用户名: 密码: 验证码:
不同酸掺杂聚苯胺—环氧涂层对几种金属防腐性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用化学氧化法合成本征态聚苯胺及盐酸掺杂、樟脑磺酸掺杂及氢氟酸掺杂聚苯胺,并用FTIR、XRD及四探针方法对合成的聚苯胺粉末进行表征。结果表明,通过化学氧化法成功合成了本征态聚苯胺及酸掺杂态聚苯胺,酸的主要掺杂部位在醌式结构的氮原子上;经过酸掺杂后,提高了聚苯胺的结晶度和电导率,其中氢氟酸掺杂聚苯胺的电导率较高。
     将合成的聚苯胺粉末添加在环氧树脂中,在碳钢、纯铝及铝合金、镁合金表面制备成涂层,在3.5%NaCl溶液中用EIS研究聚苯胺涂层对几种金属的防护性能,用LEIS研究带缺陷的聚苯胺涂层的防护性能。对浸泡后涂层下的金属进行宏观及SEM观察,研究发现:
     (1)碳钢表面的环氧清漆涂层在浸泡100天后,阻抗值降低至10~6Ω·cm~2以下,涂层失去了保护作用。而在浸泡175天后,本征态聚苯胺涂层的阻抗值在10~7Ω·cm~2,酸掺杂聚苯胺涂层的阻抗值仍在10~8Ω·cm~2,表明涂层仍有较好的防护作用。其中樟脑磺酸掺杂聚苯胺涂层的阻抗值略高于其它涂层的。经过400天浸泡后,环氧清漆涂层下的碳钢发生了非常严重的腐蚀,并有大量的疏松的产物形成,酸掺杂聚苯胺涂层下的碳钢表面发生了丝状腐蚀,但在腐蚀处形成了一层致密的、连续的产物膜。
     (2)纯铝及铝合金表面的环氧清漆涂层分别在浸泡100天和30天后,涂层的阻抗值降低到10~7Ω·cm~2,而此时在两金属基体上的本征态聚苯胺涂层阻抗值仍大于10~8Ω·cm~2。在浸泡215天后,在纯铝及铝合金表面的酸掺杂聚苯胺涂层阻抗值仍维持在10~8Ω·cm~2~109·cm~2,表明涂层对纯铝及铝合金有较好的防护作用,其中氢氟酸掺杂聚苯胺涂层的阻抗值略高于其它涂层的。此外铝合金表面带缺陷的氢氟酸掺杂聚苯胺涂层的阻抗值在浸泡过程中一直高于带缺陷的清漆及本征态聚苯胺涂层的。
     (3)镁合金表面的环氧清漆涂层在浸泡42天后,涂层的阻抗值就降低到10~6Ω·cm~2,失去了保护作用。而浸泡400天后,本征态聚苯胺涂层的阻抗值仍在10~7Ω·cm~2,而酸掺杂聚苯胺涂层的阻抗值仍在10~8Ω·cm~2,表明对镁合金仍有较好的防护作用。其中氢氟酸掺杂聚苯胺涂层的阻抗值略高于其它涂层的。酸掺杂聚苯胺涂层下的镁合金表面形成一层非常致密、连续的产物膜。镁合金合金表面带缺陷的氢氟酸掺杂聚苯胺涂层的阻抗值在浸泡过程中一直高于带缺陷的清漆涂层的。
     通过原位插层聚合法合成的聚苯胺/有机蒙脱土复合粉末延长了溶液的扩散通道,提高了涂层对侵蚀性离子的屏蔽作用,可以进一步提高聚苯胺涂层的防护性能。
     通过综合对涂层的DSC测试、截面的SEM观察,以及聚苯胺涂层在有氧和除氧条件下的EIS测试,并对腐蚀产物膜进行EDS及XPS分析,得出聚苯胺的防护机理为:
     (1)聚苯胺的加入提高了涂层的交联密度,在环氧涂层中具有良好的分散性,提高了涂层的屏蔽性能。
     (2)氧气参与了聚苯胺的氧化还原作用,使金属表面形成具有保护作用的产物膜。而在无氧条件下聚苯胺涂层的防护性能迅速降低。因此,聚苯胺的氧化还原反应是聚苯胺最主要的防护机理。
     (3)酸掺杂提高了涂层的电导率,加速了聚苯胺的成膜过程;掺杂阴离子伴随着聚苯胺的氧化还原过程释放出来,在金属表面与金属形成络合物或不溶物,从而进一步提高了涂层的防护性能。
The emeraldine base polyaniline (PANI) and hydrochloric acid (HCl), camphorsulfonic acid (CSA) and hydrofluoric acid (HF) doped PANI were synthesised by chemicaloxidation method and characterized by FTIR, XRD and four-probe measurements. Theresults of FTIR indicated that the synthesized powders were PANI in emeraldine state oracid doped state. The acid doped location was mainly on nitrogen atoms in the quinoid ringsrather than in the benzenoid ring of PANI. The results of XRD indicated that the crystaldegree of PANI powders was low. The crystal degree and the conductivity of PANI wereincreased by the acid doped anoins. The hydrofluoric acid doped PANI has the highestconductivity among four kinds of PANI powders.
