用户名: 密码: 验证码:
中国近海浮游植物光合溶解有机碳生产研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游植物光合作用合成的有机物,除以颗粒有机物的形态结合到细胞体中以外,还有相当一部分直接以溶解有机物(photosynthetically produced dissolvedorganic carbon, PDOC)的形态释放。然而以往绝大多数海洋生产力观测只对颗粒态部分的初级生产力进行测定,没有对PDOC进行同步测定。与此相应,大多数相关的食物网营养动力学模型,碳循环和碳收支模型也忽略了这一部分重要的碳流。由此造成对全球海洋初级生产力和碳吸收能力的低估。
     本研究首次在中国黄海、长江口—东海、南海北部等典型海域开展系统的浮游植物光合溶解有机碳现场观测研究,利用改进的~(14)C同位素示踪方法获取海区的PDOC生产力分布资料以及光合有机碳细胞外释放比例(percentage ofextracellular release,PER)比的分布变化特征。研究除对中国近海浮游植物PDOC释放的环境调控机制,浮游植物物种特征与PDOC释放的关系,浮游植物PDOC释放对微食物环的作用等进行了系统分析外,并对浮游植物季节性水华、河口季节性低氧过程等特定生态过程与浮游植物PDOC释放之间的关系进行了讨论。主要结果如下。
     中国各海区真光层初级生产力的PER比变化范围为7.6~39.3%,平均PER比为22.2%。据此结果对中国近海固碳量进行粗略估算,结果显示在把PDOC释放纳入计算的情况下中国近海总固碳量约为9.4×10~8t。忽略浮游植物溶解态光合产品而造成的中国近海固碳量低估约为2.5×10~8t。
     对2009年黄海春季水华过程的现场观测研究显示,春季水华期浮游植物PDOC生产力与PER比均高于水华发生前。而在所观测的两个次表层水华过程中,以较小粒径的甲藻为优势物种的水华光合溶解有机碳释放明显高于以较大粒径硅藻为原因物种的水华过程。水华期浮游植物溶解有机物的大量释放,促进了海区异养浮游细菌生物量迅速上升,显示PDOC生产力对微食物环的重要意义。
     对2006年6月-10月长江口及其毗邻海域浮游植物初级生产力的分布变化,及其与河口底层低氧的形成和发展之间的关系进行的研究结果显示,长江口夏季低氧区的形成与浮游植物生产力的变化密切相关,低氧核心区的形成与同一区域内大约20天前发生的河口强烈水华事件有直接关系。夏季高生产力期浮游植物的PDOC释放速率也出现高值,但真光层水体浮游植物溶解有机碳大量释放与底层低氧的出现并无直接关系。2006年8月低氧区的北移与2006年我国夏季出现大范围高温干旱天气,长江入海径流量大幅减少之间存在密切关系。
     2009年夏季和冬季南海北部海区异养细菌分布及浮游植物PDOC生产力分布的对比分析结果显示,在寡营养外海区域,来自浮游植物直接释放的溶解有机物对细菌生产力的维持更为重要,而在近岸海区,更多来源的溶解有机物可供异养细菌利用,浮游植物释放的重要性相对降低。细菌需碳量估算结果显示,直接来自PDOC生产的溶解有机物不能满足南海北部异养浮游细菌的需要,浮游植物直接释放以外的溶解有机物供应对支持细菌生长也非常重要。
     各海区PDOC环境调控机制综合分析结果显示,中国近海浮游植物光合溶解有机碳释放主要控制因子包括光照、营养盐水平和浮游植物粒径特征等。其中光照是控制PDOC生产垂直分布特征的重要因素,垂直分布上,PER高值经常出现在存在光抑制的表层和光照微弱的真光层底部水体。在水平分布上,外海以小粒径浮游植物占优势的寡营养海域PER显著高于大粒径浮游植物占优势的近海富营养海区。
Organic compounds synthesized by photosynthesis of phytoplankton, in additionto the part binding to the cell body in the form of the particulate organic matter, still aconsiderable part direct release in the form of photosynthetically produced dissolvedorganic carbon (PDOC). However, most past marine productivity observation wereonly determined on particulate portion of the primary productivity, no simultaneousdetermination on PDOC. Accordingly, most related food web trophic dynamics model,carbon cycle and carbon balance model also ignored this important part of carbonflow. This resulting in primary productivity and carbon sequestration capacityunderestimated in the global ocean.
     This study first carried out systematic field observation on phytoplankton PDOCin typical areas such as the Yellow Sea, the Yangtze River Estuary-East China Sea,,northern South China Sea, using the improved14C isotope tracer method to obtain thePDOC productivity distribution data as well as the distribution and variationcharacteristics of PER (percentage of extracellular release) ratio in study areas. In thisstudy, in addtion to system analysis on environmental regulation mechanism of thephytoplankton PDOC release in China coastal sea, the relationship of phytoplanktonspecies characteristics and PDOC release, the effects of phytoplankton release onmicrobial food cycle, also discuss the relationship between phytoplankton PDOCrelease and specific ecological processes e.g. phytoplankton seasonal blooms, theseasonal hypoxia in estuaries. The main results are as follows.
