用户名: 密码: 验证码:
铁矿石烧结过程的数值模拟与试验验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁矿石烧结过程是钢铁工业中关系到高炉生产的产量、质量及能耗的重要环节。近年来,随着我国钢铁工业的迅猛发展以及铁矿石烧结矿用量的大幅增长,烧结设备大型化已成为必然趋势。同时,烧结床的床料高度越来越高,铁矿石种类波动也越来越大,铁矿石烧结的能耗高、污染物排放多以及铁矿石资源问题也日益严峻。这些问题的出现,使得人们对铁矿石烧结过程机理的研究愈发重视,从机理的研究中寻求能耗低、污染物排放少以及效率高的烧结方法。本文的研究就是在这样的大背景下提出的。本文对铁矿石烧结过程开展了系统的数值模拟工作。
     铁矿石烧结是涉及相变、传热与传质、流动、燃烧、矿物生成与转化等现象的复杂过程。同时考虑上述因素,对其进行数值模拟具有很大难度。本文对烧结过程开展了系统的数值模拟工作。本文主要进行了烧结中物理化学变化的分析、模型基本假设的提出、模型控制方程的构建、关键子模型的建立、模型数值求解、模型的试验验证、模型结果分析等内容的研究。具体地,本文的内容描述如下。
     本文首先介绍了全文的研究背景并开展了文献综述。该部分详细分析了我国钢铁工业的发展现状及存在的问题,指出我国钢铁工业目前处于高速发展时期,但存在着能耗高、污染重等突出问题。随后介绍了我国铁矿石烧结的发展现状及存在的问题,指出我国烧结工艺技术取得了很大的改善,但同时存在着能耗、环保、铁矿石资源缺乏等问题。而后介绍了铁矿石烧结过程的工艺流程和特点,以及烧结床结构的特点。随后,本文对数学模型的研究现状进行了文献综述,对文献中烧结模型的优缺点进行了评述。最后,提出了本文的研究目的。
     第二章详细介绍了铁矿石烧结过程的数学描述。首先分析了烧结床内物理化学过程的特点。针对烧结杯和烧结机中的烧结床的共同点,详细阐述了烧结床不同区域内颗粒(或物料)形态变化及可能发生的物理化学过程,列出了床内可能发生的14个物理化学过程。分析结果得出了铁矿石烧结过程的四个鲜明特点,即1涉及的物理化学过程众多(包括相变、传热与传质、流动、燃烧、矿物生成与转化等)、2床层结构和床料颗粒形态发生很大变化、3各种物理化学过程之间强烈耦合、4过程显示出一维特征。之后,给出了烧结模型的九条基本假设。本模型共考虑13种组分,包括8种固相组分和5种气相组分,以及8个化学反应。描述烧结过程的8个控制方程、以及相应的边界条件和初始条件也同时给出,并作了详细阐述。
     第三章详细介绍了铁矿石烧结模型的关键子模型和模型的数值求解方法。这些关键子模型包括焦炭燃烧、烧结床石灰石分解、白云石分解、烧结床水分干燥和凝结、磁铁矿氧化、矿物熔化和凝固、烧结床传热传质模型。
     第四章首先介绍了澳大利亚必和必拓公司纽卡斯尔技术中心的中试规模烧结杯试验,本文试验数据均来自该技术中心。烧结杯试验结果进行了详细介绍。对试验过程的分析表明试验结果可以用于本文的模型验证。
     第四章随后对本文模型的预测性能进行了全面验证,本文选取25组不同工况范围的烧结杯试验数据,将模型计算结果和试验结果进行了详细对比,证明了本文的烧结模型的合理性。
     第五章利用模型计算结果对铁矿石烧结过程进行了详细剖析,分析了气体固体温度曲线、床内熔体份额分布、二维温度和熔体份额分布、烧结床内压力分布特点、料层结构分析、重要参数的敏感性。本文模型的良好预测效果得到了验证。
     最后,第六章为全文总结部分,该部分对全文结论、创新点和展望进行了总结。本文的主要研究内容为铁矿石烧结床内物理化学过程的机理性研究、铁矿石烧结过程数学模型控制方程建立、铁矿石烧结过程数学模型关键子模型的建立与求解方法、铁矿石烧结数学模型的验证、利用模型结果剖析铁矿石烧结过程。本文的创新点以及工作展望也这里作了详细阐述。
Iron ore sintering is a critical process influencing the productivity, quality and energy consumption of the integrated iron and steel industry. With the rapid development of the iron and steel industry and the increasing consumption of iron ore sinter in China, larger-scale iron ore sintering equipments have appeared in China in recent years. At the same time, the bed height is getting higher and higher and the received iron ore types are varying greatly in sinter plants. The issues of high energy consumption and high pollutant emission and lack of iron ore resources have also getting more and more serious. Therefore, increasing attention has been paid to the investigation of the iron ore sintering mechanisms to explore environmentally-friendly and more efficient sintering technologies. The present work is proposed under this background. Numerical modelling of the iron ore sintering process is carried out in the present study.
