用户名: 密码: 验证码:
阿维菌素和安丝菌素生物合成相关基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿维菌素是由阿维链霉菌(Streptomyces avermtilis)产生的16元大环内酯类抗生素。它具有高效、广谱的抗各种线虫和人类寄生虫的活性,被广泛地用于农业和畜牧业的病虫害防治。
     avtAB(sav_933、sav_934)是紧邻阿维菌素生物合成基因簇的两个基因,它们分别编码ABC转运蛋白的ATP结合亚基(AvtA)和跨膜亚基(AvtB)。根据生物信息学的分析,AvtAB极有可能与阿维菌素的外排相关。本研究构建了avtAB的缺失突变株,发现avtAB的缺失并不能影响阿维菌素的产量。但以野生型菌株NRRL8165和工业菌株3-115作为出发菌株构建avtAB高表达菌株,固体发酵时阿维菌素的产量约有一倍左右的提高。 avtAB工业高拷贝菌株(3-115/pJTU3470)在工业液体培养基中发酵时,阿维菌素B1a的产量约有50%的提高,可从3.3g/L提高到4.8g/L。利用YMG液体培养基定量分析胞内胞外阿维菌素产量的变化,结果发现avtAB拷贝数的增加使得胞内与胞外阿维菌素B1a的比例从6:1下降到4.5:1。利用Real-time RT-PCR的方法定量分析ABC转运蛋白基因avtAB、结构基因aveA3和调节基因aveR在avtAB高拷贝菌株中的转录水平,发现avtAB的转录量提高了30-500倍,而aveA3和aveR的转录量却没有明显变化。这说明avtAB高表达提高阿维菌素的产量是通过及时将其泵出胞外,以减少胞内的反馈抑制,而不是在转录水平激活结构基因和调节基因的表达。此外我们还发现,AvtAB对于阿维菌素具有底物专一性,avtAB的高表达并没有影响阿维链霉菌中另一种抗生素寡霉素的外排;对链霉菌ABC药物转运蛋白进行进化分析,发现AvtAB与天蓝色链霉菌产生的钙依赖抗生素(CDA)的外排蛋白同源性极高,但在天蓝色链霉菌中高表达avtAB并没有明显提高CDA的产量。
     aveE基因位于阿维菌素生物合成基因簇的内部,它编码P450单加氧酶,推测其负责催化阿维菌素后修饰的第一步反应——C6-C8a位的呋喃环闭合。为了阐明AveE的功能,深入研究AveE的作用机制,我们首先构建了aveE基因中断突变株,从中分离到了AveE体外催化底物。我们还构建了aveE回补菌株和meiE异源回补菌株,发现aveE和meiE只能恢复阿维菌素A组分,并不能恢复阿维菌素B组分的产生,暗示AveE可能还具有脱去阿维菌素C5位甲基的功能。在获得AveE可溶蛋白后,我们进行了体外反应尝试,并检测到了反应的发生,从体外的角度初步证明了AveE具有催化呋喃环形成的功能。
     聚酮化合物中常会出现双键位置发生转移的现象,即双键的位置从两个延伸单位相邻两个碳原子之间(α-β位)转移到了前一个延伸单位的两个碳原子之间(β-γ位)。安丝菌素是从珍贵束丝放线菌橙色变种(Actinosynnema pretiosum ssp. auranticum)ATCC31565中分离到的安莎类抗生素。安丝菌素生物合成的第2和第3个模块中的脱水酶结构域(AsmDH2、AsmDH3)所对应催化的双键都发生了α-β位向β-γ位转换的现象。本研究通过定点突变失活了AsmDH2和AsmDH3,但定点突变株不能积累安丝菌素的完整延伸产物,说明下游酮脂酰-ACP-合成酶(KS)具有严格的底物严谨性,不能催化非天然的三酮或四酮中间产物。另外,我们还构建了将红霉素硫酯酶(EryTE)基因融合加载在安丝菌素模块2之后的突变株,结果显示EryTE并不能高效释放三酮中间产物,安丝菌素中间产物的体内捕获具有一定的难度。体外表达安丝菌素模块2,将约200kDa的可溶蛋白与安丝菌素天然二酮中间产物的类似物甲基氢肉桂酸-SNAC进行反应,得到了甲基氢肉桂酸等反应产物,证明该蛋白具有一定的催化活性。
Avermectins are16-membered macrocyclic polyketides with potentantiparasitic activities, produced by Streptomyces avermitilis. Avermectinand its derivatives have been widely used in livestock industry andagriculture.
