用户名: 密码: 验证码:
高潜水位矿区煤炭开采对土壤和植被碳库扰动的碳效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭开采中耗能、耗电等的常规碳足迹容易测定,但是煤炭开采对植被、土壤与岩石等碳库扰动的碳效应却研究极少,目前没有可靠的评估方法。本论文以高潜水位矿区——徐州九里矿区为研究区,综合运用采矿学、开采沉陷学、生态学、生物地球化学、土壤学、农学等多学科知识,运用GIS技术和实验相结合的方法,采用模拟、比较、验证等分析手段,研究了煤炭开采对土壤和植被碳库扰动的碳效应及其评估方法:
     首先,通过分析碳库、陆地生态碳库以及碳效应的概念和内涵,定义了煤炭开采对土壤和植被碳库扰动的碳效应,认为煤炭开采对土壤和植被碳库扰动的碳效应就是在煤炭开采扰动下,采区及其周边沉陷区内植被碳库和土壤碳库在开采沉陷前后的增碳(碳汇)和失碳(碳源)影响及其大小。在此基础上,以生物地球化学理论为基础,结合开采沉陷学、土壤学、生态学和农学等相关理论对煤炭开采对土壤和植被碳库扰动的碳效应进行了定性分析。
     其次,选取研究区典型沉陷盆地,以沉陷盆地采样、实验室化验分析后所获得的实验数据为基础,结合开采沉陷模型、通用土壤流失方程(USLE)等相关模型,研究了地表沉陷期间盆地内沉陷坡面土壤有机碳的侵蚀流失变化、植被NPP变化以及煤炭开采扰动前后沉陷盆地土壤和植被碳库的贮量变化。研究表明地表移动期间,沉陷区上坡位土壤有机碳侵蚀流失剧烈,且流失量在活跃期大于衰退期;盆地坡面植被NPP几乎为0t/km2,因为沉陷盆地彻底弃耕变为裸地;煤炭开采扰动前后沉陷盆地所在区域的土壤和植被碳库贮量变化明显。
     再次,利用沉陷坡面的土壤理化性质和植被NPP的实测数据,分析了煤炭开采影响下沉陷坡面土壤理化性质和植被NPP随沉陷深度的变化特征。进一步地,对煤炭开采沉陷区土壤有机碳和植被NPP的影响因素进行了统计学分析并发现,煤炭开采沉陷区土壤有机碳含量和土壤容重、饱和导水率、粘土含量之间的相关性明显,植被NPP和土壤容重、饱和导水率显著相关;沉陷区地形坡度和土壤有机碳含量显著负相关,和植被NPP相关不显著;沉陷区积水是沉陷区土壤有机碳和植被NPP的显著性影响因素。
     最后,构建了煤炭开采对土壤和植被碳库扰动的碳效应评价模型,包括碳效应评价模型的整体架构以及模型的假设条件、输入变量、采样点位布设要求、沉陷区土壤和植被碳库贮量估算、碳效应测算等,并对模型进行了分析与评价。在此基础上,以徐州九里矿区沉陷区为例,测算了煤炭开采对沉陷区土壤和植被碳库扰动的碳效应,发现煤炭开采对区域土壤碳库扰动属于失碳(碳源)效应;煤炭开采对区域植被碳库扰动属于失碳(碳源)效应。
Routine carbon footprint in coal mining such as energy and power consumptioncould be easily evaluated, but carbon effects on the soil carbon, vegetation carbonand ithosphere carbon pools by mining disturbance are far away from accurate andreliable assessment by now. In the dissertation, taking Jiuli Mining Area (a higherground-water mining area) as a study case, sciences of coal mining, miningsubsidence, ecology, biogeochemistry, agrology and agronomy, integrated methodssuch as GIS and experiments, and analysis approaches of simulation, comparisonand verification are applied to evaluate the carbon effects on the soil carbon pool andvegetation carbon pool disturbed by coal mining.
     Firstly, after analyzing the conception and connotation of the carbon pool andthe terrestrial ecology carbon pool, the definition of the carbon effects on the soilcarbon pool and vegetation carbon pool disturbed by coal mining is given. Carboneffects on the soil and vegetation carbon pool means the carbon increase effect(carbon sink) or carbon loss (carbon source) effect in soil carbon and vegetationcarbon pools before and after mining in subsidence area. And then, based on thebiogeochemistry, the mining subsidence, ecology, ecology agronomy, and otherrelated academic knowledges are applied to qualitatively analyze the carbon effecton the soil carbon pool and vegetation carbon pool.