     Iron ore sintering is a complex process involving the phenomena of phase change, heat and mass transfer, gas flow, combustion, mineral formation and conversion, etc. Considering its complexity, modelling the sintering process is very difficult. The present work has conducted systematic modelling of the iron ore sintering process. The major contents of the present work include the analyses of the physico-chemical changes during sintering, proposal of the basic model assumptions, construction of the governing equations, building of the key sub-models, numerical solution of the model, model validation as well as the analyses of the model results. The specific contents are introduced as follows.
     At the beginning of chapter one, the research background was introduced and relevant literature review was carried out. In this section, the current development status and the existing problems of the iron and steel industry in China were analyzed. The analyses results indicated that the iron and steel industry in China is developing rapidly, but still has some unsolved problems such as high energy consumption and high pollutant emission. Then the development of iron ore sintering technologies in China was also introduced. The results suggest that the iron ore sintering technologies have developed greatly but still have some significant problems. After that, the flow chart of the iron ore sintering process and its characteristics were introduced. The structure of the iron ore sintering bed was also discussed. Then the review of the iron ore sintering models reported in literature was carried out, in which the strengths and weaknesses of the models were discussed. The objective of the present work was given at the end of chapter one.
     In chapter two, the detailed mathematical description of the iron ore sintering process was given. Based on the common characteristics of the sintering process in the commercial sinter machine and the sinter pot, this section firstly showed the great changes of granule shape (or raw materials) in different zones and the possible physico-chemical changes during the sintering process. Fourteen different physico-chemical changes were indentified. The analyses results indicated the four distinctive features of the sintering process, i.e.1. involvement of a number of physico-chemical changes (including phase change, heat and mass transfer, fluid flow, combustion, melting and solidification),2. great structure changes of the sintering bed and granules during sintering.3. the strong coupling of the physico-chemical changes,4. one-dimensional characteristic. Then, the nine basic model assumptions were shown and analyzed in detail. The present iron ore sintering model takes into account thirteen species including eight solid species and five gas species, as well as eight chemical reactions. Eight governing equations of the sintering process and relevant boundary and initial conditions were given and discussed.
     In chapter three, the key sub-models and the numerical solution method of the iron ore sintering model were introduced in detail. The key sub-models are the models of coke combustion, limestone decomposition, dolomite decomposition, drying and condensation, magnetite oxidation, melting and solidification, heat and mass transfer.
     In the first part of chapter four, the pilot-scale sinter pot test in the Newcastle technology center of BHP Billiton in Australia was carefully introduced. The introduction of the sinter pot testing process indicates that the testing results can be used to validate the iron ore sintering model developed in the present work. Some testing results were introduced. All the experimental data used in the present work were from the Newcastle technology center.
     Latter in chapter four, the iron ore sintering model in the present work was fully validated against the sinter pot test results from the Newcastle technology center. Twenty five cases covering a wide range of experimental conditions were used for model validation. The validation results demonstrated that the present iron ore sintering model is reasonable.
     The iron ore sintering process was further analyzed using the model results in the chapter five. The gas and solid temperature profiles, the distribution of liquid fraction inside the bed, the two-dimensional distributions of temperature and liquid fraction, the gas pressure distribution, the bed structure and the sensitivity of some important parameters were discussed in this section. The results suggested that the model can predict the sintering process reasonably.
     The present work was finally summarized in the chapter six, in which the conclusions and the innovations and the future work were shown. The summarization results suggested that the present work mainly focus on the mechanisms of the physico-chemical changes in the iron ore sintering bed, the development of a new iron ore sintering numerical model, model validation and sensitivity analyses and the understanding of the sintering process using the model results. The innovations of the present work and the perspectives of the future work were also discussed at the end of this chapter.
引文
[1]龙红明.贴矿石烧结过程热状态模型的研究与应用.博士学位论文.长沙:中南大学,2007.