     PER ratio of primary productivity in the euphotic zone ranged from7.6to39.3%,the average PER was22.2%in different China sea. According to this result, carbonsequestration was roughly estimated in China coastal seas. The results showed thattotal carbon sequestration capacity was about9.4×10~8t in China coastal seas includingthe calculation of PDOC release. Ignoring phytoplankton PDOC products, carbonsequestration capacity in China coastal seas was underestimated about2.5×10~8t.
     Field observation research to spring bloom processes in the Yellow Sea in2009showed that, phytoplankton PDOC productivity and PER ration in the spring bloom were higher than those before the occurrence of algal bloom. While in the observationof two subsurface water bloom processes, PDOC release was significantly higher inthe bloom process that dominant species was smaller size of dinoflagellates than thatwith reasons species as larger particle size diatom. Large amounts of phytoplanktonPDOC release in the bloom periods led to heterotrophic bacterioplankton biomassincreased rapidly in study areas, showing the significance of PDOC productivity tomicrobial food cycle.
     The study results on the distribution variation of phytoplankton primaryproductivity in the Changjiang Estuary and its adjacent waters, and the relationshipwith the formation and development of hypoxia in the estuary bottom in Jun.-Oct.2006, showed that, the formation of the Yangtze River Estuary Hypoxia Zone insummer was closely related to the variation of phytoplankton productivity. Theformation of hypoxic core area had a direct relationship with strong algal bloomevents happened20days ago in the same area. In high productivity period in summer,phytoplankton PDOC release rate was high, but there was no direct relationshipbetween phytoplankton PDOC release in the euphotic layer and the underlyinghypoxia appear. There was close relationship between Hypoxia Zone movingnorthward in Aug.2006, and a wide range of high temperature and drought weather,Changjiang River Runoff substantially reduced in2006summer.
     Research results on heterotrophic bacteria distribution and phytoplankton PDOCproductivity distribution in the northern South China Sea in2009summer and wintershowed that, relatively higher bacterial productivity appeared in offshore area thatwith a higher proportion of phytoplankton photosynthetic product release, illustratingphytoplankton PDOC release can more effectively used by heterotrophic bacterialproduction. But the results of bacterial carbon quantity estimation showed that, PDOCproduction can not meet the need of heterotrophic bacterioplankton in northern SouthChina Sea, supplied by other DOC outside of phytoplankton direct release is also veryimportant to bacterial growth.
     Comprehensive analysis results on the environment control mechanism of PDOCshowed that, phytoplankton PDOC release controlled factors in China coastal seaincluding light, nutrients and phytoplankton size characteristics. The light was aimportant factor controlling the vertical distribution of PDOC production. In verticaldistribution, high PER ratio often occured in surface with the presence of lightinhibition and the euphotic layer bottom with week light. In horizontal distribution, PER in oligotrophic offshore waters dominated with small size phytoplankton weresignificantly higher than that in eutrophic coastal waters with large size phytoplanktondominant.
引文
陈达熙.渤海、黄海、东海海洋图集-水文[G].北京:海洋出版社,1992:241-249.
    陈吉余,陈祥禄,杨启伦.上海海岸带和海涂资源综合调查报告[M].上海:上海科技出版社,1988:114-116.
    付强,谭丽菊,王江涛.甲藻生长对水体中溶解有机碳(DOC)含量影响[J].青岛海洋大学学报(自然科学版),1999(S1):191-196.
    顾宏堪.黄海溶解氧垂直分布中的最大值[J].海洋学报.1980(2):70-79.
    韩君.黄海物理环境对浮游植物水华影响的数值研究[D].青岛:中国海洋大学,2008.
    胡方西,胡辉,谷国传等.长江河口盐度锋[J].海洋与湖沼增刊.1995,26(5):23-31.
    胡好国,万振文,袁业立.南黄海浮游植物季节性变化的数值模拟与影响因子分析[J].海洋学报,2004,26(6):74-88.
    黄邦钦,洪华生,王海黎.浮游植物生物量,生产力的粒级结构和光合产品结构[M].中国海洋学文集:第7集,北京:海洋出版社,1997,31-37.
    黄邦钦,洪华生,王海黎等.浮游植物生物量生产力的粒级结构和光合产品结构.中国海洋学文集:第7集[C].北京:海洋出版社,1997,31-37.
    季乃云,赵卫红,王江涛,等.大沽河—胶州湾段溶解有机物类腐殖质荧光特征变化[J].环境科学,2006,27(6):1073-1077.
