告单晶NaCl斗状单晶和他们在亚稳水液滴界面的自组装空心微球。当氯化钠水溶液被注入到丙酮和环己烷的混合物,在快速搅拌的情况下,亚稳态水滴被短时间的稳定。随着丙酮扩散进入水相,氯化钠在水/环己烷-丙酮两相之间成核。同时,非极性的环己烷吸附在晶体的(001)面,阻止了晶体在此<001>方向的生长。然而,{001}面和{111)面的继续生长,并保持了原有的生长速度。有趣的是,我们成功的改变氯化钠晶体的生长习性,并以亚稳定水滴为模板生成了的斗状单晶和它们的自组装空心微球。该结果打开了一条新的途径来控制水溶性物种晶体的生长,了解在晶体的生长机理。
     (2)亚稳态水滴界面生长四角锥斗状氯化钠八面体及其自组装空心微球。
     人们在几世纪以前,在存在低浓度的添加剂时,发现晶体形态可以发生显着改变,其作用机理是由于添加剂可以吸附在特定晶面进而减小晶体在特定晶面的生长速率。如,在氯化钠水溶液中存在的尿素或甲酰胺,面心立方晶体氯化钠将形成八面体。因此,我们在的亚稳态水滴的界面研究的尿素对氯化钠的晶体形貌的影响。成功合成氯化钠四角锥斗状八面体形状的单晶以及自组装的空心微球。扫描电镜显示,微球大部分粒径范围为10-40微米,其是有几十个大小为2微米左右的四角锥斗状八面体氯化钠单晶组成。
     (3)亚稳态水滴晶面生长立方晶系、正交晶系和六方晶系的水溶性无机盐单晶以及组装空心微球。
     无机盐作为无机化合物中的重要成员,探讨各种不同晶系的无机盐晶体在新体系下生长情况具有重要的意义。我们选择了三种不同晶系的水溶性无机盐,立方晶系的溴化钾和NH4C1,正交晶系的(NH4)2SO4和正交晶系的亚硫酸钠作为例子,说明了该方法在生长立方晶系、正交晶系、正交晶系的水溶性无机盐漏斗状的单晶和他们的自组装空心微球的普适性。
As a historical subject, the ability to tailor the micro-and nanoscale architecture of crystalline substances is a critical step toward application. When inorganic crystals are formed under equilibrium conditions, their crystal habit is determined by the relative order of surface energies. However, the morphological evolution with crystal modifiers usually resulted in a limited variation of the intrinsic shape of crystal; the impressive structures/architectures have rarely been reported. There has been active research in the area exploring novel synthetic chemical methods for the synthesis of heterogeneous and hierarchical architectures with controllable sizes and shapes. Alternatively, during real crystal growth process, the diffusion effect usually plays an important role in the formation of complex heterogeneous and hierarchical architectures. Recent advances have demonstrated that it is possible to control the growth processes of complex heterogeneous and hierarchical architectures with interfacial growth at air/liquid, liquid/liquid or solid/liquid interfaces. Here, we report a unified approach to the synthesis of water-soluble salts crystal with stunning structure at the metastable liquid-liquid interface between the organic solvent and aqueous droplets. The metastable liquid-liquid interface of the two compatible liquids offered a platform for the controlled formation of water-soluble salts.
     (1) Hopper-Like Single Crystals of Sodium Chloride Grown at Interface of Metastable Water Droplets
     Sodium chloride (NaCl), the most classical topic in crystallization chemistry, has always been dedicated as the representative of regular cubic crystals. To change the growth habit of water-soluble salts for the production of impressive structures/architectures has not yet been achieved. Herein, we report the hopper-like single crystals of NaCl and KCl and their self-assembly at interface of metastable water microdroplets. When the undersaturated NaCl aqueous solution was introduced into the mixture of acetone and cyclohexane, the metastable water microdroplets were temporally formed under vigorously stirring. With the diffusion of acetone into the water phase, NaCl nucleated at the metastable interface of water/acetone-cyclohexane. Meanwhile, nonpolar cyclohexane adsorbed at the nuclei's (001) plane faced to the organic phase, preventing the growth at this<001> direction. However, the growths of other{001} planes and the{111} planes maintained the original growth rates. Interestingly, the changed growth habit and the water droplet template resulted in the hopper-like single crystals and their uniform arrangement in the form of hollow microspheres, respectively. The reported results open a new avenue to control the crystallization of water-soluble species and shed significant insights to understand the growth mechanism of nanocrystals in the natural and artificial systems.
     (2) Pyramidic-Hopper-Like Single Crystals of Sodium Chloride Grown at Interface of Metastable Water Droplets
     It has been found for over a century that the nucleation, growth, and morphology of crystals can significantly altered by the presence of low concentrations of additives. Additives can reduce crystal growth rate and alter morphology by binding to crystal faces and interfering with propagation steps. Interestingly, sodium chloride crystals form octahedrons in the presence of urea or formamide. Therefore, we have examined the interaction of urea with sodium chloride at the meteastable interface of water droplets. We synthesized microparticles of NaCl octahedron single crystal with hopper polyhedral shapes. SEM shows that the formation products are mainly composed of many hollow microspheres, most of which are in the size range10-40μm. The micro structure is in fact built by uniform octahedral NaCl single crystals and the size is about2μm. The products consist of tens of octahedrons single crystals.
     (3) Hopper-Like Single Crystals of Water-soluble salts Grown at Interface of Metastable Water Droplets
     Herein, we chose water-soluble salts with different crystal system, the cubic system of KBr and NH4Cl, the orthorhombic system of (NH4)2SO4and the hexagonal system of Na2SO3, as examples to demonstrate the effectiveness of this method in yielding sidewalls and hopper-like crystallites and their self-assembly into hollow microspheres.
引文
[1]Hu JT, Odom TW, Lieber CM. Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes[J]. Accounts of Chemical Research,1999,32(5):435-445.
    [2]Patzke GR, Krumeich F, Nesper R. Oxidic nanotubes and nanorods-Anisotropic modules for a future nanotechnology[J]. Angewandte Chemie-International Edition,2002,41(14):2446-2461.
    [3]Hulteen JC, Martin CR. A general template-based method for the preparation of nanomaterials[J]. Journal of Materials Chemistry,1997,7(7):1075-1087.
    [4]Thurn-Albrecht T, Schotter J, Kastle CA, et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates[J]. Science,2000,290(5499):2126-2129.
    [5]Gudiksen MS, Lauhon LJ, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics[J]. Nature,2002,415(6872):617-620.
    [6]Peng XG. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals[J]. Advanced Materials,2003,15(5):459-463.
    [7]Cheon JW, Kang NJ, Lee SM, et al. Shape evolution of single-crystalline iron oxide nanocrystals[J]. Journal of the American Chemical Society,2004,126(7):1950-1951.
    [8]Jiao SH, Xu LF, Jiang K, et al. Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu2O crystal templating[J]. Advanced Materials, 2006,18(9):1174-+.
    [9]Yang S, Krupenkin TN, Mach P, et al. Tunable and latchable liquid microlens with photopolymerizable components[J]. Advanced Materials,2003,15(11):940-+.
    [10]Wang XD, Summers CJ, Wang ZL. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays[J]. Nano Letters,2004,4(3):423-426.
    [11]Busbee BD, Obare SO, Murphy CJ. An improved synthesis of high-aspect-ratio gold nanorods[J]. Advanced Materials,2003,15(5):414-+.
    [12]Tian ZRR, Voigt JA, Liu J, et al. Complex and oriented ZnO nanostructures[J]. Nature Materials, 2003,2(12):821-826.
    [13]Iijima S. Helical Microtubules of Graphitic Carbon[J]. Nature,1991,354(6348):56-58.
    [14]Ismach A, Kantorovich D, Joselevich E. Carbon nanotube graphoepitaxy:Highly oriented growth by faceted nanosteps[J]. Journal of the American Chemical Society,2005,127(33):11554-11555.
    [15]Liu RJ, Li SW, Yu XL, et al. Polyoxometalate-Assisted Galvanic Replacement Synthesis of Silver Hierarchical Dendritic Structures[J]. Crystal Growth & Design,2011,11(8):3424-3431.
    [16]Li GR, Yao CZ, Lu XH, et al. Facile and efficient electrochemical synthesis of PbTe dendritic structures[J]. Chemistry of Materials,2008,20(10):3306-3314.
    [17]Xiao JP, Xie Y, Tang R, et al. Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures[J]. Advanced Materials,2001,13(24):1887-+.