     Secondly, a typical mining subsidence basin is selected within the research areato sample data about vegetation and soil properties. Combined with the MiningSbsidence Model and Universal Soil Loss Equation (USLE), the changes of the NPPand soil organic carbon loss during ground depression-stabilization by mining in thesubsidence slope, and the changes of soil carbon pool storage and vegetation carbonpool storage of the subsidence slope befor or after the mining are evaluated andanalyzed, which indicated that during ground depression-stabilization by coalmining, there is a huge soil organic carbon loss and the loss in active subsidencephase is greater than that in inactive subsidence phase. in upper slope of thesubsidence area, and NPP is near0t/km2in the slope of the basin because thesubsidence basin is no longer cultivated, and a significant changes of the carbon poolstorage and vegetation carbon pool storage happens befor and after mining.
     Thirdly, based on test data of physicochemical soil properties and NPP which is acquired through the outside sampling in the subsidece slope, the changecharacteristics of the physicochemical soil properties and NPP with the sinking depthin the slope are studied. Ulteriorly, influencing factors of soil organic carbon contentand NPP in mining subsidence area are analyzed statistically, which indicated thatsoil bulk density, saturated hydraulic conductivity, clay content is significantlyrelated to soil organic carbon content, and soil bulk density, saturated hydraulicconductivity is significantly correlated to NPP in the subsidence area; subsidenceterrain slope is significantly negatively correlated to soil organic carbon content,butno significant correlation with NPP; sinking logged water in the subsidence area is asignificant factor of the soil organic carbon content and NPP.
     Lastly, an evaluation model of the carbon effects on the soil and vegetationcarbon pools by coal mining is established. The model includs the overall frameworkand the specific composition: assumptions, input variables, the sampling points laid,carbon storage estimation of soil and vegetation carbon pool in the subsidence area,determination of the carbon effect, etc. Then, carbon effects on the soil andvegetation carbon pools by coal mining in subsidence area of Jiuli Mining Area arecalculated, and the results indicate that carbon effect on the soil carbon pool iscarbon loss (carbon source), and carbon effect on the vegetation carbon pool is alsocarbon loss(carbon source).
引文
[1]陈泮勤,黄耀,于贵瑞.地球系统碳循环[M].北京:科学出版社,2004:37-39.
    [2]陶波葛,全胜,李克让,邵雪梅.陆地生态系统碳循环研究进展[J].地理研究,2001,11(5):564-571.
    [3] Dalel T, Bruce M K.Fire history of a sequoia-mixed conifer forest[J].Ecology,1979,60(l):129-142.
    [4] Ernst D S, Christian W, Martin H. Climate Change: Managing Forests afterKyoto[J].Science,2000,289(22):2058-2059.
    [5] Oliver L P, Malhi Y, Higuchi N, et al.Changes in the carbon balance of tropical forests:evidence from long term plots[J].Science,1998,282:439-442.
    [6] Mahli Y, Nobre A, Grace J, et al.Carbon dioxide transfer over a central Amazonian rainforest [J].Journal of Geophysical Research,1998,103:31593-31612.
    [7] Grace J, Lloyd J, Mcintyre J, et al.Carbon dioxide uptake by an undisturbed tropical rainforest in southwest Amazonia,1992-1993[J].Science,1995,270:778-780.
    [8] Grace J, Malhi Y, Lloyd J, et al.The use of eddy covariance to infer the net carbon dioxideuptake of Brazilian rain forest [J].Global Change Biology,1996(2):209-217.
    [9] Pacala S W, Hurtt G G, Baker D.Consistent land and atmosphere-based U.S.Carbon SinkEstimates [J].Seience,2001,292:2316-2319.
    [10] J M Chen, J Liu, W Chen.Net primary productivity distribution in the BOREAS regionfrom a process model using satellite and surface data [J].Journal of geophysical research,2001,104(22):27735-27754.
    [11] Prasd H H, Prior S A, Runion G B, et al.Root to shoot ratio of crops as influenced byCO2[J].Plant and Soil,1996,187(2):229-248.
    [12] Yang, Davidson E A, Woodwell G M.Missing sinks, feedbacks, and understanding the roleof terrestrial ecosystems in the tropical carbon balance [J].Global Biogeochemical Cycles,2002,12:25-34.