    [2]郭利杰.钢铁工业发展周期及中国钢产量饱和点预测.科技和产业,2011,11(3):5-8,57.
    [3]S. Zhang. The development of Chinese ironmaking industry after entering the 21st century and the existing problems.6th European Coke and Ironmaking Congress (ECIC), Session 1.Dusseldorf:2011:1-9.
    [4]张寿荣,银汉.21世纪炼铁发展趋势及对中国高炉炼铁的挑战.中国冶金,2009,19(9):1-8.
    [5]范立刚.中国钢铁长期需求预测研究.硕士学位论文.沈阳:东北大学,2005.
    [6]向婕.铁矿石烧结过程智能集成优化控钢技术及其应用研究.博士学位论文.长沙:中南大学,,2010.
    [7]陆卫平.用前沿技术调整我国铁工业结构.鞍山科技大学学报,2004,27(3):171-176.
    [8]孙彦广.冶金自动化技术现状和发展趋势.冶金自动化,2004,(1):1-5.
    [9]向齐良.基于烧结终点预测的烧结过程智能控制系统及应用研究.博士学位论文.长沙:中南大学,2008.
    [10]殷瑞钰.中国炼钢技术.现代冶金,2004,(3):4-5.
    [11]袁宇峰.我国钢铁工业自动化的现状和发展.钢铁研究,2004,138(3):49-51.
    [12]张寿荣,银汉.中国高炉炼铁的现状和存在的问题.钢铁,2007,42(9):1-8.
    [13]潘建.群矿烧结烟气减量排放基础理论与工艺研究.博士学位论文.长沙:中南大学,2007.
    [14]龙红明,袁晓丽,刘自民.群矿粉烧结原理与工艺北京:冶金工业出版社,2010.
    [15]郭兴敏.烧结过程铁酸钙生成及其矿物学.北京:冶金工业出版社,1999:1-3.
    [16]B. G. Ellis, R. M. Morcos, A. Navrotsky. Thermodynamics of the melt formation and solidification processes during sintering:high temperature reaction calorimetry. Proceedings ICSTI'06,2006:651-654.
    [17]C. E. Loo. L. T. Matthews. Assimilation of large ore and flux particles in iron ore sintering. Trans. Instn Min. Metall.(Section C:Mineral Process. Extr. Metall.),1992,101:C105-C117.
    [18]C. E. Loo, J. Aboutanios. Changes in water distribution when sintering porous geothitic iron ores. Trans. Instn Min. Metall.(Section C:Mineral Process. Extr. Metall.),2000,109(1):C23-35.
    [19]H. Zhou, J. P. Zhao, C. E. Loo, B. G. Ellis, K. F. Cen. Numerical Modeling of the Iron Ore Sintering Process. Submitted to ISIJ International. Manuscript ID:ISIJINT-2011-097,2011.
    [20]E. Kasai, B. Batcaihan, Y. Omori, N. Sakamoto, A. Kumasaka. Permeation characteristics and void structure of iron ore sinter cake. ISIJ International,1991,31(11):1286-1291.
    [21]E. Kasai, S. Komarov, K. Nushiro, M. Nakano. Design of bed structure aiming the control of void structure formed in the Sinter cake. ISIJ International,2005,45(4):538-543.
    [22]C. E. Loo. Role of coke size in sintering of a hematite ore blend. Ironmaking and steelmaking,1991,18(1):33-40.
    [23]C. E. Loo, N. Tame, G. C. Penny. Effect of iron ores and sintering conditions on flame front properties. Accepted for publication, ISIJ International.,2012,52(6).
    [24]C. E. Loo, R. P. Williams, L. T. Matthews. Influence of material properties on high-temperature zone reactions in sintering of iron ore. Trans. Instn Min. Metall.(Section C:Mineral Process. Extr. Metall), 1992,101:C7-C16.
    [25]M. J. Cumming, W. J. Rankin, J. R. Siemon, J. A. Thurlby, G. J. Thornton, E. A. Kowalczyk, R. J. Batterham. Modeling and simulation of iron ore sintering. Proceedings of 4th international symposium on agglomeration.Warrendale, PA, Iron and steel society of AIME:1985: 763-776.
    [26]M. J. Cumming, J. A. Thurlby. Developments in modelling and simulation of iron ore sintering. Ironmaking and steelmaking,1990, 17(4):245-254.
    [27]I. R. Dash, E. Rose. Simulation of a Sinter Strand Process Ironmaking and Steelmaking,1978,5(1):25-31.