    [18]Li GR, Lu XH, Qu DL, et al. Electrochemical growth and control of ZnO dendritic structures [J]. Journal of Physical Chemistry C,2007,111(18):6678-6683.
    [19]van Bommel KJC, Friggeri A, Shinkai S. Organic templates for the generation of inorganic materials[J]. Angewandte Chemie-International Edition,2003,42(9):980-999.
    [20]Pra LDD, Ferain E, Legras R, et al. Fabrication of a new generation of track-etched templates and their use for the synthesis of metallic and organic nanostructures[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,2002,196(1-2):81-88.
    [21]Murphy CJ, Jana NR. Controlling the aspect ratio of inorganic nanorods and nanowires[J]. Advanced Materials,2002,14(1):80-82.
    [22]Kijima T, Yoshimura T, Uota M, et al. Noble-metal nanotubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-crystal templates[J]. Angewandte Chemie-International Edition,2004,43(2): 228-232.
    [23]Beck JS, Vartuli JC, Roth WJ, et al. A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates[J]. Journal of the American Chemical Society,1992,114(27): 10834-10843.
    [24]Kresge CT, Vartuli JC, Roth WJ, et al. M41S:A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. Science and Technology in Catalysis 1994,1995,92:11-19.
    [25]Hata H, Saeki S, Kimura T, et al. Adsorption of taxol into ordered mesoporous silicas with various pore diameters[J]. Chemistry of Materials,1999,11(4):1110-1119.
    [26]Miyata H, Suzuki T, Fukuoka A, et al. Silica films with a single-crystalline mesoporous structure[J]. Nature Materials,2004,3(9):651-656.
    [27]Kimura T, Sugahara Y, Kuroda K. Synthesis and characterization of lamellar and hexagonal mesostructured aluminophosphates using alkyltrimethylammonium cations as structure-directing agents[J]. Chemistry of Materials,1999,11(2):508-518.
    [28]Kim SS, Pauly TR, Pinnavaia TJ. Non-ionic surfactant assembly of ordered, very large pore molecular sieve silicas from water soluble silicates[J]. Chemical Communications,2000,(17): 1661-1662.
    [29]Kim SS, Pauly TR, Pinnavaia TJ. Non-ionic surfactant assembly of wormhole silica molecular sieves from water soluble silicates[J]. Chemical Communications,2000,(10):835-836.
    [30]Kim SS, Karkamkar A, Pinnavaia TJ, et al. Synthesis and characterization of ordered, very large pore MSU-H silicas assembled from water-soluble silicates[J]. Journal of Physical Chemistry B, 2001,105(32):7663-7670.
    [31]Coffer JL, Bigham SR, Li X, et al. Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA[J]. Applied Physics Letters,1996,69(25):3851-3853.
    [32]Dittmer WU, Simmel FC. Chains of semiconductor nanoparticles templated on DNA[J]. Applied Physics Letters,2004,85(4):633-635.
    [33]Nyamjav D, Ivanisevic A. Templates for DNA-templated Fe3O4 nanoparticles[J]. Biomaterials, 2005,26(15):2749-2757.
    [34]Nyamjav D, Kinsella JM, Ivanisevica A. Magnetic wires with DNA cores:A magnetic force microscopy study[J]. Applied Physics Letters,2005,86(9).
    [35]Kinsella JM, Ivanisevic A. DNA-templated magnetic nanowires with different compositions: Fabrication and analysis[J]. Langmuir,2007,23(7):3886-3890.
    [36]Braun E, Eichen Y, Sivan U, et al. DNA-templated assembly and electrode attachment of a conducting silver wire[J]. Nature,1998,391(6669):775-778.
    [37]Lund J, Dong JC, Deng ZXS et al. Electrical conduction in 7 nm wires constructed on lambda-DNA[J]. Nanotechnology,2006,17(11):2752-2757.
    [38]Park SH, Prior MW, LaBean TH, et al. Optimized fabrication and electrical analysis of silver nanowires templated on DNA molecules[J]. Applied Physics Letters,2006,89(3).
    [39]Ongaro A, Griffin F, Beeeher P, et al. DNA-templated assembly of conducting gold nanowires between gold electrodes on a silicon oxide substrate[J]. Chemistry of Materials,2005,17(8): 1959-1964.
    [40]Monson CF, Woolley AT. DNA-templated construction of copper nanowires[J]. Nano Letters, 2003,3(3):359-363.
    [41]Becerril HA, Ludtke P, Willardson BM, et al. DNA-templated nickel nanostructures and protein assemblies[J]. Langmuir,2006,22(24):10140-10144.
    [42]Gu Q, Cheng CD, Haynie DT. Cobalt metallization of DNA:toward magnetic nanowires[J]. Nanotechnology,2005,16(8):1358-1363.
    [43]Nguyen K, Monteverde M, Filoramo A, et al. Synthesis of thin and highly conductive DNA-based palladium nanowires[J]. Advanced Materials,2008,20(6):1099-+.
    [44]McMillan RA, Paavola CD, Howard J, et al. Ordered nanoparticle arrays formed on engineered chaperonin protein templates[J]. Nature Materials,2002,1(4):247-252.
    [45]Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes[J]. Science,2003,300(5619):625-627.
    [46]Shenton W, Douglas T, Young M, et al. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus[J]. Advanced Materials,1999,11(3):253-256.
    [47]Tseng RJ, Tsai CL, Ma LP, et al. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles[J]. Nature Nanotechnology,2006,1(1):72-77.
    [48]Knez M, Bittner AM, Boes F, et al. Biotemplate synthesis of 3-nm nickel and cobalt nanowires[J]. Nano Letters,2003,3(8):1079-1082.
    [49]Tsukamoto R, Muraoka M, Seki M, et al. Synthesis of CoPt and FePt3 nanowires using the central channel of tobacco mosaic virus as a biotemplate[J]. Chemistry of Materials,2007,19(10):2389-2391.
    [50]Martin CR. Membrane-based synthesis of nanomaterials[J]. Chemistry of Materials,1996,8(8): 1739-1746.
    [51]Zhang XR, Yuan XY, Zhang Y, et al. Porous CdS nano wire arrays self-assembled in anodic aluminum oxide template[J]. Chemistry Letters,2005,34(7):896-897.
    [52]Wiedwald U, Fauth K, Hessler M, et al. From colloidal Co/CoO core/shell nanoparticles to arrays of metallic nanomagnets:Surface modification and magnetic properties[J]. Chemphyschem, 2005,6(12):2522-2526.
    [53]Whitney TM, Jiang JS, Searson PC, et al. Fabrication and Magnetic-Properties of Arrays of Metallic Nanowires[J]. Science,1993,261(5126):1316-1319.
    [54]Shin HJ, Jeong DK, Lee JG, et al. Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness[J]. Advanced Materials,2004,16(14):1197-+.
    [55]Brumlik CJ, Menon VP, Martin CR. Template Synthesis of Metal Microtubule Ensembles Utilizing Chemical, Electrochemical, and Vacuum Deposition Techniques[J]. Journal of Materials Research,1994,9(5):1174-1183.
    [56]Martin CR. Nanomaterials-a Membrane-Based Synthetic Approach[J]. Science,1994,266(5193): 1961-1966.
    [57]Wirtz M, Martin CR. Template-fabricated gold nanowires and nanotubes[J]. Advanced Materials, 2003,15(5):455-458.
    [58]Hurst SJ, Payne EK, Qin LD, et al. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods[J]. Angewandte Chemie-International Edition,2006,45(17): 2672-2692.
    [59]Homyak GL, Patrissi CJ, Martin CR. Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites:The nonscattering Maxwell-Garnett limit[J]. Journal of Physical Chemistry B,1997,101(9):1548-1555.
    [60]Chen BS, Xu QL, Zhao XL, et al. Branched Silicon Nanotubes and Metal Nanowires via AAO-Template-Assistant Approach[J]. Advanced Functional Materials,2010,20(21):3791-3796.
    [61]Meng GW, Han FM, Zhao XL, et al. A General Synthetic Approach to Interconnected Nanowire/Nanotube and Nanotube/Nanowire/Nanotube Heterojunctions with Branched Topology[J]. Angewandte Chemie-International Edition,2009,48(39):7166-7170.
    [62]Chen BS, Meng GW, Xu QL, et al. Crystalline Silicon Nanotubes and Their Connections with Gold Nanowires in Both Linear and Branched Topologies[J]. Acs Nano,2010,4(12):7105-7112.