    [13] M Chiesi, F Maselli, M Bindi, et al.Modeling carbon budget of Mediterranean forests usingground and remote sensing measurements[J].Agricultural and Forest Meteorology,2005,135:22-34.
    [14] Norbert M, Heinesch B.Estimation of the carbon sequestration by a heterogeneous forestnight flux correction, heterogeneity of the site and inter annual variability[J].GlobalChange Biology,2002,(810):53-107.
    [15] Donga J, Robert K K, Ranga B M, et al.Remote sensing estimates of boreal and temperateforest woody biomass: carbon Pools, sources and sinks[J].Remote Sensing of Environment,2003,84:393-410.
    [16] Shugart H H, West D C.Development of an application deciduous forest succession modeland its application to assessment of the impact of chest nut blight [J].Environ Manage,1977,5:161-179.
    [17] Xu X F, Tian H Q, Wan S Q.Climate warming impacts on carbon cycling in terrestrialecosystems [J].Plant Ecol,2007,31(2):175-188.
    [18] Post W M, King A M, Wullschleger S D.Soil organic matter models and global estimates ofsoil organic carbon [A].In Powlson D S, et al eds.Evaluation of Soil Organic MatterModels[C].Berlin: Springer1996.20-24.
    [19]张平良.高寒农牧交错带植被恢复对土壤有机碳库和土壤结构稳定性的影响[D].兰州:甘肃农业大学,2007.
    [20] Woodwell G M.The biota and world carbon budget[J].Science,1978,199:141-146.
    [21]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    [22]李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2002.
    [23] Esteban G, Jobbágy, Robert B Jackson.The Vertical Distribution of Soil Organic Carbonand its Relation to Climate and Vegetation [J].Ecological Applications,2000,10(2):423-436.
    [24] M Bernoux, M da Conceicao Santana, et al.Brazil’s Soil Carbon Stocks[J].Soil ScienceSociety of America Journal,2002,66:888-896.
    [25]刘国华.环渤海地区土壤有机碳库及其空间分布格局研究[J].应用生态学报,2003,14(9):1490-1493
    [26]陈庆美,王绍强,于贵瑞等.内蒙古自治区土壤有机碳、氮蓄积量的空间特征[J].应用生态学报,2003,14(5):699-704.
    [27]曾永年,冯兆东,曹广超,薛亮.黄河源区高寒草地土壤有机碳贮量及分布特征[J].地理学报,2004,59(4):497-504.
    [28] Melillo J M, McGuire A D, Kick lighter D W, et al.Global Climate and Terrestrial NetPrimary Production [J].Nature,1993,363:234-240.
    [29] Chen W J, Black T A, Yang P C, et al.Effects of Climatic Variability on the Annual CarbonSequestration by a Boreal Aspen Forest [J].Global Change Biology,1999,(5):41-53.
    [30]曾小平,赵平,孙谷畴.气候变暖对陆生植物的影响[J].应用生态学报,2006,17(12):2445-2450.
    [31] Caobl K, Prince S D, Tao B, et al.Regional Pattern and Inter-annual Variations in TerrestrialCarbon Uptake in Response to Change in Climate and Atmospheric CO2[J].Tellus B,2005,57:210-217.
    [32] Tjoelker M G, Oleksyn J, Reich P B.Modelling Respiration of Vegetat ion: Evidence for aGeneral Temperature Dependent Q10[J].Global Change Biology,2001,7(2):223-230.
    [33]徐小锋,田汉勤,万事强.气候变化对陆地生态系统碳循环的影响[J].植物生态学报,2007,31(2):175-188.
    [34] Andreas S, Sophie ZB, Barbara K, Robert J.Experimental forest soil warming: Response ofautotrophic and heterotrophic soil respiration to a short-term10temperature rise [J].PlantSoil,2008,303:323-330.
    [35] Cooper E J.Out of sight, out of mind: Thermal acclimation of root respiration in ArcticRanunculus[J].A Alp Res,2004,36(3):308-313.
    [36] Zhou C H, Zhou Q M, Wang S Q.Estimating and analyzing the Spatial Distribution of SoilOrganic Carbon in China[J].Alllbio,2003,32(l):12.
    [37] Detwiler R P, Hall C A S.Tropical forests and the global carbon cycle [J].Science,1988,239:42-47.