     The epoxy resin coatings containing different PANI powders were prepared on thesurface of steel, pure aluminum, aluminum alloy and magnesium alloy. Corrosionprotection of PANI coatings for several metals was studied by EIS in3.5%NaCl solution.The LEIS was used to study the corrosion protection of defected PANI coatings. The metalsurface beneath coatings was observed by the camera and SEM after immersion. The resultswere as follows:
     (1)The impedance values of varnish coating on the surface of carbon steel were lessthan10~6Ω·cm~2after100day immersion, which indicated that the coating lost itsanticorrosion properties. After175day immersion, the impedance values of emeraldinebase PANI and acid doped PANI coatings was10~7Ω·cm~2and10~8Ω·cm~2, respectively. Theresults indicated that PANI coating showed high anticorrosion properties. The impedancevalues of CSA doped PANI coating were higher than that of other coatings. After400dayimmersion, lots of pit corrosion and loose corrosion product were formed on the surface ofcarbon steel beneath epoxy varnish. The carbon steel surface beneath acid doped PANIcoating was predominated by filiform corrosion, but a compact and continuous productlayer was detected on the corrosion spots.
     (2) The impedance values of varnish coating on the surface of pure aluminium andaluminium alloy were10~7Ω·cm~2after100day immersion and30day immersion,respectively. But the impedance values of emeraldine base PANI were above10~8Ω·cm~2.The impedance values of acid doped PANI coating maintained10~8Ω·cm~2~109·cm~2after 215day immersion. The results indicated that acid doped PANI coating showed highcorrosion protection for pure aluminium and aluminium alloy. The impedance values of HFdoped PANI coating were higher than that of other coatings. The impedance values ofdefected HF acid doped PANI coating on the surface of aluminium alloy were higherthan that of defected emeraldine base PANI coating and defected epoxy varnish coatingduring all immersion time.
     (3) The impedance values of varnish coating on the surface of magnesium alloy were10~6Ω·cm~2after42day immersion, which indicated that coating lost its anticorrosionproperties. After400day immersion, the impedance values of emeraldine base PANIcoating and acid doped PANI coating were10~7Ω·cm~2and10~8Ω·cm~2, respectively. Theresults indicated that PANI coating showed high anticorrosion properties. The impedancevalues of HF doped PANI coating were higher than that of other coatings. Compactprotective layer was formed on the surface of magnesium alloy beneath PANI coating. Theimpedance values of defected HF acid doped PANI coating on the surface ofmagnesium alloy were higher than that of defected epoxy varnish coating during allimmersion time.
     The polyaniline/organophilic montmorillonite (PANI/OMMT) compound powderswhich were synthesized via in-situ emulsion polymerization increased the tortuosity of thediffusion pathways and improved the barrier properties to the electrolyte solution. Therefore,the corrosion protective properties of PANI coating was improved.
     The corrosion protection mechanisms of PANI coating were discussed by the analysisof DSC and SEM of coating, EIS measurements of coatings in deaerated or aerated3.5%NaCl solution, and the SEM, EDS and XPS analyses of the surface of metal beneathcoatings after immersion experiments. The result indicated:
     (1) The barrier properties of coating were improved because of the increaseing ofcrosslink density by the addition of PANI powders.
     (2) The compact protective layer was formed by the reduction-oxidation reaction ofPANI in the case of oxygen presence. The corrosion protection of PANI decreased rapidly inthe solution without O2. Therefore, the main protection mechanism of PANI coating wasreduction-oxidation reaction of PANI.
     (3) The formative speed of protective layer was improved by increased conductance ofacid doped PANI. The doped anions released concomitant redox reaction of PANI andformed protective layer with metal ions. Therefore, the protective effect of coating wasimproved.
引文
[1]陈世刚.导电聚合物对金属腐蚀防护的机理研究[D].中国海洋大学,2008:1-4.
    [2]陈鸿海.金属腐蚀学[M].北京理工大学出版社,1996:1-2.
    [3]燕林.腐蚀的危害[J].石油化工腐蚀与防护技术,2005,2(22):62.
    [4]杨丽霞.有机重防蚀涂层耐蚀性能研究[D].武汉材料保护研究所,2002:6.
    [5]赵麦群,雷阿丽.金属腐蚀与防护[M].国防工业出版社,2002:1-9.
    [6]刘秀晨.金属腐蚀学[M].国防工业出版社,2002:2-3.
    [7]叶康民.金属腐蚀与防护概论[M].高等教育出版社,1995:83.
    [8]邓俊英.聚苯胺微纳米结构的制备及其在防腐蚀技术中的应用研究[D].中国科学院研究生院,2010:2.
    [9]季卫刚.硅烷直接改性环氧涂层的防护性能及其作用机制[D].浙江大学,2007:1-3.
    [10]周立新.环氧树脂的相反转乳化与水性环氧树脂防腐涂料的研究[D].华南理工大学,2004:7.
    [11] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger. Synthesis ofelectrically conducting organic polymers: Halogen derivatives of polyacetylene,(CH)x[J].Journal of Chemical Society,1977,16:578-580.
    [12]王杨勇,强军锋,井新利,姚胜.导电高分子聚苯胺及其应用[J].化工新型材料,2003,31(3):1.
    [13]曲良体.导电高分子微结构材料[D].清华大学,2004:2-3.