    [28]F. Patisson, J. P. Bellot, D. Ablitzer. Study of moisture transfer during the strand sintering process. Metallurgical and Materials Transactions B 1990,21B:37-47.
    [29]F. Patisson, J. P. Bellot, D. Ablitzer, E. Marliere, C. Dulcy, J. M. Steiler. Mathematical modeling of iron ore sintering process. Ironmaking and Steelmaking,1991,18(2):89-95.
    [30]H. Toda, K. Kato. Theoretical investigation of sintering process. Transactions of the Iron and Steel Institute of Japan,1984,24(3): 178-186.
    [31]H. Toda, T. Senzaki, S. Isozaki, K. Kato. Relationship between Heat Pattern in Sintering Bed and Sinter Properties. Transactions of the Iron and Steel Institute of Japan 1984,24(3):187-196.
    [32]W. Yang, C. Ryu, S. M. Choi, E. S. Choi, D. W. Ri, W. Huh. Mathematical model of thermal processes in an iron ore sintering bed. Metals and Materials International,2004,10(5):493-500.
    [33]W. Yang, K. K. Yang, S. M. Choi. Effect of fuel characteristics on the thermal processes in an iron ore sintering bed.4th International Advanced Fluid Information Symposium/1st Transdisciplinary Fluid Integration Symposium.Sendai, JAPAN:Japan Society of Mechanical Engineers,2004:316-321.
    [34]E. Kasai, F. Saito. Differential thermal analysis of assimilation and melt-formation phenomena in the sintering process of iron ore. ISIJ International,1996,36(8):1109-1111.
    [35]C. E. Loo. Changes in heat transfer when sintering porous geothitic iron ores. Trans,Instn Min. Metall.(Section C:Mineral Process. Extr. Metall.), 2001,109:C11-22.
    [36]C. E. Loo, M. F. Hutchens. Quantifying the resistance to airflow during iron ore sintering. ISIJ International,2003,43(5):630-636.
    [37]D. F. Ball, J. Dartnell, J. Davison, A. Grieve, R. Wild. Agglomeration of Iron Ores. London:Heinemann,1973.
    [38]I. Muchi, J. Higuchi. Theoretical Analysis on the Operation of Sintering [in Japanese]. Tetsu-to-Hagane,1970,56:371-381.
    [39]N. K. Nath, A. J. DaSilva, N. Chakraborti. Dynamic process modelling of iron ore sintering. Steel Research,1997,68(7):285-292.
    [40]N. K. Nath, K. Mitra. Optimisation of suction pressure for iron ore sintering by genetic algorithm. Ironmaking and Steelmaking,2004, 31(3):199-206.
    [41]N. K. Nath, K. Mitra. Mathematical modeling and optimization of two-layer sintering process for sinter quality and fuel efficiency using genetic algorithm. Materials and Manufacturing Processes,2005,20(3): 335-349.
    [42]W. Yang, C. Ryu, S. Choi. Unsteady one-dimensional model for a bed combustion of solid fuels. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy,2004,218(A8):589-598.
    [43]W. Yang, C. Ryu, S. M. Choi, E. S. Choi, D. Lee, W. Huh. Modeling of combustion and heat transfer in an iron ore sintering bed with considerations of multiple solid phases. ISIJ International,2004,44(3): 492-499.
    [44]W. Yang, C. K. Ryu, S. M. Choi. Parametric studies for a solid fuel bed with mathematical model application to an iron ore sintering bed.5th International Symposium on Coal Combustion.Nanjing, PEOPLES R CHINA:Southeast Univ Press,2003:92-98.
    [45]M. Yoshinaga, T. Kubo. Approximate simulation model for sintering process. The Sumitomo Search,1978,20:1-14.
    [46]R. W. Young. Dynamic mathematical model of sintering process. Ironmaking and Steelmaking,1977,6:321-328.
    [47]范晓慧,王海东.烧结过程教学模型与人工智能.长沙:中南大学出版社,2002.
    [48]郑立刚.煤粉射流的高温空气燃烧特性与燃煤锅炉低NOx燃烧优化研究.博士学位论文.杭州:浙江大学,2009.
    [49]P. R. Dawson. Recent developments in iron ore sintering Part 1. Ironmaking and Steelmaking,1993,20(2):135-136.
    [50]J. Mitterlehner, G. Loeffler, F. Winter, H. Hofbauer, H. Schmid, E. Zwittag, T. H. Buergler, O. Pammer, H. Stiasny. Modeling and simulation of heat front propagation in the iron ore sintering process. ISIJ International,2004,44(1):11-20.