    [38] Bolin B, Sukumar R, Ciais P, et al.IPCC Special Report on Land Use, Land Use Changeand Forestry, chapter1:Global Perspective [M].U K: Cambridge University Press,2000:178-189.
    [39] Prentice I C, Farquhar G D, Fasham M J R, et al.The carbon cycle and atmospheric carbondioxide, chapter3: IPCC Climate Change, Working Group1, The scientific basis [M].U K:Cambridge University Press,2001.
    [40] De Fries R S, Houghton R A, Hansen M C, et al.Carbon emissions from tropicaldeforestation and growth based on satellite observations for the1980s and1990[J].Proceedings of the National Academy of Science,2002,99(22):14256-14261.
    [41] Cerri C C, Koff B, Andreux F.Nature and behavior of organic matter in soils under naturalforest, and after deforestation, burning and cultivation near Manaus [J].Forest Ecology andManagement,2004,38:247-257.
    [42] Eden M J, Furley P A, McGregor D F, et al.Effect of Forest Clearance and Burning on SoilProperties in Northern Roraima, Brazil[J].Forest Ecology and Management,2005,38:283-290.
    [43] Detwiler R P.Land Use Change and the Global Carbon Cycle: The Role of the TropicalSoils [J].Biogeochemistry,2009,(2):67-93.
    [44]杨玉盛,谢锦华,盛浩等.中亚热带山区土地利用变化对土壤有机碳贮量和质量的影响[J].地理学报,2007,62(11):1123-1131.
    [45] Guo L B, Gifford R M.Soil carbon stocks and land use change: a Meta analysis [J].Globalchange biology,2002,8:345-360.
    [46] Maltby E, Immirzi C P.Carbon Dynamics in Peatlands and Other Wetland Soils: Regionaland Global Perspectives[J].Chemosphere,1993,27:999-1023.
    [47]蒋疆,王果,方玲.土壤水溶解态有机物质与重金属的络合作用[J].土壤与环境,2001,10(1):67-71.
    [48]苏永中,赵哈林.持续放牧和围封对科尔沁退化沙地草地碳截存的影响[J].环境科学.2003,24(4):23-28.
    [49]沈善敏.黑土开垦后土壤团聚体稳定性与土壤养分的关系[J].土壤通报,1981,2:32-34.
    [50] Chan K Y, Heenan D P, Oates A.Soil carbon fractions and relationship to soil quality underdifferent tillage and stubble management[J].Soil&Tillage Research,2002,63:133-139.
    [51] Maltby E, Immirzi C P.Carbon Dynamics in Peatlands and Other Wetland Soils: Regionaland Global Perspectives [J].Chemosphere,1993,27:999-1023.
    [52] Neff J C, Townsend A R, Gleixner G, et al.Variable Effects of Nitrogen Additions on theStability and Turnover of Organic Carbon[J].Nature,2002,419:915-917.
    [53] Melillo J M, Gosz J R.Interaction of Biogeochemical Cycles in Forest Ecosystems.In:Bolin B, Cook RB Eds.The Major Biogeochemical Cycles and Their Interactions[M].JohnWiley&Sons, Chichester, UK,1983:177-222.
    [54] Field C B, Chapin F S, Matson P A III, Mooney H A.Responses of Terrestrial Ecosystemsto the Changing Atmosphere: a resource-based approach [J].Annual Review of Ecologyand Systematics,1992,23:201-235.
    [55] Bolin B, Sukumar R, Ciais P, et al.IPCC Special Report on Land Use, Lands Use Changeand Forestry, chapter1: Global Perspective[M].U K: Cambridge University Press,2000.
    [56] Prentice I C, Farquhar G D, Fasham M J R, et al.The carbon cycle and atmospheric carbondioxide,chapter3: IPCC Climate Change2001, Working Group1, the scientific basis
    [M].U K: Cambridge University Press,2001.
    [57]吕爱锋,田汗勤,刘永强.火干扰与生态系统的碳循环[J].生态学报,2005,25(10):2734-2743.
    [58] Harden J W, Trumbore S E, Stocks B J, et al.The Role of Fire in the Boreal Carbon Budget[J].Glob Change Biol,2000,(6):174-184.
    [59] Richter D D, Neil K P, Kasischke E S.Post Fire Stimulation of Microbial Decomposition inBlack Spruce Picea Mmarianal Forest Soils: A Hypothesis [J].In: Kasischke E S, Stocks B Jeds.Fire, Climate Change and Carbon Cycling in North American Boreal Forests[M].NewYork: Ecological Studies Series,2000:197-213.