    [14]万梅香.导电高分子[J].高分子通报,1999,3:47-53.
    [15]李晓常,李世晋.导电聚合物的进展[J].化工进展,1992,5:47-53.
    [16]王韶旭.无机纳米粒子/导电聚苯胺纳米复合材料的研究[D].中国科学院研究生院,2005:5-6.
    [17]杨亚杰.导电聚合物纳米材料的制备及特性研究[D].电子科技大学,2007:1-2.
    [18]张家鑫.导电高分子纳米材料的电化学合成[D].清华大学,2005:8-10.
    [19] H. kaxmo, Y. Hamada, H. Takahashl. Development of OLED with high stability andluminance efficiency by co-doping methods for full color displays[J]. IEEE Joumal ofSelected Topics in Quantum Electronics,2004,10:30-36.
    [20] P. W. M. Blom, A. J. M. Bernsen, C. T. H. F. Liedenbaum, H. F. M. Schoo, Y. Cronen, P.V. Weijer. Efficiency and stability of polymer light-emitting diodes[J]. Journal of MaterialsScience: Materials in Electronics,2000,11:105-109.
    [21] J. H. Burroughs. Light-emitting diodes based on conjugated polymers[J]. Letters toNature,1990,347:539-541.
    [22] G. Yu, J. Wang, J. Mcelvain, A. J. Heeger. Large-area, full-color image sensor madewith semiconducting polymers[J]. Advanced Materials,1998,10:1431-1434.
    [23]薛怀国,沈之荃,张一烽,李永舫.导电聚合物传感器的研究进展[J].化学通报,2001,7:402-406.
    [24] A. Sturha, S. T. Mehoo. High performance gas sensor based on multilayer films[J].Sensors and Actuators B,2002,32:18-22.
    [25] J. Bobacka, A. Ivaska, A. Lewenstam. Potentiometric ion sensors based on conductingpolymers[J].2003,15:366-374.
    [26]罗利军,谭学才,邹小勇,蔡沛祥.导电聚合物传感器的研究进展[J].分析测试学报,2005,4:122-127.
    [27] S. Moller, C. Periov, W. Jaekson, C. Taussig, S. R. Forrest. Electrochromic conductivepolymers fuses for hybrid organic/inorganic semiconductor memories[J]. Journal of AppliedPhysics,2003,94:7811-7819.
    [28] D. Nillson, T. Kugler, P. Svensson, M. Berggern. An all-organic sensor-transistor basedon novel electrochemical transducer concept printed electrochemical sensor on paper[J].Sensors and Actuators, B: Chemieal,2002,86:193-197.
    [29] J. E. MarK. Physical Properties of Polymers Handbook[M]. NewYork: Springer-Verlag,2001:324.
    [30] S. Moller, C. Perlov, W. Jaekson, C. Taussig, S. R. Forrst. A Polymer/semiconductorwrite-once read-many-times memory[J]. Letters to Nature,2003,426:166-169.
    [31] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, D. M. DE Leeuw. Low-cost allpolymer integrated circuits[J]. Applied Physics Letters,1998,73:108-110.
    [32]王利祥,王佛松.导电聚合物-聚苯胺的研究进展[J].应用化学,1990,7(6):1-8.
    [33] A. G. MacDiarmid, A. J. Epstein. Secondary doping in polyaniline[J]. Synthetic metals,1995,69:85-92.
    [34]李伟平.导电聚苯胺的制备及其电磁性能的研究[D].大连理工大学,2007:9-14.
    [35]马玉亮.功能性质子酸掺杂聚苯胺及聚苯胺/尼龙66复合材料研究[D].青岛科技大学,2007:1-2.
    [36]邵亮.聚苯胺及其复合材料的制备及功能性和可加工性研究[D].兰州大学,2008:9-11.
    [37]王俊生.聚苯胺微/纳米结构的构建与表征[D].天津大学,2009:9-10.
    [38]王佛松,王利祥,景遐斌.聚苯胺的掺杂反应[J].武汉大学学报,1993(6):65-73.
    [39]景遐斌,王利祥,王献红,耿延候,王佛松.导电聚苯胺的合成、结构、性能和应用[J].高分子学报,2005,5:655-663.
    [40]张鑫.聚苯胺/纳米ZnO复合材料制备、表征及光电特性研究[D].北京化工大学,2005:30.
    [41]王建雄.聚苯胺的制备及其防腐性能的研究[D].太原理工,2008:8-10.
    [42]陈靖禹.新型聚苯胺微/纳米结构的合成及性能研究[D].吉林大学,2007:14.
    [43]许一婷.功能酸掺杂的环取代聚苯胺的化学合成及其结构、性能的关联研究[D].厦门大学,2004:13-14.
    [44]石玉,师杰.酸掺杂聚苯胺的研究进展[J].当代化工,2011,40(1):67-68.
    [45]李志勇.掺杂态聚苯胺的研究[D].天津工业大学,2007,16-17.
    [46]李倩倩.聚苯胺、聚吡咯的掺杂改性及导电性及防腐性能的研究[D].中南大学,2008:6.
    [47]师杰.聚苯胺导静电防腐涂料的研究[D].西安工业大学,2011,5-7.