     Upstream of the avermectin biosynthetic gene cluster, there is theavtAB operon (sav_933, sav_934) encoding the ABC transporterATP-binding subunit (AvtA) and transmembrane subunit (AvtB).According to bioinformatic analysis, AvtAB is most likely related withavermectin export. Inactivation of avtAB had no effect, but increasing thecopies of avtAB, using a high-copy-number plasmid in S. avermitilis,enhanced avermectin production about two-fold both in the wild-type andin a high-yielding producer strain on agar plates. In liquid industrialfermentation medium, the overall productivity of avermectin B1a in theengineered high-yielding producer was improved for about50%, from3.3to4.8g/L. In liquid YMG medium, the ratio of intracellular toextracellular accumulation of avermectin B1a was dropped from6:1to4.5:1in response to the high copies of avtAB. Additionally, theoverexpression of avtAB increased the concentration of avtAB mRNA30-500folds, but did not cause any increased expression of theavermectin biosynthetic genes detected by real-time RT-PCR analysis.We propose that the AvtAB transporter exports avermectin, and thus reduces the feedback inhibition on avermectin production in the cell.Moreover, the AvtAB transporter seemed to be specific for avermectinsbecause the production of oligomycin A, other macrolide produced by S.avermitilis, was not affected. According to phylogenetic analysis of ABCexporters located in antibiotic biosynthetic gene clusters, AvtAB is highlyhomologous to the multidrug efflux pump of calcium-dependentantibiotic (CDA) produced by S. coelicolor. However, CDA productionwas not increased by overexpression of avtAB in S. coelicolor.
     The gene aveE, encoding an enzyme with the consensus sequence ofP450monooxygenase, was identified in the avermectin biosynthetic genecluster. It is suggested that furan ring closure at C6-C8a is catalyzed byAveE. To clarify the function of AveE, we inactivated aveE and separated6,8a-seco-6,8a-deoxy-5-oxoavermectin B1a aglycon, the predictedsubstrate of AveE, from the mutant. Complementation of the mutant withaveE and meiE from the meilingmycin biosynthetic gene cluster onlyrestored the production of avermectin A components, suggesting aputative demethylation function of AveE on the C5O-methyl group. Invitro characterization of AveE showed detectable activity for theconversion of6,8a-seco-6,8a-deoxy-5-oxoavermectin B1a aglycon into5-oxoavermectin B1a aglycon, verifying its function for the furan ringclosure.
     Double bonds placed at atypical positions, mainly shifted from α-β toβ-γ-positions, are found in the structures of various polyketides.Ansamitocins, produced by Actinosynnema pretiosum ssp. auranticumATCC31565, are maytansinoids of microbial origin. The dehydratase(DH) domains of Asm-module2and module3would be involved in theformation of the shifted double bonds of ansamitocin P-3. Site-directedmutations of active site residues of AsmDH2and AsmDH3resulted in mutants that lack the ability to produce full-length ansamitocinderivatives, suggesting that downstream KS3and KS4, acting asgatekeepers, accept only the natural intermediates for further processing.Additionally, fusion of the erythromycin thioesterase (EryTE) domain atthe end of Asm-module2could not release the assembled triketide chainfrom the PKS. Engineered Asm-module2was expressed in E. coli andpurified. Incubation of Asm-module2with unnatural substrate2-methyl-3-phenylpropanoic-SNAC resulted in several productsincluding α-methylhydrocinnamic acid, suggesting that Asm-module2had catalytic activity.
引文
[1] Ikeda H, Kotaki H, Omura S. Genetic studies of avermectin biosynthesis in Streptomycesavermitilis [J]. J Bacteriol,1987,169:5615-5621.
    [2] Ikeda H, Omura S. Avermectin biosynthesis [J]. Chem Rev,1997,97:2591-2610.