    焦念志,王荣.海洋初级生产光动力学及产品结构[J].海洋学报,1994,16(5):85-91.
    焦念志,肖天.胶州湾的微生物二次生产力[J].科学通报,1995,40(9):829-832.
    李道季,张经,黄大吉等.长江口外氧的亏损[J].中国科学(D辑).2002,32(8):686-694.
    李云,李道季.长江口邻近海域浮游细菌分布与环境因子的关系[J].海洋通报,2007,26(6):9~18.
    刘诚刚,宁修仁,蔡昱明,郝锵,乐凤凤.南海北部及珠江口细菌生产力研究[J].海洋学报,2007,29(2):112-122.
    刘天然.南黄海中部春季浮游植物水华过程与物理环境的关系初探[D].青岛:中国海洋大学,2010.
    刘新成,沈焕庭,黄清辉.长江河口区生源素的浓度变化及通量估算[J].海洋与湖沼,2002,33(3):332-339.
    刘子琳,越川海,宁修仁等.长江冲淡水区细菌生产力研究[J].海洋学报,2001,23(4):93-99
    吕瑞华,夏滨,李宝华等.渤海水域初级生产力10年间的变化[J].黄渤海海洋,1999,17(3):80-86
    毛汉礼,甘子钧,蓝淑芳.长江冲淡水及其混合问题的初步探讨[J].海洋与湖沼.1963,5(3):183-206.
    宁修仁,刘子琳,史君贤.渤、黄、东海初级生产力和潜在渔业生产量的评估.海洋学报,1995,17(3):72-84
    宁修仁,史君贤,蔡昱明等.长江口和杭州湾海域生物生产力锋面及其生态学效应[J].海洋学报,2004,26(6):96-106.
    彭安国,黄奕普,刘广山等.大亚湾细菌生产力研究[J].海洋学报,2003,25(4):83-90.
    沈志良,刘群,张淑美,苗辉,张平.长江和长江口高含量无机氮的主要控制因素.[J].海洋与湖沼,2001,32(5):465-473.
    孙军,刘东艳,钱树本.2002.一种海洋浮游植物定量研究分析方法——Uterm hl方法的介绍及其改进[J].黄渤海海洋,2002,89,20(2):105—112.
    孙军.今生颗石藻的有机碳泵和碳酸盐反向泵[J].地球科学进展,2007(12):1231-1239.
    唐启升.黄、东海生态系统动力学调查图集[M].北京:科学出版社,2004.
    唐启升主编.中国专属经济区海洋生物资源与栖息环境[M].北京:科学出版社,2006.
    王大志,黄世玉,程兆第.营养盐水平对四种海洋浮游硅藻胞外多糖产量的影响[J].台湾海峡,2003,22(4):487-492.
    王丹,孙军,周锋等.2006年6月长江口低氧区及邻近水域浮游植物[J].海洋与湖沼,待发表
    肖天,王荣.渤海异养细菌生产[J].海洋学报,2003,25(Supp.2):58-65.
    肖天,王荣.东海异养细菌生产力的时空分布[J].海洋与湖沼,2000,31(6):664-670.
    杨晓兰,林以安.长江口邻近海域的环境水化学特征[J].东海海洋,1989,7(2):60-65.
    张启龙,王凡.舟山渔场及其邻近海域水团的气候学分析[J].海洋与湖沼,2004,35(1):48-54.
    张书文,夏长水,袁业立.黄海冷水团水域物理—生态耦合数值模式研究[J].自然科学进展,2002,12(3):315-319.
    张莹莹,张经,吴莹等.长江口溶解氧的分布特征及影响因素研究[J].环境科学.2007,28(8):1649-1654.
    赵三军,肖天,岳海东.秋季东、黄海异养细菌的分布特点[J].海洋与湖沼,2003,34(3):295-305.
    赵卫红,王江涛,崔鑫,等.海洋浮游植物生长过程中溶解有机物质的三维荧光光谱研究[J].高技术通讯,2006,16(4):425-430.
    郑天凌,王斐,徐美珠.台湾海峡水域的β-葡萄糖苷酶活性[J].应用与环境生物学报,2001,7(2):175-182.
    朱明远,毛兴华,吕瑞华等.黄海海区的叶绿素a和初级生产力[J].海洋科学进展,1993,11(3):38-51.
    Abreu P C, Odebrecht C, Gonzalez A. Particulate and dissolved phytoplankton production of thePatos Lagoon estuary, southern Brazil: comparison of methods and influencing factors[J].Journal of Plankton Research,1994,16(7):737-753.
    Amon R M W, Benner R. Bacterial utilization of different size classes of dissolved organicmatter[J]. Limnology And Oceanography,1996,41(1):41-51.