    [48] D.W. DeBerry. Modification of the electrochemical and corrosion behavior of stainlesssteels with an electroactive coating, Journal of Electrochemical Society,1985,132(5):1022-1026.
    [49]周妮娜,李侃社,周安宁.聚苯胺防腐蚀涂料研究进展[J].化工新型材料,2006,34(2):21.
    [50] B. Wessling, J. Posdorfer. Corrosion prevention with an organic metal (polyaniline):corrosion test results[J]. Electrochemical Acta,1999,44:2139-2147.
    [51] J. Posdorfer, B. Wessling. Corrosion protection by the organic metal polyaniline:results of immersion, volta potential and impedance studies[J]. Fresenius Journal ofAnalytical Chemistry,2000,367:343-345.
    [52] Wessling B. Dispersion as the link between basic research and commercial applicationsof conductive polymers (Polyaniline)[J]. Synthetic Metals,1998,93:143-154.
    [53]王建雄,郭清萍,郭有军.聚苯胺防腐蚀涂料的研究现状[J].腐蚀与防护,2008,29(4):213-214.
    [54]闫茂娟.纳米结构聚苯胺的制备及其在不锈钢上的方法行为的研究[D].天津大学,2007:13-15.
    [55]李倩倩.聚苯胺、聚吡咯的掺杂改性及导电性与防腐性能的研究[D].中南大学,2008:6-7.
    [56]吴宗汉,朱方铭,罗曼.聚苯胺防腐涂料的制备与应用[J].现代涂料与涂装,2008,11(12):35.
    [57]孙毅,钟发春,舒远杰,郝晓飞,刘勇.聚苯胺的腐蚀防护机理及其在金属防腐中的应用[J].材料导报综述篇,2009,23(7):65-66.
    [58]杨小刚.聚苯胺纳米结构的制备及其防腐性能的研究[D].中国科学院研究生院,2008:23-24.
    [59] B. Wessling. Passivation of metals by coating with polyaniline: corrosion potentialshift and morphological changes [J]. Advanced Materials,1994,6:226-228.
    [60] M. Fahlman, S. Jasty, A. J. Epstein. Corrosion Protection of iron/steel by emeraldinebase polyaniline: an X-ray photoelectron spectroscopy study[J]. Synthetic Metals,1997,85:1323-1326.
    [61] P. J. Kinlen, D. C. Silverman, C. R. Jefreys. Corrosion protection using polyanilinecoating for mulations [J].Synthetic Metals,1997,85:1327-1332.
    [62] Z. Deng, W. H. Smyrl, H. S. White. Stabilization of metal-metal oxide surfaces usingelectroactive polymer films[J]. Journal of the Electrochemical Society,1989,136:2152-2157.
    [63] A. G. MacDiamtid. Polyaniline and polypyrrole: where are we headed[J]. SyntheticMetals,1997,84:27-34.
    [64] T. Schauer, A. Joos, L. Dulog, C. D. Eisenbach. Protection of iron against corrosionwith polyaniline primers[J]. Progress in Organic Coatings,1998,33:20.
    [65] F. C. Jain, J. J. Rosato, K. S. Kalonia. Formation of an active electronic barrier atAl/semiconductor interfaces: a novel approach in corrosion prevention[J]. Corrosion,1986,42(12):700-707.
    [66]邵亮,冯辉霞,邱建辉,张国宏,赵阳,王毅,张建强.酸掺杂聚苯胺及其防腐涂料的研究[J].涂料工业,2008,38(7):52-56.
    [67]王东红,刘利文.聚苯胺防腐性能及应用研究[J].防腐蚀涂料与涂装,2011,26(10):11-12.
    [68]邓宇强,葛岭梅,周安宁.聚苯胺防腐蚀涂料的研究进展[J].腐蚀与防护,2003,24(8):334-335.
    [69]王想.防腐蚀涂料的研究[D].武汉理工大学,2007:13-14.
    [70] W. K. Lu, R. L. Elsenbauer, B. Wessling. Corrosion protection of mild steel bycoatings containing polyaniline[J].Synthetic Metal,1995(71):2163-2166.
    [71] Y. Wei, J. G. Wang, X. R. Jia. Polyaniline as corrosion protection coatings on coldrolled steel[J]. Polymer,1995(36):4535-4537
    [72]马利,杨桔,王成章.复合型聚苯胺防腐涂料的研究进展[J].表面技术,2006,35(2):7-8.
    [73]黄美荣,杨海军,李新贵.聚苯胺复合防腐涂料的制备及应用[J].涂料工业,2004,34(1):48-49.
    [74]刘军喜,苏光耀,高德淑.聚苯胺防腐涂料的制备与性能研究[J].表面技术,2005,34(1):50-52.
    [75] A. Talo, P. Passiniemi, O. Forsen. Polyaniline epoxy coating with good anticorrosionproperties[J]. Synthetic Metal,1997(85):1333-1334.
    [76] Y. P. Li, H. M. Zhang, X. H. Wang, J. Li, F. S. Wang. Role of dissolved oxygendiffusion in coating defect protection by emeraldine base[J]. Synthetic Metals,2011(161):2312-2317.
    [77] Y. P. Li, H. M. Zhang, X.H. Wang, J. Li, F. S. Wang. Growth kinetics of oxide films atthe polyaniline/mild steel interface[J]. Corrosion Science xxx (2011) xxx–xxx.