    [51]R. Venkataramana, S. S. Gupta, P. C. Kapur, N. Ramachandran. Mathematical Modelling and Simulation of the Iron Ore Sintering Process. Tata Search,1998:50-55.
    [52]R. Venkataramana, S. S. Gupta, P. C. Kapur. A combined model for granule size distribution and cold bed permeability in the wet stage of iron ore sintering process. International Journal of Mineral Processing, 1999,57(1):43-58.
    [53]R. Venkataramana, P. C. Kapur, S. S. Gupta. Modelling of granulation by a two-stage auto-layering mechanism in continuous industrial drums. Chemical Engineering Science,2002,57(10):1685-1693.
    [54]M. V. Ramos, E. Kasai, J. Kano, T. Nakamura. Numerical simulation model of the iron ore sintering directly describing the agglomeration phenomenon of granules in the packed bed. ISIJ International,2000, 40(5):448-454.
    [55]S. Sato, T. Kawaguchi, M. Ichidate, M. Yoshinaga. Melting Model for Iron Ore Sintering Transactions of the Iron and Steel Institute of Japan, 1986,26(4):282-290.
    [56]H. Yamaoka, T. Kawaguchi. Development of a 3-d sinter process mathematical simulation model. ISIJ International,2005,45(4): 522-531.
    [57]W. Yang. Combustion modeling of the solid fuel bed and its application. Ph.D Thesis. Korea Advanced Institute of Science and Technology,2003.
    [58]W. Yang, A. Choi, E. S. Choi, D. W. Ri, S. Kim. Combustion characteristics in an iron ore sintering bed-evaluation of fuel substitution. Combustion and Flame,2006,145(3):447-463.
    [59]袁熙志,周取定.铁矿石烧结过程基本理论的研究.见:徐瑞图.吴胜利,编.中国铁矿石烧结研究一周取定教授文集.北京:冶金工业出版社,1997:203-221.
    [60]龙红明,范晓慧,毛晓明,姜涛,陈许玲.基于传热的烧结料层温度分布模型.中南大学学报(自然科学版)2008,39(3):436-442.
    [61]龚一波,黄典冰,杨天钧.烧结料层温度分布模型解析解及其统—形式.北京科技大学学报,2002,24(4):395-399.
    [62]H. Zhou, J. P. Zhao, L. G. Zheng, C. L. Wang, K. F. Cen. Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization. Engineering Applications of Artificial Intelligence,2012,25(1):147-158.
    [63]F. Wu, H. Zhou, T. Ren, L. Zheng, K. Cen. Combining support vector regression and cellular genetic algorithm for multi-objective optimization of coal-fired utility boilers. Fuel,2009,88(10):1864-1870.
    [64]F. Wu, H. Zhou, J.-P. Zhao, K.-F. Cen. A comparative study of the multi-objective optimization algorithms for coal-fired boilers. Expert Systems with Applications,2011,38(6):7179-7185.
    [65]L. Zheng, H. Zhou, C. Wang, K. Cen. Combining Support Vector Regression and Ant Colony Optimization to Reduce NOx Emissions in Coal-Fired Utility Boilers. Energy & Fuels,2008,22(2):1034-1040.
    [66]L.-G. Zheng, H. Zhou, K. Cen, C. Wang. A comparative study of optimization algorithms for low NOx combustion modification at a coal-fired utility boiler. Expert Systems with Applications,2009,36(2, Part 2):2780-2793.
    [67]Y. Zheng, Z. Wang. Distribution and burning modes of char particles during combustion. Fuel,1996,75(12):1434-1440.
    [68]H. Zhou, G. Mo, J. Zhao, J. Li, K. Cen. Experimental Investigations on the Performance of a Coal Pipe Splitter for a 1000 MW Utility Boiler: Influence of the Vertical Pipe Length. Energy & Fuels,2010,24(9): 4893-4903.
    [69]H. Zhou, X. Qian, K. Cen, J. Fan. Optimizing pulverized coal combustion performance based on ANN and GA. Fuel Processing Technology,2004,85(2-3):113-124.
    [70]范晓慧,黄天正,尹蒂.自适应预报在烧结中的应用.钢铁,1996,31(7):5-8.
    [71]范晓慧,王海东,黄天正.以碱度为中心的烧结矿化学成分控制专家系统.烧结球团,1997,22(4):1-3.