    Anderson G C, Zeutschel R P. Release of dissolved organic matter by marine phytoplankton incoastal and offshore areas of the northeast Pacific Ocean[J]. Limnology And Oceanography,1970,15(3):402-407.
    Antia N J, Mcallister C D, Parsons T R, et al. Further measurements of primary production using alarge-volume plastic sphere. Limnol. Oceanogr.1963,8:166-183.
    Antia N J, Mcallister C D, Parsons T R, et al. Further measurements of primary production using alarge-volume plastic sphere[J]. Limnology And Oceanography,1963,8(2):166-183.
    Azam F, Fenchel T, Field J G, et al. The ecological role of water-column microbes in the sea.[J].Marine ecology progress series. Oldendorf,1983,10(3):257-263.
    Baines S B, Pace M L. The production of dissolved organic matter by phytoplankton and itsimportance to bacteria: patterns across marine and freshwater systems[J]. Limnology AndOceanography,1991,36(6):1078-1090.
    Banse K. Uptake of inorganic carbon and nitrate by marine plankton and the Redfield ratio.Global Biogeothem. Cycles,1994.8:81-84.
    Barlow R G, Mantoura R F C, Gough M A, et al. Phaeopigment distribution during the1990spring bloom in the northeastern Atlantic[J]. Deep-Sea Research Part I: OceanographicResearch Papers.1993,40(11/12):2229-2242.
    BARLOW R G.1980. The biochemical composition of phytoplankton in an upwelling region ofSouth Africa. J. Exp. Mar. Biol. Ecol.45:83-93.
    Beardsley R C, Limburner R, Yu H S, et al. Discharge of the Changjiang (Yangtze River) into theEast China Sea[J]. Continental Shelf Research.1985,4:57-76.
    Bell R T, Kuparinen J. Assessing phytoplankton and bacterioplankton production during earlyspring in Lake Erken, Sweden[J]. Applied And Environmental Microbiology,1984,48(6):1221-1230.
    Bell W H, Lang J M, Mitchell R. Selective stimulation of marine bacteria by algal extracellularproducts[J]. Limnology And Oceanography,1974,19:833-839.
    Benner R, Pakulski J D, Mccarthy M, et al. Bulk chemical characteristics of dissolved organicmatter in the ocean[J]. Science,1992,255(5051):1561-1564.
    Berman T, Holm-Hansen O. Release of photoassimilated carbon as dissolved organic matter bymarine phytoplankton[J]. Marine Biology,1974,28(4):305-310.
    Biddanda B, Benner R. Carbon, nitrogen, and carbohydrate fluxes during the production ofparticulate and dissolved organic matter by marine phytoplankton[J]. Limnology AndOceanography,1997,42(3):506-518.
    Bjornsen P K. Phytoplankton exudation of organic matter: Why do healthy cells do it?[J].Limnology And Oceanography,1988,33(1):151-154.
    Carlson C A, Ducklow H W, Michaels A E. Annual flux of dissolved organic carbon from theeuphotic zone in the northwestern Sargasso Sea. Nature,1994,371:405-408.
    Chen C C, Gong G C, Shiah F K. Hypoxia in the East China Sea: One of the largest coastallow-oxygen areas in the world[J]. Marine Environmental Research.2007,64(4):399-408.
    Cho B C, Choi J K, Chung C S, et al. Uncoupling of bacteria and phytoplankton during a springdiatom bloom in the mouth of the Yellow Sea[J]. Mar Ecol Prog Ser,1994,115:181–190.
    Chrost R H, Faust M A. Organic carbon release by phytoplankton: its composition and utilizationby bacterioplankton[J]. Journal Of Plankton Research,1983,5(4):477-493.
    Conan P, Turley C T, Stutt E, et al. Relationship between phytoplankton efficiency and theproportion of bacterial production to primary production in the Mediterranean Sea[J]. AquaticMicrobial Ecology1999,17(2):131-144.
    Cotner J B, Ammerman J W, Peele E R, et al. Phosphorus limited bacterio plankton growth in theSargasso Sea[J]. Aquatic Microbial Ecology,1997,13(2):141-149.
    del Giorgio P A, Cole J J, Cimblerist A. Respiration rates in bacteria exceed phytoplanktonproduction in unproductive aquatic systems[J]. Nature,1997,385(9):148-151.
    Diaz R J, Rosenberg R. Spreading Dead Zones and Consequences for Marine Ecosystems[J].Science.2008,321:926-929.
    Diaz R J, Nestlerode J, Diaz M L. A global perspective on the effects of eutrophication andhypoxia on aquatic biota. In: Proceedings of the7th International Symposium on FishPhysiology, Toxicology, and Water Quality, Tallinn, Estonia, May12-15,2003, G. L. Ruppand M. D. White (eds). U.S. Environmental Protection Agency, Ecosystems ResearchDivision, Athens, Georgia, USA. EPA600/R-04/049, pp1-33. Publication Year2004
    Diaz R J. Overview of Hypoxia around the World[J]. Journal of Environmental Quality.2001,30(2):275.