    [3] Ikeda H, Ishikawa J, Hanamoto A, et al. Complete genome sequence and comparative analysisof the industrial microorganism Streptomyces avermitilis [J]. Nat Biotechnol,2003,21:526-531.
    [4] Ikeda H, Nonomiya T, Usami M, et al. Organization of the biosynthetic gene cluster for thepolyketide anthelmintic macrolide avermectin in Streptomyces avermitilis [J]. Proc Natl Acad SciU S A,1999,96:9509-9514.
    [5] Yoon YJ, Kim ES, Hwang YS, et al. Avermectin: biochemical and molecular basis of itsbiosynthesis and regulation [J]. Appl Microbiol Biotechnol,2004,63:626-634.
    [6]何云龙.梅岭霉素生物合成基因簇的克隆及其相关基因功能的研究[博士论文]..上海:上海交通大学.2010.
    [7] Pang CH, Matsuzaki K, Ikeda H, et al. Production of6,8a-seco-6,8a-deoxy derivatives ofavermectins by a mutant strain of Streptomyces avermitilis [J]. J Antibiot,1995,48:59-66.
    [8] Berdy J. Bioactive microbial metabolites [J]. J Antibiot,2005,58(1):126.
    [9] Martin JF, Casqueiro J, Liras P. Secretion systems for secondary metabolites: how producercells send out messages of intercellular communication [J]. Curr Opin Microbiol,2005,8:282293.
    [10] Dean M. The genetics of ATP-binding cassette transporters [J]. Method Enzymol,2005,400:409429.
    [11] Locher KP. Structure and mechanism of ATP-binding cassette transporters [J]. Philos T R SocB,2009,364:239245.
    [12] Omura S, Ikeda H, Hanamoto A, et al. Genome sequence of an industrial microorganismStreptomyces avermitilis: deducing the ability of producing secondary metabolites [J]. Proc NatlAcad Sci U S A,2001,98(21):1221512220.
    [13] Bentley SD, Chater KF, Cerdeno-Tarraga AM, et al. Complete genome sequence of the modelactinomycete Streptomyces coelicolor A3(2)[J]. Nature,2002,417:141147.
    [14] Rees DC, Johnson E, Lewinson O. ABC transporters: the power to change [J]. Nat Rev MolCell Bio,2009,10:218227.
    [15] Davidson AL, Maloney PC. ABC transporters: how small machines do a big job [J]. TrendsMicrobiol,2007,15(10):448455.
    [16] Oldham ML, Khare D, Quiocho FA, et al. Crystal structure of a catalytic intermediate of themaltose transporter [J]. Nature,2007,450:515521.
    [17] Davidson AL, Chen J. ATP-binding cassette transporters in bacteria [J]. Annu Rev Biochem,2004,73:241268.
    [18] Pinkett HW, Lee AT, Lum P, et al. An inward-facing conformation of a putativemetal-chelate-type ABC transporter [J]. Science,2007,315(5810):373377.
    [19] Ward A, Reyes CL, Yu J, et al. Flexibility in the ABC transporter MsbA: Alternating accesswith a twist [J]. Proc Natl Acad Sci U S A,2007,104(48):1900519010.
    [20] Oldham ML, Davidson AL, Chen J. Structural insights into ABC transporter mechanism [J].CurrOpin Struc Biol,2008,18(6):726733.
    [21] Zou P, Mchaourab HS. Alternating access of the putative substrate-binding chamber in theABC Transporter MsbA [J]. J Mol Biol,2009,393(3):574585.
    [22] Hollenstein K, Dawson RJ, Locher KP. Structure and mechanism of ABC transporter proteins[J]. CurrOpin Struc Biol,2007,17:412418.
    [23] Dawson RJP, Locher KP. Structure of a bacterial multidrug ABC transporter [J]. Nature,2006,443:180185.
    [24] Kerr ID, Jones PM, George AM. Multidrug efflux pumps: The structures of prokaryoticATP-binding cassette transporter efflux pumps and implications for our understanding ofeukaryotic P-glycoproteins and homologues [J]. FEBS J,2010,277:550563.
    [25] Eckford PDW, Sharom FJ. ABC efflux pump-based resistance to chemotherapy drugs [J].Chem Rev,2009,109(7):29893011.