    [60] Delmas R.On the emission of carbon, nitrogen, and in the atmosphere during bush Fires inintertropical savanna zones.Geophys.Res.Lett.,1982,9:761-764.http://www.geog.umdedu/borealfire/approach.htm.
    [61] French P, Herry A S.Tropical forests and the carbon cycle based on Remote Sensing[J].Science,1988,239:42-47.
    [62] Fathallah M.The effect of carbon fiber surface oxidation on the friction and wear propertiesof poly composites under oil-lubricated conditions[J].Materials Science Forum,2001,47:887-897.
    [63] Van W G R, Randerson J T, Collatz G J et al.Continental-Scale portioning of fire emissionsduring the1997to2001El Nino/La Nina period [J].Science,2004,303:73-76.
    [64] Wand S J, Midgleyg Jonesmh.Responses of C3and C4Grass Species to ElevatedAtmospheric CO2Concentration: A Meta-analytic Test of Current Theories and Perceptions[J].Global Change Biology,1999,5:723-741.
    [65] Usami T, Lee J, Oikawa T.Interactive Effects of Increased Temperature and CO2on theGrowth of Mysinaefolia Samplings [J].Plant Cell and Environment,2001,24:1007-1019.
    [66]汪杏芬,白克智,匡廷云.大气CO2浓度倍增对植物暗呼吸的影响[J].植物学报,1997,39(9):849-854.
    [67]薛峰昌,卞正富.神东矿区对土壤含水率的影响分析[J].煤炭科学技术,2007,35(9):83-85.
    [68]白建峰,史永红,崔龙鹏,唐修义.煤矸石堆积对矿区土壤中重金属的影响[J].安徽理工大学学报,2004,24:10-14.
    [69]朱宗泽,陈志超,郝成元.采煤沉陷区土壤成分变化研究——以潞安集团王庄煤矿为例[J].中国水土保持,2011,4:44-46.
    [70] Kostas Komnitsas, Xiangyun Guo, Daoliang Li.Mapping of soil nutrients in an abandonedChinese coal mine and waste disposal site[J].Minerals Engineering,2010,23:627–635.
    [71] Mohammad A H Bhuiyan, Lutfar Parvez, M A Islam, et al.Heavy metal pollution of coalmine-affected agricultural soils in the northern part of Bangladesh[J].Journal of HazardousMaterials,2010,173:384–392.
    [72] M S Coyne, Q Zhai, Mackownr I, Barnhisel.Gross nitrogen transformation rates in soil at asurface coal mine site reclaimed forprime farmland use[J].Soil Biol Biochem,1998,30(8):1099-1106.
    [73]李海江.永夏矿区开发对地表植被的影响及防治对策[J].煤矿环境保护,1(46):50-52.
    [74]夏尚光.淮北市矿区植被生态恢复现状及可持续治理对策[J].安徽农学通报,2010,16(23):121-125.
    [75]廖程浩,刘雪华.阳泉煤炭开采对区域植被影响范围的3S识别[M].自然资源学报,2009,25(2):147-151.
    [76]何兴兵,魏虹,林永慧,孟金柳..铝土矿开采对金佛山甄子岩植被生长发育的影响[J].生态科学,2003,2:157-164.
    [77]王力,卫三平,王全九.榆神府煤田开采对地下水和植被的影响[J].煤炭学报,2008,12(6):59-67.
    [78]张思锋,权希,唐远志.基于HEA方法的神府煤炭开采区受损植被生态补偿评估[J].资源科学,2010,3:78-84.
    [79]杨杰东,徐士进.同位素与全球环境变化[M].北京市:地质出版社,2007.
    [80]薛建辉.森林生态学[M].北京市:中国林业出版社,2006.
    [81]黄耀.地气系统碳氮交换从实验到模型[M].北京市:气象出版社,2003.
    [82]李长生.生物地球化学的概念与方法──DNDC模型的发展[J].第四纪研究,2001(,02):89-94.
    [83]李长生.生物地球化学的概念与方法──DNDC模型的发展[J].第四纪研究,2001(,02):89-94
    [84]李长生.生物地球化学的概念与方法──DNDC模型的发展[J].第四纪研究,2001(,02):89-94.