    Donachie S P, Christian J R, Karl D M. Nutrient regulation of bacterial production andectoenzyme activities in the subtropical North Pacific Ocean[J]. Deep Sea Research II,2001,48(8-9):1719-1732.
    Ducklow H W, Carlson C A. Oceanic bacterial production[A]. MARSHALL K C. Advances inmicrobial ecology, Vol12[M]. New York:Plenum Press,1992:113-181.
    Eppley R W. New producion: history, methods, problems. Berger W H. Productivity of the Ocean:Present and past. Berlin: John Wiley&Sons Ltd,1989,85-97.
    Finkel Z V. Diatoms: size and metabolic processes [D]. Halifax: Dalhousie University,1998.
    Flynn K J, Berry L S. The loss of organic nitrogen during marine primary production may besignificantly overestimated when using15N substrates[J]. Proceedings of the Royal SocietyB: Biological Sciences,1999,266(1419):641-647.
    Fogg G E, Nalewajko C, Watt W D. Extracellular products of phytoplankton photosynthesis[J].Proceedings of the Royal Society of London. Series B, Biological Sciences,1965,162(989):517-534.
    Fogg G E. Extracellular products of phytoplankton and the estimation of primary production[J].Rapports et Proces-Verbaux des Reunions (Conseil Permanent International pourl'Exploration de la Mer),1958,144:56-60.
    Fogg G E. The ecological significance of extracellular products of phytoplankton photosynthesis.Botanica marina,1983,26(1):3–14
    Fogg G E. The extracellular products of algae[J]. Oceanography and Marine Biology AnnualReview,1966,4:195-212.
    Fuhrman J A, Azam F. Bacterioplankton secondary production estimates for coastal waters ofBritish, Columbia, Antarctica and California. Appl Environ Microbiol,1980,39(6):1085-1095.
    Fuhrman J A. Marine viruses and their biogeochemical and ecological effects[J]. Nature,1999,399(6736):541-548.
    Hama T, Yanagi K. Production and neutral aldose composition of dissolved carbohydratesexcreted by natural marine phytoplankton populations[J]. Limnology And Oceanography,2001,46(8):1945-1955.
    Hansel D A, Carlson C A. Net community production of dissolved organic carbon[J]. GlobalBiogeochemical Cycles,1998,12(3):443-453.
    Hellebust J A. Excretion of organic compounds by cultured and natural populations of marinephytoplankton[M].//Lauff, G H eds. Estuaries. Estuaries. American Association for theAdvancement of Science, Publication83. Washington DC: AAAS,1967:361-366.
    Hellebust J A. Excretion of some organic compounds by marine phytoplankton[J]. Limnology AndOceanography,1965,10(2):192-206.
    Hellebust J A. Extracellular products[J]. Algal physiology and biochemistry,1974,10:838-865.
    Honjo S, Dymond J, Collier R, et al. Export production of particles to the interior of the equatorialPacific Ocean during the1992EqPac experiment[J]. Deep-Sea Research Part II.1995,42(2-3):831-870.
    Intergovernmental Panel on Climate Change (IPCC). Climate Change2007: the Physical ScienceBasis, Contribution of Working Group I to the Fourth Assessment Report of theIntergovernmental Panel on Climate Change. Cambridge Univ. Press, New York,2007.
    Jennifer C, James A E, Ellen T M. Utilization and turnover of labile dissolved organic matter bybacterial heterotrophs in eastern North Pacific surface waters[J]. Mar Ecol Prog Ser,1996,139:267-279.
    Justic D, Rabalais N N, et al. Effects of climate change on hypoxia in coastal waters: A doubledCO2scenario for the northern Gulf of Mexico[J]. Limnology and Oceanography,1996,41:992-1003.
    Karl D M, Hebel D V, Bjorkman K, et al. The role of dissolved organic matter release in theproductivity of the oligotrophic North Pacific Ocean[J]. Limnology And Oceanography,1998,43(6):1270-1286.
    Kirchman D L, Keil G K, Simon M, et al. Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific[J]. Deep Sea Research I,1993,40(5):967-988.
    Kirchman D L, Rich J H, Barber R T. Biomass and biomass production of heterotrophic bacteriaalong140oW in the equatorial Pacific: Effect of temperature on the microbial loop [J]. DeepSea Research II,1995,42(2-3):603-619.
    Kirchman D L, Rich J H. Regulation of bacterial growth rates by dissolved organic carbon andtemperature in the equatorial Pacific Ocean[J]. Microbial Ecology,1997,33(1):11-20.