    [78] S. Radhakrishnan, Narendra Sonawane, C.R. Siju. Epoxy powder coatings containingpolyaniline for enhanced corrosion protection[J]. Progress in Organic Coatings,2009(64):383-386.
    [79] M. G. Hosseini, M. Jafari, R. Najjar. Effect of polyaniline-montmorillonitenanocomposite powders addition on corrosion performance of epoxy coatings on Al5000[J].Surface&Coatings Technology,2011(206):280-286.
    [80] K. Kamaraj, V. Karpakam, S. Sathiyanarayanan, S. Syed Azim, G. Venkatachari.Synthesis of tungstate doped polyaniline and its usefulness in corrosion protectivecoatings[J]. Electrochimica Acta2011(56):9262-9268.
    [81] V. Karpakam, K. Kamaraj, S. Sathiyanarayanan, G. Venkatachari, S. Ramu.Electrosynthesis of polyaniline-molybdate coating on steel and its corrosion protectionperformance[J]. Electrochimica Acta,2011,56:2165-2173.
    [82] S. Sathiyanarayanan, V. Karpakam, K. Kamaraj, S. Muthukrishnan, G. Venkatachari.Sulphonate doped polyaniline containing coatings for corrosion protection of iron[J].Surface&Coatings Technology,2010,204:1426-1431.
    [83]张鉴清, F. Mansfeld.交流阻抗法评价有机涂层[J].腐蚀科学与防护技术,1989,1(3):15.
    [84] H. Leidheiaser. Corrosion protection by organic coating[J]. Electrochemical Society,1987,87(2):60.
    [85] F. Mansfeld, M. W. Kending, S. Tsai. Evaluation of corrosion behavior of coatingmetals with AC impedance measurement[J]. Corrosion,1982,38:478-485.
    [86] G. W. Walter. A critical review of d.c. electorchemical tests for painted metals[J].Corrosion science,1986,26(1):39-47.
    [87] F. Mansfeld, C. H. Tsai. Determination of coating deterioration with EIS[J]. Corrosion,1991,47:958-963.
    [88]曹京宜,熊金平,李水,左禹.利用EIS高频区参数评价两种环氧涂层的性能[J].化工学报,2008,59(18):2851-2856.
    [89]贾梦秋,毛永吉,高双之,国海鹏.交流阻抗法评价玻璃鳞片乙烯基酯树脂涂料的耐蚀性[J].腐蚀科学与防护技术,2007,27(2):106-108.
    [90] R. S. Lillard, P. J. Moran, H. S. Isaacs. A novel method for generating quantitative localelectrochemical impedance spectroscopy[J]. Journal of Electrochemical Society,1992,139:1007-1012.
    [91] H. S. Isaacs, M. W Kending. Determination of surface in homogeneities using probeimpedance technique[J]. Corrosion,1980,36(6):269-274.
    [92] I. Annergren, D. Thierry, F. Zou. Localized electrochemical impedance spectroscopyfor studying pitting corrosion on stainless steels[J]. Journal of Electrochemical Society,1997,144:1208-1215.
    [93] F. Zou, D. Thierry, H. S. Isaacs.A high-resolution probe for localized electrochemical impedance spectroscopy measurements[J].Journal of Electrochemical Society,1997,144:1957-1965.
    [94] I. Annergren, F. Zou, D. Thierry.Application of localized electrochemical techniquesto study kinetics of initiation and propagation during pit growth[J].Electrochemical Acta,1999,44:4383-4393.
    [95] R.S. Lillard, J. Kruger, W.S. Tait, P. J. Moran.Using local electrochemical impedancespectroscopy to examine coating failure[J].Corrosion,1995,51:251-269.
    [96] M. W. Wittmann, R. B. Leggat, S. R. Taylor.The detection and mapping of defects inorganic coatings using local electrochemical impedance methods[J]. Journal ofElectrochemical Society,1999,146(11):4071-4075.
    [97] S. R. Taylor. Incentives for using local electrochemical impedance methods in theinvestigation of organic coatings[J]. Progress in Organic Coatings,2001,43:141-148.
    [98]李远.316L不锈钢在氯化钠溶液中的应力腐蚀研究[D].哈尔滨工程大学,2011:10-13.
    [99] J. B. Jorcin, E. Aragon. Delaminated areas beneath organic coating: A localelectrochemical impedance approach[J]. Corrosion Science,2006,48:1779-1790.
    [100]章妮,孙志华,张琦,蔡建平.局部阻抗测试技术在评定有机涂层环境失效中的应用[J].装备环境工程,2007,4(1):75-78.
    [101]骆鸿,肖葵,董超芳,李晓刚,魏丹.金属腐蚀微区电化学研究进展(2)局部电化学阻抗谱[J].腐蚀与防护,2009,30(8):511-512.
    [102] Geneviéve Baril, Christine Blanc, Michel Keddam, Nadine Pébère. Localelectrochemical impedance spectroscopy applied to the corrosion behavior of an AZ91magnesium alloy[J]. Journal of the electrochemical society,2003,150(10): B488-B493.