    [26] Misra R, Bavro VN. Assembly and transport mechanism of tripartite drug efflux systems [J].Biochimica et Biophysica Acta,2009,1794:817825.
    [27] van Wezel GP, White J, Bibb MJ, Postma PW. The malEFG gene cluster of Streptomycescoelicolor A3(2): characterization, disruption and transcriptional analysis [J]. Molecular andGeneral Genetics,1997,254:604608.
    [28] Li M, Chen Z, Zhang X, Song Y, Wen Y, Li JL. Enhancement of avermectin and ivermectinproduction by overexpression of the maltose ATP-binding cassette transporter in Streptomycesavermitilis [J]. Bioresource Technol,2010,101:92289235.
    [29] Hillerich B, Westpheling J. A new GntR family transcriptional regulator in Streptomycescoelicolor is required for morphogenesis and antibiotic production and controls transcription of anABC transporter in response to carbon source [J]. J Bacteriol,2006,188(21):74777487.
    [30] Seo JW, Ohnishi Y, Hirata A, Horinouchi S. ATP-binding cassette transport system involvedin regulation of morphological differentiation in response to glucose in Streptomyces griseus [J]. JBacteriol,2002,184(1):91103.
    [31] Akanuma G, Ueki M, Ishizuka M, Ohnishi Y, Horinouchi S. Control of aerial myceliumformation by the BldK oligopeptide ABC transporter in Streptomyces griseus [J]. FEMS MicrobiolLett,2011,315:5462.
    [32] Olano C, Rodriguez AM, Mendez C, Salas JA. Topological studies of the membranecomponent of the OleC ABC transporter involved in oleandomycin resistance in Streptomycesantibioticus [J]. FEMS Microbiol Lett,1996,143:133139.
    [33] Buche A, Mendez C, Salas JA. Interaction between ATP, oleandomycin and the OleBATP-binding cassette transporter of Streptomyces antibioticus involved in oleandomycin secretion[J]. Biochem J,1997,321:139144.
    [34] Ikeno S, Yamane Y, Ohishi Y, Kinoshita N, Hamada M, Tsuchiya KS, Hori M. ABCtransporter genes, kasKLM, responsible for self-resistance of a kasugamycin producer strain [J]. JAntibiot,2000,53(4):373384.
    [35] Menendez N, Brana AF, Salas JA, Mendez C. Involvement of a chromomycin ABCtransporter system in secretion of a deacetylated precursor during chromomycin biosynthesis [J].Microbiology,2007,153:30613070.
    [36] Ostash I, Rebets Y, Ostash B, Kobylyanskyy A, Myronovskyy M, NakamuraT, Walker S,Fedorenko V. An ABC transporter encoding gene lndW confers resistance to landomycin E [J].Arch Microbiol,2008,190:105109.
    [37] Foulston LC, Bibb MJ. Microbisporicin gene cluster reveals unusual features of lantibioticbiosynthesis in actinomycetes [J]. Proc Natl Acad Sci U S A,2010,107(30):1346113466.
    [38] Geistlich M, Losick R, Turner JR, Rao RN. Characterization of a novel regulatory genegoverning the expression of a polyketide synthase gene in Streptomyces ambofaciens [J]. MolMicrobiol,1992,6(14):2019–2029.
    [39] Fernandez E, Lombo F, Mendez C, Salas JA. An ABC transporter is essential for resistance tothe antitumor agent mithramycin in the producer Streptomyces argillaceus [J]. Molecular andGeneral Genetics,1996,251:692698.
    [40] Stumpp T, Himbert S, Altenbuchner J. Cloning of the netropsin resistance genes fromStreptomyces flavopersicus NRRL2820[J]. J Basic Microb,2005,45(5):355362.
    [41] Rosteck Jr. PR, Reynolds PA, Hershberger CL.Homology between proteins controllingStreptomyces fradiae tylosin resistance and ATP-binding transport [J]. Gene,1991,102(1):2732.
    [42] Aparicio JF, Fouces R, Mendez MV, Olivera N, Martin JF. A complex multienzyme systemencoded by five polyketide synthase genes is involved in the biosynthesis of the26-memberedpolyene macrolide pimaricin in Streptomyces natalensis [J]. ChemBiol,2000,7(11):895905.