    [85]李长生.生物地球化学的概念与方法──DNDC模型的发展[J].第四纪研究,2001(,02):89-94.
    [86]李长生.生物地球化学的概念与方法──DNDC模型的发展[J].第四纪研究,2001(,02):89-94.
    [87]李长生.生物地球化学的概念与方法──DNDC模型的发展[J].第四纪研究,2001(,02):89-94.
    [88]李长生.生物地球化学的概念与方法──DNDC模型的发展[J].第四纪研究,2001(,02):89-94.
    [89]俞劲炎,卢升高等.土地生态学[M].杭州:浙江大学出版社,1998.
    [90]唐红侠,韩丹,赵由才.农林业温室气体减排与控制技术[M].北京市:化学工业出版社,2009.
    [91]唐红侠,韩丹,赵由才.农林业温室气体减排与控制技术[M].北京市:化学工业出版社,2009.
    [92]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版,1995.
    [93] Cannell M G R, Thornley J H M. Modeling plant respiration: some guidingprinciples[J].Annals of Botany,2000,85:45-54.
    [94]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版,1995.
    [95]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版,1995.
    [96] Red, mann R E. Soil respiration in a mixed grassland ecosystem[J]. Soil Sci,1978:58:119-123.
    [97] Raich J W, Tufekcioglu A.Vegetation and Soil respiration correlations and controls[J].Viogeochemistry,2000:48(1):71-90.
    [98] Goulden,M L, Munger,J W, Fan S M.Measurement of carbon sequestration by long-termcovariance: method sand critical evaluation of accuracy[J].Global Change Biology,1996,2:169-182.
    [99]于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积[M].北京市:气象出版社,2003.
    [100]周广胜,王玉辉.全球生态学[M].北京市:气象出版社,2003.
    [101] Morre B,Braswell B H.地球的新陈代谢:了解碳循环[M].AMBIO.1994,23(1):4-12.
    [102]吴侃,胡振琪,常江.开采引起的地表裂缝分布规律[J].中国矿业大学学报,1997,26(2):56-58.
    [103]何国清.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
    [104]卞正富.矿山开采沉陷区农用土地质量空间变化研究[J].中国矿业大学学报,2004,33(2):213-218.
    [105] Silburn D M, Crow F R.Source: Transactions of the American Society of AgriculturalEngineers[J].American Society of Agricultural Engineers,1984,27(3):827-832.
    [106] Shrestha R K, L Rattan.Changes in physical and chemical properties of soil after surfacemining and reclamation.Geoderma,2011,161(4):168-176.
    [107]赵宏宇.采煤塌陷对沙丘土壤水分特性的影响研究[D].内蒙古农业大学.
    [108]吕晶洁.采煤塌陷对沙丘土壤水分动态的影响研究[D].内蒙古农业大学.
    [109]周瑞平.鄂尔多斯地区采煤塌陷对风沙土壤性质的影响[D].内蒙古师范大学.
    [110]陈龙乾,邓喀中等.开采沉陷对耕地土壤化学特性影响的空间变化规律[J].水土保持学报,1999,3:81-86.
    [111]陈龙乾,邓喀中等.开采沉陷对耕地土壤物理特性影响的空间变化规律[J].煤炭学报,1999,6:586-590.
    [112] Toomik A. Oil shale mining and processing impact on landscapes in north-eastEstonia[J].Landscape Urban Planning,1998,41:285-292.
    [113] Lan C Y, Shu W S, Wong M H.Revegetation of lead/zinc mine tailings at Shaoguan,Guangdong Province[M].China: city of the tailings.In: Wise DL ed.Global EnvironmentalBiotechnology.Amsterdam:Elsevier,1997.119-130.
    [114] Bradshaw A D.Restoration of mined lands-Using natural process [J]. EcolEng,1997,8:255-269.
    [115]周莹,贺小军等.半干旱区采煤沉陷对地表植被组成及多样性的影响[J].生态学报,2009,29(8):4517-4523.
    [116] Komas C S, Danalatos N G.The impact of drought on the wheat biomass production alongCatenas in the semi-atdi zone on Creece.Soil Technol,1993,6:337-349.
    [117]陈泮勤,黄耀,于贵瑞.地球系统碳循环[M].北京:科学出版社,2004.
    [118]陈泮勤,黄耀,于贵瑞.地球系统碳循环[M].北京:科学出版社,2004.