    [63]Yang DC, Meng GW, Zhu CH, et al. Synthesis and Thermal Expansion of Copper Nanotubes and Nanowires with Y-and Step-Shaped Topologies[J]. Small,2010,6(3):381-385.
    [64]Yang DC, Meng GW, Xu QL, et al. A generic approach to nanocables via nanochannel-confined sequential electrodeposition[J]. Applied Physics Letters,2008,92(8).
    [65]Han FM, Meng GW, Xu QL, et al. Alumina-Sheathed Nanocables with Cores Consisting of Various Structures and Materials[J]. Angewandte Chemie-International Edition,2011,50(9): 2036-2040.
    [66]Wang DA, Liu Y, Yu B, et al. TiO(2) Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance[J]. Chemistry of Materials,2009,21(7): 1198-1206.
    [67]Wang DA, Hu TC, Hu LT, et al. Microstructured Arrays of TiO(2) Nanotubes for Improved Photo-Electrocatalysis and Mechanical Stability[J]. Advanced Functional Materials,2009,19(12): 1930-1938.
    [68]Yan JF, Zhou F. TiO(2) nanotubes:Structure optimization for solar cells[J]. Journal of Materials Chemistry,2011,21(26):9406-9418.
    [69]Wang DA, Ye QA, Yu B, et al. Towards chemically bonded p-n heterojunctions through surface initiated electrodeposition of p-type conducting polymer inside TiO(2) nanotubes[J]. Journal of Materials Chemistry,2010,20(33):6910-6915.
    [70]Liu XY, Wang AQ, Yang XF, et al. Synthesis of Thermally Stable and Highly Active Bimetallic Au-Ag Nanoparticles on Inert Supports[J]. Chemistry of Materials,2009,21(2):410-418.
    [71]Paine AJ. Dispersion Polymerization of Styrene in Polar-Solvents.1. Grafting Mechanism of Stabilization by Hydroxypropyl Cellulose[J]. Journal of Colloid and Interface Science,1990,138(1): 157-169.
    [72]Paine AJ, Deslandes Y, Gerroir P, et al. Dispersion Polymerization of Styrene in Polar-Solvents.2. Visualization of Surface-Layers of Steric Stabilizer on Dispersion-Polymerized and Precipitated Polystyrene Latex-Particles by Transmission Electron-Microscopy[J]. Journal of Colloid and Interface Science,1990,138(1):170-181.
    [73]Paine AJ. Dispersion Polymerization of Styrene in Polar-Solvents.4. Solvency Control of Particle-Size from Hydroxypropyl Cellulose Stabilized Polymerizations[J]. Journal of Polymer Science Part a-Polymer Chemistry,1990,28(9):2485-2500.
    [74]Paine AJ, Luymes W, Mcnulty J. Dispersion Polymerization of Styrene in Polar-Solvents.6. Influence of Reaction Parameters on Particle-Size and Molecular-Weight in Poly(N-Vinylpyrrolidone)-Stabilized Reactions[J]. Macromolecules,1990,23(12):3104-3109.
    [75]Paine AJ. Dispersion Polymerization of Styrene in Polar-Solvents.7. A Simple Mechanistic Model to Predict Particle-Size[J]. Macromolecules,1990,23(12):3109-3117.
    [76]Yassar A, Roncali J, Gamier F. Aqueous Suspension of Conducting Material from Polypyrrole-Coated Submicronic Latex-Particles[J]. Polymer Communications,1987,28(4):103-104.
    [77]Kim BJ, Oh SG, Han MG, et al. Preparation of PANI-coated poly(styrene-co-styrene sulfonate) nanoparticles[J]. Polymer,2002,43(1):111-116.
    [78]Yang Y, Chu Y, Yang FY, et al. Uniform hollow conductive polymer microspheres synthesized with the sulfonated polystyrene template[J]. Materials Chemistry and Physics,2005,92(1):164-171.
    [79]Liu T, Garner P, DeSimone JM, et al. Particle formation in precipitation polymerization: Continuous precipitation polymerization of acrylic acid in supercritical carbon dioxide[J]. Macromolecules,2006,39(19):6489-6494.
    [80]Xu Q, Han BX, Yan HK. Effect of cosolvents on the precipitation polymerization of acrylic acid in supercritical carbon dioxide[J]. Polymer,2001,42(4):1369-1373.
    [81]Bai F, Huang B, Yang XL, et al. Synthesis of monodisperse poly(methacrylic acid) microspheres by distillation-precipitation polymerization[J]. European Polymer Journal,2007,43(9):3923-3932.
    [82]Qi DL, Yang XL, Huang WQ. Preparation of monodisperse fluorescent core-shell polymer microspheres with functional groups in the shell layer by two-stage distillation-precipitation polymerization[J]. Polymer International,2007,56(2):208-213.
    [83]Qi DL, Bai F, Yang XL, et al. Synthesis of core-shell polymer microspheres by two-stage distillation-precipitation polymerization[J]. European Polymer Journal,2005,41(10):2320-2328.
    [84]Li WH, Stover HDH. Monodisperse cross-linked core-shell polymer microspheres by precipitation polymerization[J]. Macromolecules,2000,33(12):4354-4360.
    [85]Hetherington NBJ, Kulak AN, Kim YY, et al. Porous Single Crystals of Calcite from Colloidal Crystal Templates:ACC Is Not Required for Nanoscale Templating[J]. Advanced Functional Materials, 2011,21(5):948-954.
    [86]Khanal A, Inoue Y, Yada M, et al. Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure[J]. Journal of the American Chemical Society,2007,129(6): 1534-+.
    [87]Xiao DS, Yuan YC, Rong MZ, et al. Self-healing epoxy based on cationic chain polymerization[J]. Polymer,2009,50(13):2967-2975.
    [88]Li GC, Zhang ZK. Synthesis of submicrometer-sized hollow titania spheres with controllable shellsfJ]. Materials Letters,2004,58(22-23):2768-2771.
    [89]Pich A, Bhattacharya S, Ghosh A, et al. Composite magnetic particles:2. Encapsulation of iron oxide by surfactant-free emulsion polymerization[J]. Polymer,2005,46(13):4596-4603.
    [90]Agrawal M, Pich A, Gupta S, et al. Synthesis of novel tantalum oxide sub-micrometer hollow spheres with tailored shell thickness[J]. Langmuir,2008,24(3):1013-1018.
    [91]Chen JF, Ding HM, Wang JX, et al. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application[J]. Biomaterials,2004,25(4):723-727.
    [92]Zhou J, Wu W, Caruntu D, et al. Synthesis of porous magnetic hollow silica nanospheres for nanomedicine application[J]. Journal of Physical Chemistry C,2007,111(47):17473-17477.
    [93]Caruso F. Nanoengineering of particle surfaces[J]. Advanced Materials,2001,13(1):11-+.
    [94]Schwemmer T, Baumgartner J, Faivre D, et al. Peptide-Mediated Nanoengineering of Inorganic Particle Surfaces:A General Route toward Surface Functionalization via Peptide Adhesion Domains[J]. Journal of the American Chemical Society,2012,134(4):2385-2391.
    [95]Rethore G, Mathew A, Naik H, et al. Preparation of Chitosan/Polyglutamic Acid Spheres Based on the Use of Polystyrene Template as a Nonviral Gene Carrier[J]. Tissue Engineering Part C-Methods, 2009,15(4):605-613.
    [96]Kawahashi N, Shiho H. Copper and copper compounds as coatings on polystyrene particles and as hollow spheres[J]. Journal of Materials Chemistry,2000,10(10):2294-2297.
    [97]Giersig M, Ung T, Liz-Marzan LM, et al. Direct observation of chemical reactions in silica-coated gold and silver nanoparticles[J]. Advanced Materials,1997,9(7):570-+.
    [98]Giersig M. Direct observation of chemical reactions in silica coated gold and silver nanoparticles[J]. European Journal of Cell Biology,1997,74:58-58.
    [99]Tissot I, Reymond JP, Lefebvre F, et al. SiOH-functionalized polystyrene latexes. A step toward the synthesis of hollow silica nanoparticles[J]. Chemistry of Materials,2002,14(3):1325-1331.
    [100]Yu C, Xu MC, Svec F, et al. Preparation of monolithic polymers with controlled porous properties for microfluidic chip applications using photoinitiated free-radical polymerization[J]. Journal of Polymer Science Part a-Polymer Chemistry,2002,40(6):755-769.
    [101]Nakayama H, Arakaki A, Maruyama K, et al. Single-nucleotide polymorphism analysis using fluorescence resonance energy transfer between DNA-labeling fluorophore, fluorescein isothiocyanate, and DNA intercalator, POPO-3, on bacterial magnetic particles[J]. Biotechnology and Bioengineering,2003,84(1):96-102.