    Kirchman D L, Wheeler P A. Uptake of ammonium and nitrate by heterotrophic bacteria andphytoplankton in the sub-Arctic Pacific[J]. Deep-Sea Research I,1998,45(2-3):347-365.
    Kirchman D L. Leucine incorporation as a measure of biomass production by heterotrophicbacteria[A]. Edit Kemp et al. Handbook of Method in Aquatic Microbial Ecology[M].Florida: Lewis Publishers,1993,509-512.
    Kirchman D L. The uptake of inorganic nutrients by heterotrophic bacteria[J]. Microbial Ecology,1994,28(2):255-271.
    Lancelot C, Billen G. Activity of heterotrophic bacteria and its coupling to primary productionduring the spring phytoplankton bloom in the southern bight of the North Sea[J]. LimnologyAnd Oceanography,1984,29(4):721-730.
    Lancelot C. Gross excretion rates of natural marine phytoplankton and heterotrophic uptake ofexcreted products in the southern North Sea, as determined by short-term kinetics[J]. Marineecology progress series,1979,1:179-186.
    Lee S M, Fuhrman J A. Relationship between biovolume and biomass of natrually derived marinebacterioplankton[J]. Appl Environ Microbiol,1987,53(6):1298-1303.
    Li D, D Daler. Ocean pollution from land-based sources:East China Sea, China. Ambio,2004,33(1-2):107-112.
    Limeburner R, Beardsley R C, Zhao J. Water masses and circulation in the East China Sea[M].Proceedings of international symposium on sedimentation on the continental shelf, Withspecial reference to the East China Sea, Hangzhou, China:China Ocean Press,1983:1,285-294.
    Lochte K, Bjonrsen P K, Giesenhagen H. Bacterial standing stock and production and theirrelationship to phytoplankton in the Southern Ocean[J]. Deep Sea Research II,1997,44(2):321-340.
    Longhurst A, Sathyendranath S, Platt T, et al. An estimate of global primary production in theocean from satellite radiometer data[J]. Journal Of Plankton Research,1995,17(6):1245-1271.
    Mague T H, Friberg E, Hughes D J, et al. Extracellular release of carbon by marine phytoplankton;a physiological approach[J]. Limnology And Oceanography,1980,25(2):262-279.
    Malinsky-Rushansky N Z, Legrand C. Excretion of dissolved organic carbon by phytoplankton ofdifferent sizes and subsequent bacterial uptake[J]. Marine ecology progress series. Oldendorf,1996,132(1):249-255.
    Mara ón E, Cerme O P, Fernández E, et al. Significance and mechanisms of photosyntheticproduction of dissolved organic carbon in a coastal eutrophic ecosystem[J]. Limnology AndOceanography,2004,49(5):1652-1666.
    Mara ón E, Cerme o P, Pérez V. Continuity in the photosynthetic production of dissolved organiccarbon from eutrophic to oligotrophic waters[J]. Marine Ecology Progress Series,2005,299:7-17.
    Morán X, Estrada M, Gasol J M, et al. Dissolved primary production and the strength ofphytoplankton–bacterioplankton coupling in contrasting marine regions[J]. MicrobialEcology,2002,44(3):217-223.
    Morán X, Gasol J M, Arin L, et al. A comparison between glass fiber and membrane filters for theestimation of phytoplankton POC and DOC production[J]. Marine Ecology Progress Series,1999,187:31-41.
    Morán X, Gasol J M, Pedrós-Alió C, et al. Dissolved and particulate primary production andbacterial production in offshore Antarctic waters during austral summer: coupled oruncoupled?[J]. Marine Ecology Progress Series,2001,222:25-39.
    Myklestad S M, Swift E. A new method for measuring soluble cellular organic content and amembrane property, Tm, of planktonic algae[J]. European Journal Of Phycology,1998,33(04):333-336.
    Myklestad S M. Dissolved Organic Carbon from Phytoplankton[M]. The Handbook ofEnvironmental Chemistry, Berlin Heidelberg:Springer-Verlag,2000: Vol.5Part D,111-148.
    Myklestad S, Holm-Hansen O, Varum K M, et al. Rate of release of extracellular amino acids andcarbohydrates from the marine diatom Chaetoceros affinis[J]. Journal Of Plankton Research,1989,11(4):763-773.
    Myklestad S. Production of carbohydrates by marine planktonic diatoms. II. Influence of the N Pratio in the growth medium on the assimilation ratio, growth rate, and production of cellularand extracellular carbohydrates by Chaetoceros affinis var. willei (Gran) Hustedt andSkeletonema costatum (Grev.) Cleve[J]. Journal Of Experimental Marine Biology AndEcology,1977,29(2):161-179.
    Nagata T. Production mechanisms of dissolved organic matter[M].//Kirchman D L, ed. Microbialecology of the oceans, New York:Wiley-Liss,2000,121-152.