    [119] S L蒂斯代尔(Samuel L Tisdale)等著;金继运等译.土壤肥力与肥料[M].北京市:中国农业科技出版社,1998.
    [120]姚魁应,何振立等.红壤微生物量在土壤—黑麦草系统中的肥力意义[J].应用生态学报,1999,10(6):725-728.
    [121]杨洪强.有机园艺[M].北京市:中国农业出版社,2005.
    [122]何电源.中国南方土壤肥力与栽培植物施肥[M].科学出版计,1994.
    [123]吕世祝,刘建军,卢树昌主编.县域测土配方施肥理论与实践[M].北京市:中国农业出版社,2008.
    [124] Leemans R, Klein Goldewijk K, Oldfiedld B F. Developing a fast-tuack global database ofland-cover history[J]. LUCC Newsleter,2000,5:6-7.
    [125]陈泮勤,黄耀,于贵瑞.地球系统碳循环[M].北京:科学出版社,2004.
    [126] Lal R.Carbon sequestration dryland[J]. Annual Arid Zone,2000,39(1):1-10.
    [127] Squires V R.Carbon sequestration in Meditrraneen basin drylands[J].DesertificationControl Bull.1999,35:14-20.
    [128]贺瑶琴.土壤学与土壤理化分析[M].乌鲁木齐:新疆科技卫生出版社,1995
    [129]董鸣.陆地生物群落调查观测与分析[M].北京市:中国标准出版社,1997.
    [130]章文波,谢云,刘宝元.中国降雨侵蚀力空间变化特征[J].山地学报,2003,21(1):33-40.
    [131]王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持学报,1996,16(5):1-19.
    [132] Wischmeier W H.Soil erodibility nomograph for farmland and construction sites[J].Journalof Soil and Water Conservation,1971,26:189-193.
    [133] Romkens M J M, Prasad S N, Poesen J M A.Soil erodibility and properties[A].In:Transactions of the XIII Congress of the International Society of Soil Science [C].Hamburg,1986.
    [134]柯克比,摩根.土壤侵蚀[M].王礼先,吴斌,洪惜英,等译.北京:水利电力出版社,1987.
    [135] Wischmeier W H.Soil erodibility nomograph for farmland and construction sites[J].Journalof Soil and Water Conservation,1971,26:189-193.
    [136]马国斌.基于GIS的黄土高原小流域土壤侵蚀定量评价研究——以陕西省长武县王东沟小流域为例[D].南京:南京师范大学,2005.
    [137]李玉泉.USLE和GIS在湖北省土壤侵蚀预报中的应用和研究[D].武汉:华中科技大学,2007.
    [138]沈荣明.土壤可蚀性因子K值的初步研究[J].水土保持学报,1992,6(1):63-71.
    [139] Wischmeier W H, et al.Soil erodibility nomorgraph for farmland and constructionsites[J].Journal of Soil and Water Conservation,1971,26:189-193.
    [140]史志华.基于GIS和RS的小流域景观格局变化及其土壤侵蚀响应[D].武汉:华中农业大学,2003.
    [141]蔡崇法,丁树文,史志华等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,14(2):19-24.
    [142]范丽丽,沈珍瑶,刘瑞民.基于GIS的大宁河流域土壤侵蚀评价及其空间特征研究[J].北京师范大学学报(自然科学版),2007,1043(5):563-566.
    [143]魏兴萍,赵纯勇,杨华.基于GIS的小流域土壤侵蚀评价研究[J].重庆师范大学学报(自然科学版),2005,22(4):62-65.
    [144]徐天蜀,彭世揆,岳彩荣.基于GIS的小流域土壤侵蚀评价研究[J].南京林业大学学报(自然科学版),2002,26(4):43-46.
    [145]游松财,李文卿.GIS支持下的土壤侵蚀量估算—以江西省泰和县灌溪乡为例[J].自然资源学报,1999,14(l):62-68.
    [146]杨子生.云南省金沙江流域土壤流失方程研究[J].山地学报,2002,20(增刊):1-9.
    [147]南京大学,中山大学,兰州大学合编.土壤学基础与土壤地理学[M].北京市:高等教育出版社,1980,03.
    [148] Chen A L, You S S, Lin D X.Soil physical and chemical properties under differentregeneration of broad leaved forest land[J]. Journal of Zhejiang ForestryCollege,2001,18(2):127-133.