    [102]Jia HF, Zhu GY, Wang P. Catalytic behaviors of enzymes attached to nanoparticles:The effect of particle mobility[J]. Biotechnology and Bioengineering,2003,84(4):406-414.
    [103]Billotey C, Wilhelm C, Devaud M, et al. Cell internalization of anionic maghemite nanoparticles:Quantitative effect on magnetic resonance imaging[J]. Magnetic Resonance in Medicine, 2003,49(4):646-654.
    [104]Kawahashi N, Matijevic E. Preparation of Hollow Spherical-Particles of Yttrium Compounds[J]. Journal of Colloid and Interface Science,1991,143(1):103-110.
    [105]Zelikin AN, Becker AL, Johnston APR, et al. A general approach for DNA encapsulation in degradable polymer miocrocapsules[J]. Acs Nano,2007,1(1):63-69.
    [106]Zhao QH, Han BS, Wang ZH, et al. Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle:doxorubicin loading and in vitro and in vivo studies[J]. Nanomedicine-Nanotechnology Biology and Medicine,2007,3(1):63-74.
    [107]Reynolds CH, Annan N, Beshah K, et al. Gadolinium-loaded nanoparticles:New contrast agents for magnetic resonance imaging[J]. Journal of the American Chemical Society,2000,122(37):. 8940-8945.
    [108]Fleming MS, Mandal TK, Walt DR. Nanosphere-microsphere assembly:Methods for core-shell materials preparation[J]. Chemistry of Materials,2001,13(6):2210-2216.
    [109]Caruso F, Spasova M, Susha A, et al. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach[J]. Chemistry of Materials,2001,13(1):109-116.
    [110]Patil GV. Biopolymer albumin for diagnosis and in drug delivery[J]. Drug Development Research,2003,58(3):219-247.
    [111]Graf C, van Blaaderen A. Metallodielectric colloidal core-shell particles for photonic applications[J]. Langmuir,2002,18(2):524-534.
    [112]Dong AG, Ren N, Tang Y, et al. General synthesis of mesoporous spheres of metal oxides and phosphates[J]. Journal of the American Chemical Society,2003,125(17):4976-4977.
    [113]Wang YJ, Bansal V, Zelikin AN, et al. Templated synthesis of single-component polymer capsules and their application in drug delivery[J]. Nano Letters,2008,8(6):1741-1745.
    [114]Itoh Y, Matsusaki M, Kida T, et al. Enzyme-responsive release of encapsulated proteins from biodegradable hollow capsules[J]. Biomacromolecules,2006,7(10):2715-2718.
    [115]Postma A, Yan Y, Wang YJ, et al. Self-Polymerization of Dopamine as a Versatile and Robust Technique to Prepare Polymer Capsules[J]. Chemistry of Materials,2009,21(14):3042-3044.
    [116]Bourgeat-Lami E, Lang J. Encapsulation of inorganic particles by dispersion polymerization in polar media 2. Effect of silica size and concentration on the morphology of silica-polystyrene composite particles[J]. Journal of Colloid and Interface Science,1999,210(2):281-289.
    [117]Bourgeat-Lami E, Lang J. Encapsulation of inorganic particles by dispersion polymerization in polar media-1. Silica nanoparticles encapsulated by polystyrene[J]. Journal of Colloid and Interface Science,1998,197(2):293-308.
    [118]Sertchook H, Avnir D. Submicron silica/polystyrene composite particles prepared by a one-step sol-gel process[J]. Chemistry of Materials,2003,15(8):1690-1694.
    [119]Cui T, Zhang JH, Wang JY, et al. CdS-nanoparticle/polymer composite shells grown on silica nanospheres by atom transfer radical polymerization[J]. Advanced Functional Materials,2005,15(3): 481-486.
    [120]Luna-Xavier JL, Guyot A, Bourgeat-Lami E. Synthesis and characterization of silica/poly (methyl methacrylate) nanocomposite latex particles through emulsion polymerization using a cationic azo initiator[J]. Journal of Colloid and Interface Science,2002,250(1):82-92.
    [121]Perruchot C, Khan MA, Kamitsi A, et al. Synthesis of well-defined, polymer-grafted silica particles by aqueous ATRP[J]. Langmuir,2001,17(15):4479-4481.
    [122]Tiarks F, Landfester K, Antonietti M. Silica nanoparticles as surfactants and fillers for latexes made by miniemulsion polymerization[J]. Langmuir,2001,17(19):5775-5780.
    [123]Xu XL, Asher SA. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals[J]. Journal of the American Chemical Society,2004,126(25):7940-7945.
    [124]Caruso F, Caruso RA, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science,1998,282(5391):1111-1114.
    [125]Chen JF, Wang YH, Guo F, et al. Synthesis of nanoparticles with novel technology: High-gravity reactive precipitation[J]. Industrial & Engineering Chemistry Research,2000,39(4): 948-954.
    [126]Li ZZ, Wen LX, Shao L, et al. Fabrication of porous hollow silica nanoparticles and their applications in drug release control[J]. Journal of Controlled Release,2004,98(2):245-254.
    [127]Dong AG, Wang YJ, Tang Y, et al. Hollow zeolite capsules:A novel approach for fabrication and guest encapsulation[J]. Chemistry of Materials,2002,14(8):3217-+.
    [128]Khan EA, Hu EP, Lai ZP. Preparation of metal oxide/zeolite core-shell nanostructures[J]. Microporous and Mesoporous Materials,2009,118(1-3):210-217.
    [129]Fernandez-Garcia M, Martinez-Arias A, Hanson JC, et al. Nanostructured oxides in chemistry:Characterization and properties[J]. Chemical Reviews,2004,104(9):4063-4104.
    [130]Wang ZL. Zinc oxide nanostructures:growth, properties and applications[J]. Journal of Physics-Condensed Matter,2004,16(25):R829-R858.
    [131]Kitano M, Matsuoka M, Ueshima M, et al. Recent developments in titanium oxide-based photocatalysts[J]. Applied Catalysis a-General,2007,325(1):1-14.
    [132]Klingshirn C. ZnO:Material, physics and applications[J]. Chemphyschem,2007,8(6): 782-803.
    [133]Chen JY, McLellan JM, Siekkinen A, et al. Facile synthesis of gold-silver nanocages with controllable pores on the surface[J]. Journal of the American Chemical Society,2006,128(46): 14776-14777.
    [134]Lu XM, Tuan HY, Chen JY, et al. Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuC14 in an organic medium[J]. Journal of the American Chemical Society,2007,129(6):1733-1742.
    [135]Xiong YJ, Wiley B, Chen JY, et al. Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties[J]. Angewandte Chemie-International Edition, 2005,44(48):7913-7917.
    [136]Xiong YJ, McLellan JM, Chen JY, et al. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties[J]. Journal of the American Chemical Society,2005,127(48):17118-17127.
    [137]Mulvihill MJ, Ling XY, Henzie J, et al. Anisotropic Etching of Silver Nanoparticles for Plasmonic Structures Capable of Single-Particle SERS[J]. Journal of the American Chemical Society, 2010,132(1):268-274.
    [138]Gonzalez E, Arbiol J, Puntes VF. Carving at the Nanoscale:Sequential Galvanic Exchange and Kirkendall Growth at Room Temperature[J]. Science,2011,334(6061):1377-1380.
    [139]Ha W, Meng XW, Li Q, et al. Self-assembly hollow nanosphere for enzyme encapsulation[J]. Soft Matter,2010,6(7):1405-1408.
    [140]Ha W, Meng XW, Li QA, et al. Encapsulation studies and selective membrane permeability properties of self-assembly hollow nanospheres[J]. Soft Matter,2011,7(3):1018-1024.
    [141]Zhang W, Zhang D, Fan TX, et al. Novel Photoanode Structure Templated from Butterfly Wing Scales[J]. Chemistry of Materials,2009,21(1):33-40.
    [142]Lai XY, Li J, Korgel BA, et al. General Synthesis and Gas-Sensing Properties of Multiple-Shell Metal Oxide Hollow Microspheres[J]. Angewandte Chemie-International Edition, 2011,50(12):2738-2741.
    [143]Pu YC, Hwu JR, Su WC, et al. Water-dissolvable sodium sulfate nanowires as a versatile template for the fabrication of polyelectrolyte- and metal-based nanotubes[J]. Journal of the American Chemical Society,2006,128(35):11606-11611.