    Nalewajko C. Photosynthesis and excretion in various planktonic algae[J]. Limnology AndOceanography,1966,11(1):1-10.
    Norrman B, Zweifel U L, Hopkinson Jr C S, et al. Production and utilization of dissolved organiccarbon during an experimental diatom bloom[J]. Limnology And Oceanography,1995,40(5):898-907.
    Norrman B, Zweifel U L, Hopkinson Jr C S, et al. Production and utilization of dissolved organiccarbon during an experimental diatom bloom[J]. Limnology and Oceanography.1995,40(5):898-907.
    Obernosterer I, Herndl G J. Phytoplankton extracellular release and bacterial growth: dependenceon the inorganic N: P ratio[J]. Marine ecology progress series,1995,116(1):247-257.
    Officer C B, Biggs R B, Taft J L, et al. Chesapeake Bay Anoxia: Origin, Development, andSignificance[J]. Science.1984,223(4631):22-27.
    Ogawa H, Tanoue E. Dissolved organic matter in oceanic waters[J]. Journal of Oceanography,2003,59(2):129-147.
    Ohta S, Chang T, Ikegami N, et al. Antibiotic substance produced by a newly isolated marinemicroalga, Chlorococcum HS-101[J]. Bulletin Of Environmental Contamination AndToxicology,1993,50(2):171-178.
    Oliver D J. Photorespiration and the C2cycle[M].//Raghavendra A S, ed. Photosynthesis: Acomprehensive treatise, New York:Cambridge University Press,1998,173-182.
    Pakulski J D, Coffin R B, Kelley C A, et al. Iron stimulation of Antarctic bacteria[J]. Nature,1996,383:133-134.
    Panzenb ck M. Effect of solar radiation on photosynthetic extracellular carbon release and itsmicrobial utilization in alpine and Arctic lakes[J]. Aquatic Microbial Ecology,2007,48(2):155-168.
    Peterson B J. Synthesis of carbon stocks and flows in the open ocean mixed layer[M].//Hobbie JE, Williams PJ L, eds. Heterotrophic Activity in the Sea. New York: Plenum Press,1984:547-554.
    Pinhassi J, Sala M M, Havskum H, et al. Changes in bacterioplankton composition under differentphytoplankton regimens[J]. Applied And Environmental Microbiology,2004,70(11):6753-6766.
    Pommier J, Michel C, Gosselin M. Particulate organic carbon export in the upper twilight zoneduring the decline of the spring bloom[J]. Marine Ecology Progress Series.2008,356:81-92.
    Poole H H, Atkins W R G. Photoelectric measurements of submarine illumination throughout theyear [J]. J Mar Biol Ass U K,1929,16:297-324.
    Puddu A, Ferla R L, Allegra A, et al. Seasonal and spatial distribution of bacterial production andbiomass along a salinity gradient (Northern Adriatic Sea)[J]. Hydrobiologia,1998,363(1-3):271-282.
    Rabalais N N, Turner R E. Coastal Hypoxia Consequences for Living Resources andEcosystems[G]. Washington, D. C.: American Geophysical Union,2001.
    Rabalais N N, Turner R E. Hypoxia in the Northern Gulf of Mexico: description, causes andchange[M]. Coastal Hypoxia Consequences for Living Resources and Ecosystems, RabalaisN N, Turner R E, Washington, D. C.:American Geophysical Union,2001,1-36.
    Roland F, Cole J J. Regulation of bacterial growth efficiency in a large turbid estuary[J]. AquaticMicrobial Ecology,1999,20(1):31-38.
    Rowe G T. Seasonal Hypoxia in the Bottom Water off the Mississippi River Delta[J]. Journal ofEnvironmental Quality.2001,30(2):281-290.
    SCOR/IOC, Protocols for the joint global ocean flux study (JGOFS) core measurements. JGOFSReport, No.19,1996, pp.170.
    Sellner K G, Hendrikson P, Ochoa N. Relationships between the chemical composition ofparticulate organic matter and phytoplankton distributions in recently upwelled waters offPeru. In Richards F A[ed.], Coastal upwelling[M]. AGU,1981,273-287.
    Sharp J H. Excretion of organic matter by marine phytoplankton: do healthy cells do it?[J].Limnology And Oceanography,1977,22(3):381-399.
    Sharp J H. Inputs into microbial food chains[M].//Hobbie J E, Williams P J L, eds. Heterotrophicactivity in the sea. New York:Plenum Press,1984,101-120.
    Shiah F K, Gong G C, Chen C C. Seasonal and spatial variation of bacterial production in thecontinental shelf of the East China Sea: possible controlling mechanisms and potential rolesin carbon cycling[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2003,50:1295~1309.
    Shiah F K, Liu K K, Kao S J, et al. The coupling of bacterial production and hydrography in thesouthern East China Sea: Spatial patterns in spring and fall[J]. Continental Shelf Research,2000,20(4-5):459~477.