    [43] Gandlur SM, Wei L, Levine J, Russell J, Kaur P. Membrane topology of the DrrB protein ofthe doxorubicin transporter of Streptomyces peucetius [J]. J Biol Chem,2004,279(26):2779927806.
    [44] Epp JK, Burgett SG, Schoner BE. Cloning and nucleotide sequence of acarbomycin-resistance gene from Streptomyces thermotolerans [J]. Gene,1987,53(1):7383.
    [45] Yanai K, Murakami T, Bibb M. Amplification of the entire kanamycin biosynthetic genecluster during empirical strain improvement of Streptomyces kanamyceticus [J]. Proc Natl AcadSci U S A,2006,103(25):96619666.
    [46] Benveniste R, Davies J. Aminoglycoside antibiotic-inactivating enzymes in actinomycetessimilar to those present in clinical isolates of antibiotic-resistant bacteria [J]. Proc Natl Acad Sci US A,1973,70(8):22762280.
    [47] Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer: more than justdrug efflux pumps [J]. Nat Rev Cancer,2010,10:147156.
    [48] Miller DS. Regulation of P-glycoprotein and other ABC drug transporters at the blood–brainbarrier [J]. Trends in Pharmacol Sci,2010,31(6):246254.
    [49] Burg RW, Miller BM, Baker EE, et al. Avermectins, new family of potent anthelmintic agents:producing organism and fermentation [J]. Antimicrob Agents Ch,1979,15:361-367.
    [50] Zhuo Y, Zhang W, Chen D, et al. Reverse biological engineering of hrdB to enhance theproduction of avermectins in an industrial strain of Streptomyces avermitilis [J]. P Natl AcadSci US A,2010,107:11250-11254.
    [51] Kieser HM, Kieser T, Hopwood DA. A combined genetic and physical map of theStreptomyces coelicolor A3(2) chromosome [J]. J Bacteriol,1992,174(17):5496-5507.
    [52] Gust B, Challis GL, Fowler K, et al. PCR-targeted Streptomyces gene replacement identifies aprotein domain needed for biosynthesis of the sesquiterpene soil odor geosmin [J]. Proc Natl AcadSci U S A,2003,100(4):1541-1546.
    [53] Kieser T, Bibb MJ, Chater KF, et al.Practical Streptomyces genetics: a laboratory manual. ed.Norwich, UK: John Innes Foundation,2000.
    [54] Wu Y, Kang Q, Shen Y, et al. Cloning and functional analysis of the naphthomycinbiosynthetic gene cluster in Streptomyces sp. CS [J]. Mol Biosyst,2011,7(8):2459-2469.
    [55] He Y, Wang Z, Bai L, et al. Two pHZ1358-derivative vectors for efficient gene knockout inStreptomyces [J]. J Microbiol Biotechnol,2010,20:678–682.
    [56] Ishikawa J, Hotta K. FramePlot: a new implementation of the frame analysis for predictingprotein-coding regions in bacterial DNA with a high G+C content [J]. FEMS Microbiol Lett,1999,174(2):251-253.
    [57] Ansari MZ, Yadav G, Gokhale RS, et al. NRPS-PKS: a knowledge-based resource foranalysis of NRPS/PKS megasynthases [J]. Nucleic Acids Res,2004,32(Web Server issue):W405-413.
    [58] Kitani S, Ikeda H, Sakamoto T, et al. Characterization of a regulatory gene, aveR, for thebiosynthesis of avermectin in Streptomyces avermitilis [J]. Appl Microbiol Biotech,2009,82:1089–1096.
    [59] Tusnady GE, Simon I. The HMMTOP transmembrane topology prediction server [J].Bioinformatics,2001,17:849–850.
    [60] Aziz MA, Diallo S, Diop IM, et al. Efficacy and tolerance of ivermectin in humanonchocerciasis [J]. Lancet,1982,2:171–173.
    [61] Eckford PDW, Sharom FJ. ABC efflux pump-based resistance to chemotherapy drugs [J].Chem Rev,2009,109:2989–3011.
    [62] van den Berg MA, Albang R, Albermann K, et al. Genome sequencing and analysis of thefilamentous fungus Penicillium chrysogenum [J]. Nat Biotechnol,2008,26,1161-1168.