    [144]Peterson AK, Morgan DG, Skrabalak SE. Aerosol Synthesis of Porous Particles Using Simple Salts as a Pore Template[J]. Langmuir,2010,26(11):8804-8809.
    [145]Gutierrez MC, Ferrer ML, del Monte F. Ice-templated materials:Sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly[J]. Chemistry of Materials,2008,20(3):634-648.
    [146]Mukai SR, Onodera K, Yamada I. Studies on the growth of ice crystal templates during the synthesis of a monolithic silica microhoneycomb using the ice templating method[J]. Adsorption-Journal of the International Adsorption Society,2011,17(1):49-54.
    [147]Nishihara H, Mukai SR, Yamashita D, et al. Ordered macroporous silica by ice templating[J]. Chemistry of Materials,2005,17(3):683-689.
    [148]Daniel MC, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews,2004,104(1):293-346.
    [149]El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes[J]. Accounts of Chemical Research,2001,34(4):257-264.
    [150]Murphy CJ, San TK, Gole AM, et al. Anisotropic metal nanoparticles:Synthesis, assembly, and optical applications[J]. Journal of Physical Chemistry B,2005,109(29):13857-13870.
    [151]Chandler BD, Gilbertson JD. Dendrimer-Encapsulated Bimetallic Nanoparticles:Synthesis, Characterization, and Applications to Homogeneous and Heterogeneous Catalysis[J]. Dendrimer Catalysis,2006,20:97-120.
    [152]Crooks RM, Zhao MQ, Sun L, et al. Dendrimer-encapsulated metal nanoparticles:Synthesis, characterization, and applications to catalysis[J]. Accounts of Chemical Research,2001,34(3):181-190.
    [153]Zhao M, Sun L, Crooks RM. Dendrimer-encapsulated transition-metal nanoclusters: Synthesis characterization, and applications to catalysis.[J]. Abstracts of Papers of the American Chemical Society,1999,217:U524-U524.
    [154]Zhao MQ, Crooks RM. Dendrimer-encapsulated Pt nanoparticles:Synthesis, characterization, and applications to catalysis[J]. Advanced Materials,1999,11(3):217-+.
    [155]Poirier GE. Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy[J]. Chemical Reviews,1997,97(4):1117-1127.
    [156]Link S, El-Sayed MA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals[J]. International Reviews in Physical Chemistry, 2000,19(3):409-453.
    [157]Xia YN, Xiong YJ, Lim B, et al. Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics?[J]. Angewandte Chemie-International Edition,2009,48(1): 60-103.
    [158]Yang PD. Shape control and assembly of colloidal metal nanocrystals[J]. Abstracts of Papers of the American Chemical Society,2010,239.
    [159]Yang PD. Shape control of colloidal metal nanocrystals[J]. Abstracts of Papers of the American Chemical Society,2009,237.
    [160]Tao AR, Habas S, Yang PD. Shape control of colloidal metal nanocrystals[J]. Small, 2008,4(3):310-325.
    [161]Jun YW, Choi JS, Cheon J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes[J]. Angewandte Chemie-International Edition,2006,45(21): 3414-3439.
    [162]Whetten RL, Shafigullin MN, Khoury JT, et al. Crystal structures of molecular gold nanocrystal arrays[J]. Accounts of Chemical Research,1999,32(5):397-406.
    [163]Rao CNR, Kulkarni GU, Thomas PJ, et al. Metal nanoparticles and their assemblies[J]. Chemical Society Reviews,2000,29(1):27-35.
    [164]Teja AS, Koh PY. Synthesis, properties, and applications of magnetic iron oxide nanoparticles[J]. Progress in Crystal Growth and Characterization of Materials,2009,55(1-2):22-45.
    [165]Huber DL. Synthesis, properties, and applications of iron nanoparticles[J]. Small,2005,1(5): 482-501.
    [166]Liang HY, Yang HX, Wang WZ, et al. High-Yield Uniform Synthesis and Microstructure-Determination of Rice-Shaped Silver Nanocrystals[J]. Journal of the American Chemical Society,2009,131(17):6068-+.
    [167]Hu MJ, Lu Y, Zhang S, et al. High yield synthesis of bracelet-like hydrophilic Ni-Co magnetic alloy flux-closure nanorings[J]. Journal of the American Chemical Society,2008,130(35): 11606-+.
    [168]Liu XY, Wang AQ, Wang XD, et al. Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation[J]. Chemical Communications,2008,(27):3187-3189.
    [169]Chen X, Cui CH, Guo Z, et al. Unique Heterogeneous Silver-Copper Dendrites with a Trace Amount of Uniformly Distributed Elemental Cu and Their Enhanced SERS Properties[J]. Small, 2011,7(7):858-863.
    [170]Wu CY, Yu SH, Antonietti M. Complex concaved cuboctahedrons of copper sulfide crystals with highly geometrical symmetry created by a solution process[J]. Chemistry of Materials, 2006,18(16):3599-3601.
    [171]Wan Y, Wu CY, Min YL, et al. Loading of silica spheres on concaved CuS cuboctahedrons using 3-aminopropyltrimethoxysilane as a linker[J]. Langmuir,2007,23(16):8526-8530.
    [172]Zhu JP, Yu SH, He ZB, et al. Complex PbTe hopper (skeletal) crystals with high hierarchy[J]. Chemical Communications,2005,(46):5802-5804.
    [173]Du YP, Xu B, Fu T, et al. Near-infrared Photoluminescent Ag(2)S Quantum Dots from a Single Source Precursor[J]. Journal of the American Chemical Society,2010,132(5):1470-+.
    [174]Zhang YJ, Xu HR, Wang QB. Ultrathin single crystal ZnS nanowires[J]. Chemical Communications,2010,46(47):8941-8943.
    [175]Zhang YJ, Du YP, Xu HR, et al. Diverse-shaped iron sulfide nanostructures synthesized from a single source precursor approach[J]. Crystengcomm,2010,12(11):3658-3663.
    [176]Zhang YJ, Lu J, Shen SL, et al. Ultralarge single crystal SnS rectangular nanosheets[J]. Chemical Communications,2011,47(18):5226-5228.
    [177]Shen SL, Zhang YJ, Peng L, et al. Matchstick-Shaped Ag(2)S-ZnS Heteronanostructures Preserving both UV/Blue and Near-Infrared Photoluminescence[J]. Angewandte Chemie-International Edition,2011,50(31):7115-7118.
    [178]Shen SL, Zhang YJ, Peng L, et al. Generalized synthesis of metal sulfide nanocrystals from single-source precursors:size, shape and chemical composition control and their properties[J]. Crystengcomm,2011,13(14):4572-4579.
    [179]Liu JY, Guo Z, Meng FL, et al. Novel porous single-crystalline ZnO nanosheets fabricated by annealing ZnS(en)(0.5) (en=ethylenediamine) precursor. Application in a gas sensor for indoor air contaminant detection[J]. Nanotechnology,2009,20(12).
    [180]Lu F, Cai WP, Zhang YG. ZnO hierarchical micro/nanoarchitectures:Solvothermal synthesis and structurally enhanced photocatalytic performance[J]. Advanced Functional Materials,2008,18(7): 1047-1056.
    [181]Wan YT, Liu JY, Li W, et al. Dense doping of indium to coral-like SnO(2) nanostructures through a plasma-assisted strategy for sensitive and selective detection of chlorobenzene[J], Nanotechnology,2011,22(31).
    [182]Xu JS, Xue DF. Five branching growth patterns in the cubic crystal system:A direct observation of cuprous oxide microcrystals[J]. Acta Materialia,2007,55(7):2397-2406.
    [183]Zhao XW, Jin WZ, Cai JG, et al. Shape- and Size-Controlled Synthesis of Uniform Anatase TiO(2) Nanocuboids Enclosed by Active{100} and {001} Facets[J]. Advanced Functional Materials, 2011,21(18):3554-3563.
    [184]Chen HL, Wu LJ, Zhang LH, et al. LiCoO(2) Concaved Cuboctahedrons from Symmetry-Controlled Topological Reactions[J]. Journal of the American Chemical Society, 2011,133(2):262-270.
    [185]Bigi A, Boanini E, Walsh D, et al. Morphosynthesis of octacalcium phosphate hollow microspheres by polyelectrolyte-mediated crystallization[J]. Angewandte Chemie-International Edition, 2002,41(12):2163-2166.
    [186]Liu S, Guo XY, Li MR, et al. Solution-Phase Synthesis and Characterization of Single-Crystalline SnSe Nanowires[J]. Angewandte Chemie-International Edition,2011,50(50): 12050-12053.