    [149]贺瑶琴.土壤学与土壤理化分析[M].乌鲁木齐:新疆科技卫生出版社,1995.
    [150]1NannipieriP, Grego S, Ceccanti B. Ecological significance of the biological activity insoil[J].Soil Biochemistry,1990,6:293-355.
    [151]李长生.生物地球化学的概念与方法──DNDC模型的发展[J].第四纪研究,2001(,02):89-94.
    [152]何国清.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
    [153]吴侃,葛家新等.开采沉陷预计一体化方法[M].徐州:中国矿业大学出版社,1998.
    [154]雷志东,杨师秀等.土壤水动力学[M].北京:清华大学出版社,1988.
    [155] Giltrap et al.DNDC: A process-based model of greenhouse gas fluxes from agriculturalsoils[J].Agriculture,Ecosystems and Environment,2010,36:292-230.
    [156]李长生.生物地球化学的概念与方法──DNDC模型的发展[J].第四纪研究,2001(,02):89-94.
    [157] Li.Modeling terrestrial ecosystems[J].Complex Systems and Complexity Science,2004,1:49-57.
    [158] Li.Impact of agricultural practices on soil C storage and N2O emissions in6states in theUS[J].Soil Management and Greenhouse Effect,1995,7:101-112.
    [159] Li et al. A model of nitrous oxide evolution from soil driven by rainfall events:1. Modelstructure and sensitivity[J]. Journal of Geophysical Research,1992,97:9759-9776.
    [160]于婧.基于GIS和地统计学方法的土壤养分空间变异及应用研究[D].武汉:华中农业大学,2007.
    [161]王仁铎,胡光道.线性地质统计学[M].北京:地质出版社,1998.
    [162]郭旭东,傅伯杰,马克明等.基于GlS和地统计学的土壤养分空间变异特征研究—以河北省遵化市为例.应用生态学报,2000,11(4):557-563.
    [163]张忠启等.红壤区土壤有机质和全氮含量的空间预测方法[J].生态学报,2010,30(19):5338-5435.
    [164]雷志东,杨师秀等.土壤水动力学[M].北京:清华大学出版社,1988.
    [165]王仁铎,胡光道.线性地质统计学[M].北京:地质出版社,1998.
    [166]王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    [167]王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    [168]孙圆圆.川中丘区稻田生态系统温室气体排放研究[M].雅安:四川农业大学,2007.
    [169] Smith et al.A tool to link agricultural activity data with the DNDC model to estimate GHGemission factor in Canada[J].Ecosystems and Environment,2010,(136):301-309.
    [170] Li.Impact of agricultural practices on soil C storage and N2O emissions in6states in theUS[J].Soil Management and Greenhouse Effect,1995,5:101-112.
    [171] Li et al.Modeling carbon biogeochemistry in agricultural soils[J].Global BiogeochemicalCycles,1994,8:237-254.
    [172] Li et al.A model of nitrous oxide evolution from soil driven by rainfall events:1.Modelstructure and sensitivity.Journal of Geophysical Research.1992,97:9759-9776.
    [173] Li et al.A model of nitrous oxide evolution from soil driven by rainfall events:2.Modelapplications[J].Journal of Geophysical Research,1992b.97:9777-9783.
    [174] Miehle et al.Assessing productivity and carbon sequestration capacity of Eucalyptusglobulus plantations using the process model Fores-DNDC: Calibration andvalidation[J].Ecological Modelling,2006,192:83-94.
    [175] Cui et al.Analyzing the ecosystem carbon and hydrologic characteristics of forestedwetland using a biogeochemical process model[J].Global Change Biology,2005,11:278-289.
    [176]秦晓波.长期施肥对稻田温室气体排放影响的田间观测及模拟研究[D].北京:中国农科院,2005.
    [177]黄树辉.裂缝条件下稻田土壤中N2O的释放和氮溶质运移的机理研究.杭州:浙江大学,2004.
    [178]李虎.DNDC模型在农田氮素渗漏淋失估算中的应用[J].应用生态学报,2009,20(7):1591-1596.
    [179]郑昌玲,王春乙.近地层O3和CO2浓度变化对冬小麦影响的数值模拟:Ⅰ模型结构[J].气象学报,2005,63(2):184-191.
    [180]张忠启,史学正等.红壤区土壤有机质和全氮含量的空间预测方法[J].生态学报,2010,30(19):5338-5245.
    [181]何国清,杨伦等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700