    [103] C. F. Dong, H. Sheng, Y. H. An, X. G. Li, K. Xiao, Y. F. Cheng. Corrosion of7A04aluminum alloy under defected epoxy coating studied by localized electrochemicalimpedance spectroscopy[J]. Progress in Organic Coatings,2010,67:269-273.
    [104] C. Zhong, X. Tang, Y.F. Cheng. Corrosion of steel under the defected coating studiedby localized electrochemical impedance spectroscopy[J]. Electrochimica Acta,2008,53:4740-4747.
    [105] F. Zou, D.Thierry. Localized electrochemical impedance spectroscopy for studyingthe degradation of organic coatings[J]. Electrochimica Acta,1997,42:3293-3301.
    [106] S.L. Sinebryukhov, A.S. Gnedenkov, D.V. Mashtalyar, S.V. Gnedenkov.PEO-coating/substrate interface investigation by localised electrochemical impedancespectroscopy[J]. Surface&Coatings Technology,2010,205:1697-1701.
    [107] U. Bertoeci, F. Huet. Noise analysis applied to electrochemical system[J].Corrosion,1995,51:131-144.
    [108] T. Haruna, Y. Morikawa, S. Fujimoto. Electrochemical noise analysis for estimationof corrosion rate of carbon steel in bicarbonate solution [J].Corrosion science,2003,45:2093-2104.
    [109] Y. Cheng, J. Luo, M. Wilmott. Spectral analysis of electrochemical noise withdifferent transient shapes[J]. Electrochemical Acta,2000,45:1763-1771.
    [110] A. Aballe, M.BethencoUrt, F.Botana. Wavelet transform-based analysis forelectrochemical noise[J]. Electrochemistry Communication,1999,1:266-270.
    [111] B. Zhao, J.Li, R. Hu. Study on the corrosion behavior of reinforcing steel in cementmortar by electrochemical noise measurements[J]. Electrochemical Acta,2007,52:3976-3985.
    [112]陈崇木.镁及镁合金薄液膜下腐蚀行为研究[D].哈尔滨工程大学,2009:22-27.
    [113]刘晓兰.镁合金化学转化膜成膜机理及其载波改性的研究[D].哈尔滨工程大学,2010:14-20.
    [114] H. Al-Mazeedi, R.Cottis. A practical evaluation of electrochemical noise parametersas indicators of corrosion type[J]. Electrochemical Aeta,2004,49:2787-2793.
    [115] R.Cottis. Interpretation of electrochemical noise data[J].Corrosion,2001,57:265-276.
    [116] J. Sanchez-Amaya, R. Cottis, F. Botana. Shot noise and statistical parameters for theestimation of corrosion mechanisms[J].Corrosion Science,2005,47:3280-3299.
    [117]胡会利,李宁等.电化学测量[M].北京国防工业出版社,2007:259-289.
    [118] D. A. Eden, G. D. John, J. L. Dawson. Corrosion monitoring[P]. US.Patent. No.5139627.1992.
    [119]张鉴清,张昭,曹楚南.电化学噪声的分析与应用-I电化学噪声的分析原理[J].中国腐蚀与防护学报,2001,21(5):310-320.
    [120] U. Bertoeei, J. Frydman, C. Gabrielli. Analysis of electrochemical power spectraldensity applied to corrosion studies[J].Journal of Electrochemical Society,1998,145(8):2780.
    [121]董泽华,郭兴蓬,郑家堑.电化学噪声的分析方法[J].材料保护,234(7):20-23.
    [122]朱希安,金声震,宁书年.小波分析的应用现状及展望[J].煤田地质与勘探,2003,31(2):51-55.
    [123]刘晓方,王汉功,权高峰.利用小波变换检测电化学噪声信号波形[J].分析化学,2001,29(2):161.
    [124]高尚明,宋小平,庞兴收.小波分析在腐蚀电化学瞬态检测中的应用[J].中国腐蚀与防护学报,2001,21(4):245-249.
    [125] R. Cottis. Interpretation of electrochemical noise data [J].Corrosion,2001,57:265-276.
    [126]张颖君.聚苯胺对镁合金环氧涂层耐蚀性能的影响[D].哈尔滨工程大学,2010:15-16.
    [127]黄辉.聚苯胺耐蚀涂层的研究[J].哈尔滨工大学,2009:12.
    [128] J. S. Tang, X. B. Jing, B. C. Wang, F. Wang. Infrared-spectra of soluble polyaniline[J].Synthetic Metal,1988,24:231-238.
    [129] A. Parsa, S. Ab Ghani. The improvement of free-radical scavenging capacity of thephosphate medium electrosynthesized polyaniline[J]. Electrochemical Acta,2009,54:2856-2860.
    [130] S. R. Moraes, D. Huerta-Vilca, A. J. Motheo. Characteristics of polyanilinesynthesized in phosphate bufer solution[J]. Europe Polymer Journal,2004,40:2033-2041.
    [131] I. eděnková, M. Trchová, Natalia V. Blinova, J. Stejskal. In-situ polymerizedpolyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid[J].Thin Solid Films,2006,515:1640-1646.
    [132]於黄中,陈明光,黄河.不同类型的酸掺杂对聚苯胺结构和电导率的影响[J].华南理工大学学报(自然科学版),2003,31(5):22-23.