    [187]Guo CF, Cao SH, Zhang JM, et al. Topotactic Transformations of Superstructures:From Thin Films to Two-Dimensional Networks to Nested Two-Dimensional Networks[J]. Journal of the American Chemical Society,2011,133(21):8211-8215.
    [188]Duan WH, Wang CM. Nonlinear bending and stretching of a circular graphene sheet under a central point load[J]. Nanotechnology,2009,20(7).
    [189]Lou ZZ, Huang BB, Qin XY, et al. One-step synthesis of AgCl concave cubes by preferential overgrowth along< 111> and< 110> directions[J]. Chemical Communications,2012,48(29): 3488-3490.
    [190]Lee LP, Szema R. Inspirations from biological, optics for advanced phtonic systems[J]. Science,2005,310(5751):1148-1150.
    [191]Kim F, Kwan S, Akana J, et al. Langmuir-Blodgett nanorod assembly[J]. Journal of the American Chemical Society,2001,123(18):4360-4361.
    [192]Sastry M, Mayya KS, Patil V, et al. Langmuir-Blodgett films of carboxylic acid derivatized silver colloidal particles:Role of subphase pH on degree of cluster incorporation[J]. Journal of Physical Chemistry B,1997,101(25):4954-4958.
    [193]Hardie RC, Raghu P. Visual transduction in Drosophila[J]. Nature,2001,413(6852): 186-193.
    [194]Crommie MF, Lutz CP, Eigler DM. Confinement of Electrons to Quantum Corrals on a Metal-Surface[J]. Science,1993,262(5131):218-220.
    [195]Andres RP, Bielefeld JD, Henderson JI, et al. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters[J]. Science,1996,273(5282):1690-1693.
    [196]Mirkin CA, Letsinger RL, Mucic RC, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature,1996,382(6592):607-609.
    [197]Caruso F, Susha AS, Giersig M, et al. Magnetic core-shell particles:Preparation of magnetite multilayers on polymer latex microspheres[J]. Advanced Materials,1999,11(11):950-+.
    [198]Bowden NB, Week M, Choi IS, et al. Molecule-mimetic chemistry and mesoscale self-assembly[J]. Accounts of Chemical Research,2001,34(3):231-238.
    [199]Bico J, Roman B, Moulin L, et al. Elastocapillary coalescence in wet hair[J]. Nature, 2004,432(7018):690-690.
    [200]Rothemund PWK. PHYS 307-DNA origami:Folding DNA to create nanoscale shapes and patterns[J]. Abstracts of Papers of the American Chemical Society,2007,234.
    [201]Rothemund PWK. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006,440(7082):297-302.
    [202]He WJ, Zhu LG, Guo ZJ. Metal-incorporated Langmuir monolayers and Langmuir-Blodgett films[J]. Chinese Journal of Inorganic Chemistry,2004,20(7):753-762.
    [203]Choi IS, Week M, Xu B, et al. Mesoscopic, templated self-assembly at the fluid-fluid interface[J]. Langmuir,2000,16(7):2997-2999.
    [204]Dziomkina NV, Hempenius MA, Vancso GJ. Symmetry control of polymer colloidal monolayers and crystals by electrophoretic deposition onto patterned surfaces[J]. Advanced Materials, 2005,17(2):237-+.
    [205]Zhao SY, Lei SB, Chen SH, et al. Assembly of two-dimensional ordered monolayers of nanoparticles by electrophoretic deposition[J]. Colloid and Polymer Science,2000,278(7):682-686.
    [206]Giersig M, Mulvaney P. Preparation of Ordered Colloid Monolayers by Electrophoretic Deposition[J]. Langmuir,1993,9(12):3408-3413.
    [207]Kwon S, Jeon A, Yoo SH, et al. Unprecedented Molecular Architectures by the Controlled Self-Assembly of a beta-Peptide Foldamer[J]. Angewandte Chemie-International Edition,2010,49(44): 8232-8236.
    [208]Kwon S, Shin HS, Gong J, et al. Self-Assembled Peptide Architecture with a Tooth Shape: Folding into Shape[J]. Journal of the American Chemical Society,2011,133(44):17618-17621.
    [209]Li F, Gao D, Zhai XM, et al. Tunable, Discrete, Three-Dimensional Hybrid Nanoarchitectures[J]. Angewandte Chemie-International Edition,2011,50(18):4202-4205.
    [210]Sarathy KV, Kulkarni GU, Rao CNR. A novel method of preparing thiol-derivatised nanoparticles of gold, platinum and silver forming superstructures [J]. Chemical Communications, 1997,(6):537-538.
    [211]Cortez J, Vorobieva E, Gralheira D, et al. Bionanoconjugates of tyrosinase and peptide-derivatised gold nanoparticles for biosensing of phenolic compounds[J]. Journal of Nanoparticle Research,2011,13(3):1101-1113.
    [212]Waters CA, Mills AJ, Johnson KA, et al. Purification of dodecanethiol derivatised gold nanoparticles[J]. Chemical Communications,2003,(4):540-541.
    [213]Jin J, Iyoda T, Cao CS, et al. Self-assembly of uniform spherical aggregates of magnetic nanoparticles through pi-pi interactions[J]. Angewandte Chemie-International Edition,2001,40(11): 2135-2138.
    [214]Fink J, Kiely CJ, Bethell D, et al. Self-organization of nanosized gold particles[J]. Chemistry of Materials,1998,10(3):922-926.
    [215]Elkins KE, Vedantam TS, Liu JP, et al. Ultrafine FePt nanoparticles prepared by the chemical reduction method[J]. Nano Letters,2003,3(12):1647-1649.
    [216]Redl FX, Cho KS, Murray CB, et al. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots[J]. Nature,2003,423(6943):968-971.
    [217]Zhang FQ, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia(3)over-bard bicontinuous cubic structure[J]. Journal of the American Chemical Society,2005,127(39):13508-13509.
    [218]Shevchenko EV, Talapin DV, Kotov NA, et al. Structural diversity in binary nanoparticle superlattices[J]. Nature,2006,439(7072):55-59.
    [219]Chen W, Qu L, Chang D, et al. Vertically-aligned carbon nanotubes infiltrated with temperature-responsive polymers:smart nanocomposite films for self-cleaning and controlled release[J]. Chemical Communications,2008,(2):163-165.
    [220]Sun TL, Liu HA, Song WL, et al. Responsive aligned carbon nanotubes[J]. Angewandte Chemie-International Edition,2004,43(35):4663-4666.
    [221]Zhang ZP, Shao XQ, Yu HD, et al. Morphosynthesis and ornamentation of 3D dendritic nanoarchitectures[J]. Chemistry of Materials,2005,17(2):332-336.
    [222]Korgel BA. Nanosprings take shape[J]. Science,2005,309(5741):1683-1684.
    [223]Duan JL, Liu J, Mo D, et al. Controlled crystallinity and crystallographic orientation of Cu nanowires fabricated in ion-track templates[J]. Nanotechnology,2010,21(36).
    [224]Liu J, Duan JL, Toimil-Molares E, et al. Electrochemical fabrication of single-crystalline and polycrystalline Au nanowires:the influence of deposition parameters[J]. Nanotechnology,2006,17(8): 1922-1926.
    [225]Duan JL, Cornelius TW, Liu J, et al. Surface Plasmon Resonances of Cu Nanowire Arrays[J]. Journal of Physical Chemistry C,2009,113(31):13583-13587.
    [226]Siegfried MJ, Choi KS. Directing the architecture of cuprous oxide crystals during electrochemical growth[J]. Angewandte Chemie-International Edition,2005,44(21):3218-3223.
    [227]Murray BJ, Li O, Newberg JT, et al. Shape-and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids[J]. Nano Letters,2005,5(11):2319-2324.
    [228]Kim JH, Kang H, Kim S, et al. Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles[J]. Chemical Communications,2011,47(8):2306-2308.
    [229]Saute B, Narayanan R. Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles[J]. Analyst, 2011,136(3):527-532.
    [230]Mirkin C. Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection[J]. Abstracts of Papers of the American Chemical Society,2003,225:U963-U964.
    [231]Cao YWC, Jin RC, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science,2002,297(5586):1536-1540.
    [232]Penner RM. Mesoscopic metal particles and wires by electrodeposition[J]. Journal of Physical Chemistry B,2002,106(13):3339-3353.
    [233]Black CT, Murray CB, Sandstrom RL, et al. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices[J]. Science,2000,290(5494):1131-1134.