    [63]Masamune S, SehgalJM, van Tamelen EE, et al. Separation and preliminary characterizationof oligomycins A, B and C [J]. J Am Chem Soc,1958,80:6092-6095.
    [64] Tzagoloff A, Meagher P. Assesmbly of the mitochondrial membrane system. VI.Mitochondrial synthesis of subunit proteins of the rutamycin-sensitive adenosine triphosphatase[J]. J Biol Chem,1972,247:594-603.
    [65] Laatsch H, Kellner M, Wolf G, et al. Oligomycin F, a new immunosuppressive homologue ofoligomycin A [J]. J Antibiot,1993,46:1334-1341.
    [66] Yamazaki M, Yamashita T, Harada T, et al.44-Homooligomycins A and B, new antitumorantibiotics from Streptomyces bottropensis: producing organism, fermentation, isolation, structureelucidation and biological properties [J]. J Antibiot,1992,45:171-179.
    [67]朱冬青. A因子依赖蛋白AdpA对链霉菌形态分化和次生代谢的调节[博士论文].上海:上海交通大学.2008.
    [68] Hojati Z, Milne C, Harvey B, et al. Structure, biosynthetic origin, and engineeredbiosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor [J]. ChemBiol,2002,9:1175–1187.
    [69] Hopwood DA, Wright HM. CDA is a new chromosomally-determined antibiotic fromStreptomyces coelicolor A3(2)[J]. Journal of General Microbiology,1983,129:3575-3579.
    [70] Kim HB, Smith CP, Micklefield J, et al. Metabolic flux analysis for calcium dependentantibiotic (CDA) production in Streptomyces coelicolor [J]. Metab Eng,2004,6:313–325.
    [71] Richter ME, Traitcheva N, Knupfer U, et al. Sequential asymmetric polyketideheterocyclization catalyzed by a single cytochrome P450monooxygenase (AurH)[J]. AngewChem Int Ed Engl,2008,4:8872-8875.
    [72] Sun Y, Zhou X, Liu J, et al. Streptomyces nanchangensis, a producer of the insecticidalpolyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, containsmultiple polyketide gene clusters [J]. Microbiology,2002,148:361-371.
    [73] Sun YH, Zhou XF, Tu GQ, et al. Determination of nanchangmycin and meilingmycin by highperformance liquid chromatography [J].J chromatogra,2002,20:43-45.
    [74] Sun Y, Zhou X, Tu G, et al. Identification of a gene cluster encoding meilingmycinbiosynthesis among multiple polyketide synthase contigs isolated from Streptomycesnanchangensis NS3226[J]. Arch Microbio,2003,180(2):101-107.
    [75] He YL, Sun YH, Liu TG, et al. Cloning of separate meilingmycin biosynthesis gene clustersby use of acyltransferase-ketoreductase didomain PCR amplification [J]. ApplEnvironMicrob,2010,76(10):3283-3292.
    [76] Kang QJ, Shen YM, Bai LQ. Biosynthesis of3-amino-5-hydroxybenzoic acid (3,5-AHBA)derived natural products [J].Nat Prod Rep,2012,29:243-263.
    [77] Yu TW, Bai LQ, Clade D, et al. The biosynthetic gene cluster of the maytansinoid antitumoragent ansamitocin from Actinosynnema pretiosum [J]. Proc Natl Acad Sci U S A,2002,99:7968-7973.
    [78]李燕.氨甲酰基转移酶Asm21在安丝菌素合成中的双重催化功能研究[博士论文].上海:上海交通大学.2012.
    [79] Stephanopoulos GN, Aristidou AA.代谢工程.北京:化学工业出版社.2003.
    [80]陈代杰.微生物药学.上海:华东理工大学出版社.1999.
    [81]孙宇辉,邓子新.聚酮化合物及其组合生物合成[J].中国抗生素杂志,2006,31(1):6-14.
    [82] Holzbaur IE, Harris RC, Bycroft M, et al. Molecular basis of Celmer's rules: the role of twoketoreductase domains in the control of chirality by the erythromycin modular polyketide synthase[J]. Chem Biol,1999,6:189-195.