    [133]高利民,张金霞,李宁宁,卢伟,张立群,瞿雄伟. DBSA掺杂聚苯胺的制备、表征及其导电性能研究[J].中国塑料,2009,2003(1):37-40.
    [134]黄忠良,杨春明.掺杂功能磺酸的导电聚苯胺的合成及其红外光谱研究[J].光谱实验室,2000,17(2):143-146.
    [135] L.G.S. Gray, B.R. Appleman. EIS electrochemical impedance spectroscopy-a tool topredict remaining coating life[J]. Journal of Protective Coatings and Linings,2003,20:66-74.
    [136] D. Loveday, P. Peterson, B. Rodgers. Evaluation of organic coatings withelectrochemical impedance spectroscopy[J]. JCT Coating Technology,2005,2:22-27.
    [137]曹楚南,张鉴清.电化学阻抗谱导论[M].科技出版社,2002:28.
    [138] F. Deorian, L. Fedrizzi, S. Rossi, P.L. Bonora. Organic coating capacitancemeasurement by EIS: ideal and actual trends[J]. Electrochimica Acta,1999,44:4243-4249.
    [139] A. Amirudin, D. Thierry. Application of electrochemical impedance spectroscopy tostudy the degradation of polymer-coated metals[J]. Progress in Organic Coatings,1995,26:1-28.
    [140] X. W. Liu, J. P. Xiong, Y. W. Lv, Y. Zuo, Study on corrosion electrochemicalbehavior of several different coating systems by EIS[J]. Progress in Organic Coatings,2009,64:497-503.
    [141] H. H. Hassan, E. Abdelghani, M.A. Amin. Inhibition of mild steel corrosion inhydrochloric acid solution by triazole derivatives Part I. Polarization and EIS studies[J].Electrochimical Acta,2007,52:6359-6366.
    [142]马骏.铝合金阳极氧化耐磨防腐涂层制备与性能研究[D].河海大学,2007:1-2.
    [143]刑淑仪.铝合金和钛合金[M].机械工业出版社,1987:35.
    [144]许继辉.铝合金表面稀土转化膜的制备及耐蚀性能的研究[D].中国海洋大学,2009:1-2.
    [145]蔡超.纯铝在中性NaCl溶液中的腐蚀研究[D].宁夏大学,2005:1-5.
    [146]彭文才.铝合金在海水中的腐蚀性能研究[D].湖南大学,2010:2-3.
    [147]陈振华.镁合金[M].化学工业出版社,2004:3.
    [148]黎文献.镁及镁合金[M].中南大学出版社,2005:1.
    [149]刘彦学.镁合金表面冷喷涂技术及涂层性能的研究[D].沈阳工业大学,2007:1.
    [150]贾素秋.镁合金的腐蚀行为与防护[D].吉林大学,2006:1.
    [151] N.S.Mcintyre, C.Chen. Role of impurities on Mg surfaces under ambient exposureconditions[J]. Corrosion Science,1998,40:1697-1709.
    [152] B.L. Mordike, T. Ebert. Magnesium properties-applications-potential[J]. Material forScience Engineering,2001,302:37-45.
    [153]刘敏,宋洋,朱华,汪的华,甘复兴.水性丙烯酸改性环氧树脂性能的影响因素研究[J].上海涂料,2011,48:13-15.
    [154] A. Forsgren, P.A. Schweitzer. Corrosion control through organic coatings[M]. CRCPress, Boca Raton,2006:26-27.
    [155]陈平,王德中.环氧树脂及其应用[M].化学工业出版社,2004:53.
    [156]胡玉明,吴良义.固化剂[M].化学工业出版社,2004:9-11.
    [157] S. Sathiyanarayanan, S. Syed Azim, G. Venkatachari. Corrosion protection ofmagnesium ZM21alloy with polyaniline-TiO2composite containing coatings[J]. Progressin Organic Coatings,2007,59:291-296.
    [158] C. D. Wagner, D. A. Zatko, R. H. Raymond. Use of the oxygen KLL auger lines inidentification of surface chemical states by electron spectroscopy for chemical analysis[J].Analytical Chemistry,1980,52:1445-1451.
    [159] S. Ardizzone, C. L. Bianchi, M. Fadoni, B. Vercelli. Magnesium salts and oxide: anXPS overview[J]. Applied Surface Science,1997,3(119):253-259.
    [160] D. E. Haycock, M. Kasrai, C.J Nicholls. The electronic structure of magnesiumhydroxide (brucite) using X-ray emission, X-ray photoelectron, and auger spectroscopy[J].Journal Chemical Society Dalton Transaction,1978:1791-1796.
    [161] S. N. Kumar, G. Bouyssoux, F. Gaillard. Electronic and structural characterization ofelectrochemically synthesized conducting polyaniline from XPS studies[J]. Surface andInterface Analysis,1990,15:531-536.
    [162] V.I. Nefedov, Y.V. Salyn, G. Leonhardt, R. Scheibe. A comparison of differentspectrometers and charge corrections used in X-ray photoelectron spectroscopy[J]. JournalElectron Spectroscopy and Related Phenomena,1997,10:121-124.
    [163] Allen G.C., Curtis M.T., Hooper A.J., Tucker P.M. X-ray photoelectron spectroscopy ofiron-oxygen systems[J]. Journal of Chemical Society.1974:1525-1530.