    Shiaha F K, Gongc G C. Seasonal and spatial variation of bacterial production in the continentalshelf of the East China Sea: possible controlling mechanisms and potential roles in carboncycling[J]. Deep Sea Research II,2003,50(6-7):1295-1309.
    Smetacek V S. Role of sinking in diatom life-history cycles: ecological, evolutionary andgeological significance[J]. MARINE BIOLOGY.2010,84(3):239-251
    Steemann Nielsen E. The use of radioactive carbon (C14) for measuring organic production in thesea[J]. Journal du Conseil Permanent International pour l' Exploration de la Mer,1952,18(3):117-140.
    Sun, J. and Liu, D. Geometric models for calculating cell biovolume and surface area forphytoplankton[J]. Journal of Plankton Research,2003,25(11):1331—1346.
    Tamigneaux E, Legendre L, Klein B, et al. Seasonal dynamics and potential fate ofsize-fractionated phytoplankton in a temperate nearshore environment (Western Gulf of StLawrence, Canada)[J]. Estuarine, Coastal and Shelf Science.1999,48(2):253-269.
    Tanaka T, Rassoulzadegan F. Vertical and seasonal variations of bacterial abundance andproduction in the mesopelagic layer of the NW Mediterranean Sea: bottom-up and top-downcontrols[J]. Deep-Sea Research I,2004,51(4):531-544.
    Teira E, Pazó M J, Quevedo M, et al. Rates of dissolved organic carbon production and bacterialactivity in the eastern North Atlantic Subtropical Gyre during summer[J]. Marine EcologyProgress Series,2003,249:53-67.
    Teira E, Pazo M J, Serret P, et al. Dissolved organic carbon production by microbial populations inthe Atlantic Ocean[J]. Limnology And Oceanography,2001,46(6):1370-1377.
    Teira E, Serret P, Fernández E. Phytoplankton size-structure, particulate and dissolved organiccarbon production and oxygen fluxes through microbial communities in the NW Iberiancoastal transition zone[J]. Marine Ecology Progress Series,2001,219:65-83.
    Tolbert N E, Zill L P. Excretion of glycolic acid by algae during photosynthesis[J]. Journal OfBiological Chemistry,1956,222(2):895-906.
    Tuomi P, Suominen K, Autio R. Phytoplankton and bacterioplankton production and bacterialbiomass in a fjord-like bay–open sea gradient[J]. Hydrobiologia,1999,393(1-3):141-150.
    Tupas L, Koike I. Amino acid and ammonium utilization by heterotrophic marine bacteria growthin enriched seawater [J]. Limnol Oceanogr,1990,35(5):1145-1155.
    UNESCO. Determination of New Production by15N [A]. Protocols for the Joint Global OceanFlux Study (JGOFS) Core Measurements[C]. Bergen, Norway: IntergovernmentOceanography Commission,1996, Report No.19,119-124.
    Verity P G. Effects of Temperature, Irradiance, and Daylength on the Marine DiatomLeptocylindrus danicus Cleve. I. Photosynthesis and Cellular Composition.[J]. Journal OfExperimental Marine Biology And Ecology,1981,55(1):79-91.
    Vollenweider R A, Nauwerck A. Some observations on the C-14method for measuring primaryproduction[J]. Internationale Vereinigung für Theoretische und Angewandte Limnologie:Verhandlungen,1961,14:134-139.
    Watanabe Y. A study of the excretion and extracellular products of natural phytoplankton in LakeNakanuma, Japan[J]. Internationale Revue der gesamten Hydrobiologie und Hydrographie,1980,65(6):809-834.
    Wiebe W J, Smith D F. Direct measurement of dissolved organic carbon release by phytoplanktonand incorporation by microheterotrophs[J]. Marine Biology,1977,42(3):213-223.
    Williams P, Yentsch C S. An examination of photosynthetic production, excretion ofphotosynthetic products, and heterotrophic utilization of dissolved organic compounds withreference to results from a coastal subtropical sea[J]. Marine Biology,1976,35(1):31-40.
    Wolter K. Bacterial incorporation of organic substances released by natural phytoplanktonpopulations.[J]. Marine ecology progress series,1982,7(3):287-295.
    Wood A M, Van Valen L M. Paradox lost? On the release of energy-rich compounds byphytoplankton.[J]. Marine Microbial Food Webs,1990,4:103-116.
    Zhang J, Liu S M, Ren J L, et al. Nutrient gradients from the eutrophic Changjiang (Yangtze River)Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East ChinaSea Shelf[J]. Progress In Oceanography,2007,74:449~478.
    Zlotnik I, Dubinsky Z. The effect of light and temperature on DOC excretion by phytoplankton[J].Limnology And Oceanography,1989,34(5):831-839.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700