    [83] Liavonchanka A, Rudolph MG, Tittmann K, et al. On the mechanism of a polyunsaturatedfatty acid double bond isomerase from Propionibacterium acnes [J]. J Biol Chem,2009,284:8005-8012.
    [84] Kusebauch B, Busch B., Scherlach K, et al. Functionally distinct modules operate twoconsecutive α,β-β,γ double-bond shifts in the rhizoxin polyketide assembly line [J]. Angew ChemInt Ed Engl,2009,49:1460-1464.
    [85] Moldenhauer J, Gotz DC, Albert CR, et al. The final steps of bacillaene biosynthesis inBacillus amyloliquefaciens FZB42: direct evidence for beta,gamma dehydration by atrans-acyltransferase polyketide synthase [J]. Angew Chem Int Ed Engl,2010,49:1465-1467.
    [86] Hatano K, Akiyama S, Asai M, et al. Biosynthetic origin of aminobenzenoid nucleus(C7N-unit) of ansamitocin, a group of novel maytansinoid antibiotics [J]. J Antibiot,1982,35(10):1415-1417.
    [87] Pfeifer BA, Admiraal SJ, Gramajo H, et al. Biosynthesis of complex polyketides in ametabolically engineered strain of E. coli [J]. Science,2001,291:1790-1792.
    [88] Keatinge-Clay A. Crystal structure of the erythromycin polyketide synthase dehydratase [J]. JMol Biol,2008,384:941-953.
    [89] Taft F, Brunjes M, Knobloch T, et al. Timing of the Delta(10,12)-Delta(11,13) double bondmigration during ansamitocin biosynthesis in Actinosynnema pretiosum [J]. J Am Chem Soc,2009,131:3812-3813.
    [90]周永军.杀念菌素/FR-008生物合成途径中多组份的产生机制以及二型硫脂酶的纠错功能[博士论文].上海:上海交通大学.2008.
    [91] Zhou YJ, Li JL, Zhu J,et al. Incomplete beta-ketone processing as a mechanism for polyenestructural variation in the FR-008/candicidin complex [J]. Chem Biol,2008,15:629-638.
    [92] Akey DL, Razelun JR, Tehranisa J, et al. Crystal structures of dehydratase domains from thecuracin polyketide biosynthetic pathway [J]. Structure,2010,18:94-105.
    [93] Shiven Kapur, Alice Y. Chen, David E. CaneMolecular recognition between ketosynthase andacyl carrier protein domains of the6-deoxyerythronolide B synthase [J]. Proc Natl Acad Sci U S A,2010,107(51):22066–22071.
    [94] Wu J, Zaleski TJ, Valenzano C, et al. Polyketide double bond biosynthesis: mechanisticanalysis of the dehydratase-containing module2of the picromycin/methymycin polyketidesynthase [J]. J Am Chem Soc,2005,127:17393-17404.
    [95] Cortes J, Wiesmann KE, Roberts GA, et al. Repositioning of a domain in a modularpolyketide synthase to promote specific chain cleavage [J]. Science,1995,268:1487-1489.
    [96] Khosla C, Tang Y, Chen AY, et al. Structure and mechanism of the6-deoxyerythronolide Bsynthase [J]. Annu Rev Biochem,2007,76:195-221.
    [97] Kellenberger L, Galloway IS, Sauter G, et al. A polylinker approach to reductive loop swapsin modular polyketide synthases [J]. Chembiochem,2008,9:2740-2749.
    [98] Jacobsen JR, Hutchinson CR, Cane DE, et al. Precursor-directed biosynthesis oferythromycin analogs by an engineered polyketide synthase [J]. Science,1997,277:367-369.
    [99] Frenzel T, Brunjes M, Quitschalle M, et al. Synthesis of the N-acetylcysteamine thioester ofseco-proansamitocin [J]. Organic Letters,2006,8:135-138.
    [100] Quadri LEN, Weinreb PH, Lei M, et al. Characterization of Sfp, a Bacillus subtilisphosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases [J].Biochemistry,1998,37:1585-1595.
    [101] Tosin M, Betancor L, Stephens E, et al. Synthetic chain terminators off-load intermediatesfrom a type I polyketide synthase [J]. ChemBioChem,2010,11:539-546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700