    [164] B.J. Tan, K.J. Klabunde, P.M.A. Sherwood. X-ray photoelectron spectroscopy studiesof solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobaltparticles on alumina[J]. Chemical material,1990,2:186.
    [165] P. Rannou, D. Rouchon, Y.F. Nicolau, M. Nechtschein, A. Ermolieff. Chemicaldegradation of aged CSA-protonated PANI films analyzed by XPS[J]. Synthetic metals,1999,101:823-824.
    [166] C. D. Wagner, Studies of the charging of insulators in ESCA[J]. Journal of ElectronSpectroscopy and Related Phenomena,1980,18:345-349.
    [167] W.A. Brainard, D.R. Wheeler J. Vac. Sci. Technol.,1978,15:1801.
    [168] Nefedov V.I., Gati D., Dzhurinskii, B.F., Sergushin N.P., Salyn Y.V. Zh. Neorg.Khimii,1975,20:2307.
    [169] Jose′E. Pereira da Silva, Susana I. Co′rdoba de Torresi, Roberto M. Torresi.Polyaniline acrylic coatings for corrosion inhibition: the role played by counter-ions[J].Corrosion Science,2005,47:811-822.
    [170] E.E.A. El Aal, S.M.A. El Haleem. Kinetics of oxide film growth and destruction oniron surface in carbonate solutions[J]. Corrosion Engineering Science and Technology,2008,43:219-224.
    [171] G.T. Burstein, R.J. Cinderey. Evolution of the corrosion potential of repassivatingaluminium surfaces[J]. Corrosion Science,1992,33:475-492.
    [172] G.T. Burstein, R.J. Cinderey. The potential of freshly generated metal surfacesdetermined from the guillotined electrode-a new technique[J]. Corrosion Science,1991,32:1195-1211.
    [173] J. Horacio Salavagione, C. A. Diego, T. Selma, B. Mohammed, B. Abdelghani, M.Emilia. Effect of the intercalated cation on the properties of poly(o-methylaniline)/maghniteclay nanocomposites[J]. European Polymer Journal,2008,44:1275-1284.
    [174] J. M. Yeh, Sh. J. Liou, Ch. Y. Lai, P. Ch. Wu. Enhancement of corrosion protectioneffect in polyaniline via the formation of polyaniline-clay nanocomposite materials[J].Chemistry of Materials,2001,13,1131-1136.
    [175] J. W. Kim, F. Liu, H. J. Choi, S. H. Hong, J. S. Joo. Intercalated polypyrrole/Na+-montmorillonite nanocomposite via an inverted emulsion pathway method[J]. Polymer,2003,44:289-293.
    [176] M. Ch. Lai, K. Ch. Chang, J. M. Yeh, Sh. J. Liou, M. F. Hsieh, H. Sh. Chang.Advanced environmentally friendly anticorrosive materials prepared from water-basedpolyacrylate/Na+-MMTclay nanocomposite latexes[J]. European Polymer Journal,2007,43:4219-4228.
    [177] J. M. Yeh, Ch. T. Yao, C. F. Hsieh, L. H. Lin, P. L. Chen, J. Ch. Wu, H. Ch. Yang, Ch.P. Wu. Preparation, characterization and electrochemical corrosion studies onenvironmentally friendly waterborne polyurethane/Na+-MMT clay nanocompositecoatings[J]. European Polymer Journal,2008,44:3046-3056.
    [178]刘凌玉,何立凡,李效玉.有机蒙脱土改性无溶剂环氧涂料的研究[J].涂料工业,2007,37(10):5-10.
    [179] K. C. Chang, S. T. Chen, H. F. Lin, Ch. Y. Lin, H. H. Huang, J. M. Yeh, Y. H. Yu.Effect of clay on the corrosion protection effciency of PMMA/Na+-MMT claynanocomposite coatings evaluated by electrochemical measurements[J]. European PolymerJournal,2008,44:13-23.
    [180] J. M. Yeh, T. H. Kuo, H. J. Huang, K. Ch.Chang, M. Y.Chang, J. Ch. Yang.Preparation and characterization of poly(o-methoxyaniline)/Na+-MMT clay nanocompositevia emulsion polymerization: Electrochemical studies of corrosion protection[J]. EuropeanPolymer Journal.2007,43:1624-1634.
    [181] Z. L. Huang, C. M. Yang. Study on synthesis and their FT-IR Spectra of polyanilinedoped with functional sulfonic acids[J]. Chinese Journal of Spectroscopy Laboratory,2000,17:143-146.
    [182] Y. Chen, X. H. Wang, J. Li, J.L. Lu, F. S. Wang. Long-term anticorrosion behaviourof polyaniline on mild steel[J]. Corrosion Science,2007,49:3052-3063.
    [183]张颖君,邵亚薇,孟国哲,张涛,王福会.蒙脱土对镁合金聚苯胺/环氧涂层耐蚀性能的影响[J].材料保护,高性能防腐蚀涂装及表面保护技术的应用与发展-第16届全国表面保护技术交流会论文集,2011:112-114.
    [184]吕世昌.原位聚合法制备层状无机物基丙烯酸醋/环氧树脂纳米复合材料及其性能研究[D].中国科学技术大学,2009:16-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700