    [234]Bunker BC, Rieke PC, Tarasevich BJ, et al. Ceramic Thin-Film Formation on Functionalized Interfaces through Biomimetic Processing[J]. Science,1994,264(5155):48-55.
    [235]Tian ZRR, Liu J, Voigt JA, et al. Hierarchical and self-similar growth of self-assembled crystals[J]. Angewandte Chemie-International Edition,2003,42(4):414-+.
    [1]Hild N, Schneider OD, Mohn D, et al. Two-layer membranes of calcium phosphate/collagen/PLGA nanofibres:in vitro biomineralisation and osteogenic differentiation of human mesenchymal stem cells[J]. Nanoscale,2011,3(2):401-409.
    [2]Li N, Niu LN, Qi YP, et al. Subtleties of biomineralisation revealed by manipulation of the eggshell membrane[J]. Biomaterials,2011,32(34):8743-8752.
    [3]Polini A, Pagliara S, Camposeo A, et al. Biosilica Electrically-Insulating Layers by Soft Lithography-Assisted Biomineralisation with Recombinant Silicatein[J]. Advanced Materials, 2011,23(40):4674-+.
    [4]Strohm H, Lobmann P. Assembly of hollow spheres by templated liquid phase deposition following the principles of biomineralisation[J]. Journal of Materials Chemistry,2004,14(2):138-140.
    [5]Pohnert G. Biomineralization in diatoms mediated through peptide- and polyamine-assisted condensation of silica[J]. Angewandte Chemie-International Edition,2002,41(17):3167-+.
    [6]Zhang F, Wan Y, Yu T, et al. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence[J]. Angewandte Chemie-International Edition, 2007,46(42):7976-7979.
    [7]Cao HL, Qian XF, Wang C, et al. High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage[J]. Journal of the American Chemical Society,2005,127(46):16024-16025.
    [8]Yu HD, Zhang ZP, Han MY, et al. A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays[J]. Journal of the American Chemical Society, 2005,127(8):2378-2379.
    [9]Mai LQ, Gu YH, Han CH, et al. Orientated Langmuir-Blodgett Assembly of VO(2) Nanowires[J]. Nano Letters,2009,9(2):826-830.
    [10]Willert M, Rothe R, Landfester K, et al. Synthesis of inorganic and metallic nanoparticles by miniemulsification of molten salts and metals[J]. Chemistry of Materials,2001,13(12):4681-4685.
    [11]Chen M, Wu BH, Yang J, et al. Small Adsorbate-Assisted Shape Control of Pd and Pt Nanocrystals[J], Advanced Materials,2012,24(7):862-879.
    [12]Huang XQ, Zhang HH, Guo CY, et al. Simplifying the Creation of Hollow Metallic Nanostructures:One-Pot Synthesis of Hollow Palladium/Platinum Single-Crystalline Nanocubes[J]. Angewandte Chemie-International Edition,2009,48(26):4808-4812.
    [13]Murray BJ, Li O, Newberg JT, et al. Shape- and size-selective electrochemical synthesis of dispersed silver(Ⅰ) oxide colloids[J]. Nano Letters,2005,5(11):2319-2324.
    [14]Liu K, Nie ZH, Zhao NN, et al. Step-Growth Polymerization of Inorganic Nanoparticles[J]. Science,2010,329(5988):197-200.
    [15]Yu HD, Wang D, Han MY. Perpendicular branching in crystal growth of 3D architecture-tuned cadmium hydroxide arrays:From oriented tripods to faceted crystals[J]. Advanced Materials, 2008,20(12):2276-+.
    [16]Yu HD, Yang DP, Wang DS, et al. Top-Down Fabrication of Calcite Nanoshoot Arrays by Crystal Dissolution[J]. Advanced Materials,2010,22(29):3181-+.
    [17]Suh KY, Khademhosseini A, Eng G, et al. Single nanocrystal arrays on patterned poly(ethylene glycol) copolymer microstructures using selective wetting and drying[J]. Langmuir,2004,20(15): 6080-6084.
    [18]Zheng RT, Gao JW, Yang TF, et al. Na(2)SO(4) Monocrystal Nanowires-Aspect Ratio Control and Electron Beam Radiolysis[J]. Inorganic Chemistry,2010,49(14):6748-6754.
    [19]Li JY, Wang LS, Buchholz DB, et al. Simultaneous Growth of Pure Hyperbranched Zn(3)As(2) Structures and Long Ga(2)O(3) Nanowires[J]. Nano Letters,2009,9(5):1764-1769.
    [20 Mensah SL, Kayastha VK, Yap YK. Selective growth of pure and long ZnO nanowires by controlled vapor concentration gradients[J]. Journal of Physical Chemistry C,2007,111(44): 16092-16095.
    [21 Rhadfi T, Sicard L, Testard F, et al. A Comprehensive Study of the Mechanism of Formation of Polyol-Made Hausmannite Nanoparticles:From Molecular Species to Solid Precipitation[J]. Journal of Physical Chemistry C,2012,116(9):5516-5523.
    [22 Krysmann MJ, Kelarakis A, Dallas P, et al. Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission[J]. Journal of the American Chemical Society,2012,134(2): 747-750.
    [23]Faramarzi A, Sanjabi S. Stepwise Melting Model for the Formation Mechanism of Ni Catalyst Nanoparticles for Carbon Nanotube Growth[J]. Journal of Physical Chemistry C,2011,115(39): 18958-18966.
    [24]Rubio-Marcos F, Manzano CV, Reinosa JJ, et al. Mechanism of Ni1-xZnxO Formation by Thermal Treatments on NiO Nanoparticles Dispersed over ZnO[J]. Journal of Physical Chemistry C, 2011,115(28):13577-13583.
    [25]Beck W, Souza CGS, Silva TL, et al. Formation Mechanism via a Heterocoagulation Approach of FePt Nanoparticles Using the Modified Polyol Process[J]. Journal of Physical Chemistry C, 2011,115(21):10475-10482.
    [26 Mai NT, Mott D, Thuy NTB, et al. Study on formation mechanism and ligand-directed architectural control of nanoparticles composed of Bi, Sb and Te:towards one-pot synthesis of ternary (Bi,Sb)(2)Te(3) nanobuilding blocks[J]. Rsc Advances,2011,1(6):1089-1098.
    [27]Castro EG, Salvatierra RV, Schreiner WH, et al. Dodecanethiol-Stabilized Platinum Nanoparticles Obtained by a Two-Phase Method:Synthesis, Characterization, Mechanism of Formation, and Electrocatalytic Properties[J]. Chemistry of Materials,2010,22(2):360-370.
    [28]Chupas PJ, Chapman KW, Jennings G, et al. Watching nanoparticles grow:The mechanism and kinetics for the formation of TiO2-supported platinum nanoparticles[J]. Journal of the American Chemical Society,2007,129(45):13822-+.
    [29]Saita S, Maenosono S. Formation mechanism of FePt nanoparticles synthesized via pyrolysis of iron(Ⅲ) ethoxide and platinum(Ⅱ) acetylacetonate[J]. Chemistry of Materials,2005,17(26): 6624-6634.
    [1]Cao ST, Zhang YF, Zhang Y. Nucleation and Morphology of Monosodium Aluminate Hydrate from Concentrated Sodium Aluminate Solutions[J]. Crystal Growth & Design,2010,10(4):1605-1610.
    [2]Yamaguchi K, Inoue T, Nishioka K. Growth and perfection of KCl crystals grown from aqueous solution[J]. Journal of Crystal Growth,1998,183(3):409-416.
    [3]Aleksandrov VI, Batygov SK, Kalabukhova VF, et al. Influence of Sio2 on Growth and Perfection of Stabilized Zro2 Single-Crystals[J]. Inorganic Materials,1980,16(10):1224-1227.
    [4]Balazyuk VN, Geshko EI, Gritsyuk BN, et al. Effect of Crystal-Growth Conditions on the Structural Perfection and Thermal-Properties of Cadmium Antimonide and Zinc Antimonide Single-Crystals[J]. Inorganic Materials,1988,24(10):1364-1365.
    [5]Bhagavannarayana G, Kushwaha SK, Prathiban S, et al. Influence of inorganic and organic additives on the crystal growth, properties and crystalline perfection of tris(thiourea) copper(I) chloride (TCC) crystals[J]. Journal of Crystal Growth,2008,310(10):2575-2583.
    [6]Bleay J, Hooper RM, Narang RS, et al. Growth of Single-Crystals of Some Organic-Compounds by Czochralski Technique and Assessment of Their Perfection[J]. Journal of Crystal Growth, 1978,43(5):589-596.
    [7]Dyer LD. Growth of Seeded Copper Crystals of Perfection Comparable to Unseeded Crystals[J]. Journal of Applied Physics,1965,36(1):301-&.
    [8]Esin VO, Krivonosova AS. Preferred Growth Directions and Perfection of Single-Crystals of Germanium[J]. Inorganic Materials,1978,14(4):461-465.
    [9]Gallagher HG, Sherwood JN. The Growth and Perfection of Single-Crystals of Trinitrotoluene (Tnt)[J]. Structure and Properties of Energetic Materials,1993,296:215-219.
    [10]Higashi A. Growth and Perfection of Ice Crystals[J]. Journal of Crystal Growth,1974,24(Oct): 102-107.
    [11]Ivanova LD, Granatkina YV, Scherrer H. Effects of growth-charge purity and perfection of Bi0.5Sb1.5Te3 single crystals on their thermoelectric properties[J]. Inorganic Materials,2000,36(7): 678-684.
    [12]Kurilo IV, Rybak OV. Effect of growth conditions on the morphology and structural perfection of vapor-grown PbI2 crystals[J]. Inorganic Materials,2002,38(3):288-291.
    [13]Marciniak B. The growth, morphology and perfection of fluoranthene crystals grown from supercooled chlorine derivative solutions on spontaneously formed seeds[J]. Journal of Crystal Growth, 2002,236(1-3):333-346.
    [14]Patel AR, Rao AV. Gel Growth and Perfection of Orthorhombic Potassium Perchlorate Single-Crystals[J]. Journal of Crystal Growth,1979,47(2):213-218.
    [15]Rajalakshmi T, Dhanasekaran R, Ramasamy P. The Growth and Perfection of Urea Single-Crystals from Solution[J]. Journal of Materials Science Letters,1993,12(22):1797-1799.
    [16]Rajesh P, Ramasamy P, Bhagavannarayana G. Effect of ammonium malate on growth rate, crystalline perfection, structural, optical, thermal, mechanical, dielectric and NLO behaviour of ammonium dihydrogen phosphate crystals[J]. Journal of Crystal Growth,2009,311(16):4069-4075.
    [17]Reed RE, Guberman HD, Baldwin TO. Growth of Niobium Single Crystals with Good Crystalline Perfection[J]. Journal of Physics and Chemistry of Solids,1967.S:829-&.
    [18]Scheffenlauenroth T, Klapper H, Becker RA. Growth and Perfection of Organic-Crystals from Undercooled Melt.1. Benzil[J]. Journal of Crystal Growth,1981,55(3):557-570.
    [19]Triboulet R, Ndap JO, TromsonCarli A, et al. Growth by solid phase recrystallization and assessment of large ZnSe crystals of high purity and structural perfection[J]. Journal of Crystal Growth, 1996,159(1-4):156-160.
    [20]Watanabe T, Izumi K. Growth and Perfection of Tetraoxane Crystals[J]. Journal of Crystal Growth, 1979,46(6):747-756.
    [21]Winiarski A. Growth and Perfection of Yb Single-Crystals[J]. Journal of Crystal Growth, 1982,57(2):443-445.
    [22]Addadi L, Berkovitchyellin Z, Weissbuch I, et al. Growth and Dissolution of Organic-Crystals with Tailor-Made Inhibitors-Implications in Stereochemistry and Materials Science[J]. Angewandte Chemie-International Edition in English,1985,24(6):466-485.
    [23]Diao Y, Myerson A, Hatton A, et al. Towards surface design to control crystallization: Understanding the roles of surface chemistry and morphology in heterogeneous nucleation[J]. Abstracts of Papers of.the American Chemical Society,2010,240.
    [24]Weissbuch I, Lahav M, Leiserowitz L. Toward stereochentical control, monitoring, and understanding of crystal nucleation[J]. Crystal Growth & Design,2003,3(2):125-150.
    [25]Weissbuch I, Popovitzbiro R, Lahav M, et al. Understanding and Control of Nucleation, Growth, Habit, Dissolution and Structure of 2-Dimensional and 3-Dimensional Crystals Using Tailor-Made Auxiliaries[J]. Acta Crystallographica Section B-Structural Science,1995,51:115-148.
    [26]Mayo SL, Olafson BD, Goddard WA. Dreiding-a Generic Force-Field for Molecular Simulations[J]. Journal of Physical Chemistry,1990,94(26):8897-8909.
    [27]Khan MAS, Singh A, Haldar S, et al. Can Nitrilotriacetic Acid (NTA) Act as a Habit Modifier for Rock Salt Crystals? An Answer from Computational and Experimental Studies[J]. Crystal Growth & Design,2011,11(5):1675-1682.
    [28]Radenovic N, van Enckevort W, Verwer P, et al. Growth and characteristics of the{111} NaCl crystal surface grown from solution[J]. Surface Science,2003,523(3):307-315.
    [29]Singh A, Kesharwani MK, Ganguly B. Influence of Formamide on the Crystal Habit of LiF, NaCl, and KI:ADFT and Aqueous Solvent Model Study[J]. Crystal Growth & Design,2009,9(1):77-81.
    [30]Singh A, Chakraborty S, Ganguly B. Computational study of urea and its homologue glycinamide: Conformations, rotational barriers, and relative interactions with sodium chloride[J]. Langmuir, 2007,23(10):5406-5411.
    [1]Bleay J, Hooper RM, Narang RS, et al. Growth of Single-Crystals of Some Organic-Compounds by Czochralski Technique and Assessment of Their Perfection[J]. Journal of Crystal Growth,1978,43(5):589-596.
    [2]Triboulet R, Ndap JO, TromsonCarli A, et al. Growth by solid phase recrystallization and assessment of large ZnSe crystals of high purity and structural perfection[J]. Journal of Crystal Growth, 1996,159(1-4):156-160.
    [3]Yamaguchi K, Inoue T, Nishioka K. Growth and perfection of KC1 crystals grown from aqueous solution[J]. Journal of Crystal Growth,1998,183(3):409-416.
    [4]Weissbuch I, Popovitzbiro R, Lahav M, et al. Understanding and Control of Nucleation, Growth, Habit, Dissolution and Structure of 2-Dimensional and 3-Dimensional Crystals Using Tailor-Made Auxiliaries[J]. Acta Crystallographica Section B-Structural Science,1995,51:115-148.
    [5]Radenovic N, van Enckevort W, Verwer P, et al. Growth and characteristics of the{111} NaCl crystal surface grown from solution[J]. Surface Science,2003,523(3):307-315.
    [6]Marciniak B. The growth, morphology and perfection of fluoranthene crystals grown from supercooled chlorine derivative solutions on spontaneously formed seeds[J]. Journal of Crystal Growth, 2002,236(1-3):333-346.
    [7]Zheng RT, Gao JW, Yang TF, et al. Na(2)SO(4) Monocrystal Nanowires-Aspect Ratio Control and Electron Beam Radiolysis[J]. Inorganic Chemistry,2010,49(14):6748-6754.
    [8]Zhang F, Wan Y, Yu T, et al. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence[J]. Angewandte Chemie-International Edition, 2007,46(42):7976-7979.
    [9]Willert M, Rothe R, Landfester K, et al. Synthesis of inorganic and metallic nanoparticles by miniemulsification of molten salts and metals[J]. Chemistry of Materials,2001,13(12):4681-4685.
    [10]Mai LQ, Gu YH, Han CH, et al. Orientated Langmuir-Blodgett Assembly of VO(2) Nanowires[J]. Nano Letters,2009,9(2):826-830.
    [11]Chupas PJ, Chapman KW, Jennings G, et al. Watching nanoparticles grow:The mechanism and kinetics for the formation of TiO2-supported platinum nanoparticles[J]. Journal of the American Chemical Society,2007,129(45):13822-+.
    [12]Singh A, Kesharwani MK, Ganguly B. Influence of Formamide on the Crystal Habit of LiF, NaCl, and KI:A DFT and Aqueous Solvent Model Study[J]. Crystal Growth & Design,2009,9(1):77-81.
    [13]Jiao SH, Xu LF, Jiang K, et al. Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu2O crystal templating[J]. Advanced Materials, 2006,18(9):1174-+.
    [14]Kurilo IV, Rybak OV. Effect of growth conditions on the morphology and structural perfection of vapor-grown PbI2 crystals[J]. Inorganic Materials,2002,38(3):288-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700