    [72]范晓慧,杨世农.烧结矿化学的超前预报模型.烧结球团,1993,18(4):1-4.
    [73]郭文军,王福利,李明忠.基于神经网络的烧结矿化学成分超前预报.烧结球团,1997,22(5):7-10.
    [74]申炳昕.基于神经网络的烧结矿化学成分预报模型的研究.硕士学位论文.长沙:中南大学,2002.
    [75]姜波.烧结过程透气性的多级模糊综合评判和操作指导系统的研究.长沙:中南工业大学,2000.
    [76]孟建忠,党荣富.烧结热平衡与节能降耗.烧结球团,1998,23(1):18-22.
    [77]谢安国,陆钟武.神经网络BP模型在烧结工序能耗分析中的应用.冶金能源,1998,17(5):8-10.
    [78]冯建生,王秀芝.一格基于神经网络的配矿专家系统.冶金自动化,1999,23(4):7-10.
    [79]姜宏州,张学东,张鸿勋.基于模糊逻辑推理的烧结机尾断面图像平滑处理.烧结球团,1999,24(5):1-4.
    [80]吴为民.烧结混合料水份检测及智能控制系统.烧结球团,1997,22(4):38-40.
    [81]D. Debrincat, C. E. Loo. Factors influencing particulate emissions during iron ore sintering. ISIJ international,2007,47(5):652-658.
    [82]D. Debrincat, C. E. Loo, M. E. Hutchens. Effect of iron ore particle assimilation on sinter structure. ISIJ international,2004,44(8): 1308-1317.
    [83]C. E. Loo, W. Leung. Factors Influencing the Bonding Phase Structure of Iron Ore Sinters. ISIJ International,2003.43(9):1393-1402.
    [84]C. E. Loo. A perspective of geothitic ore sintering fundamentals. ISIJ International.2005,45(4):436-448.
    [85]赵加佩,周昊,岑可法.辐射废锅内的高温高压合成气的辐射特性.浙江大学学报(工学版),2010,44(9):1781-1786.
    [86]杨世铭,陶文铨.传热学,第三版.北京:高等教育出版社,1998.
    [87]C. E. Loo, D. J. Wong. Fundamental insights into the sintering behaviour of goethitic ore blends. ISIJ International,2005,45(4): 459-468.
    [88]C. E. Loo, D. J. Wong. Fundamental factors determining laboratory sintering results. ISIJ International,2005,45(4):449-458.
    [89]S. Ergun. Fluid Flow Through Packed Columns. Chemical Engineering Progress,1952,48(2):89-94.
    [90]S. S. Gupta, R. Venkataramana. Mathematical model of air flow during iron ore sintering process. Iron and Steelmaker,2000,27(2):35-41.
    [91]N. Dube, E. F. Vegman. A mathematical model for the control of metallurgical properties of the product sinter. Conference on Computational Modeling of Materials, Minerals and Metals Processing.San Diego, Ca:Minerals, Metals & Materials Soc,2001: 251-262.
    [92]E. Kasai, Y. Omori, H. Taketomt, J.-I. Yagi. Coke combustion rate and transport phenomena at the combustion and assimilation zones in the course of sintering. Proceedings of the 6th process technology conference:Fifth international iron and steel congress, washington meeting.Washington:1986:555-561.
    [93]S. Machida, T. Higuchi, N. Oyama, H. Sato, K. Takeda, K. Yamashita, K. Tamura. Optimization of coke breeze segregation in sintering bed under high pisolite ore ratio. ISIJ International,2009,49(5):667-675.
    [94]C. S. Teo, R. A. Mikka, C. E. Loo. Positioning coke particles in iron ore sintering. ISIJ International,1992,32(10):1047-1057.
    [95]P. K. Agarwal. A single particle model for the evolution and combustion of coal volatiles. Fuel,1986,65:803-810.
    [96]K. Annamalai, S. C. Ramalingam. Group Combustion of Char/Carbon Particles. Combustion and Flame,1987,70:307-332.
    [97]K. Annamalai, W. Ryan. Interactive processes in gasification and combustion. Part Ⅰ; Liquid drop arrays and clouds. Progress in Energy and Combustion Science,1992,18:221-295.
    [98]K. Annamalai, W. Ryan. Interactive processes in gasification and combustion-Ⅱ. Isolated carbon, coal and porous char particles. Progress in Energy and Combustion Science,1993,19:383-446.
    [99]K. Annamalai, W. Ryan, S. Dhanapalan. Interactive processes in gasification and combustion—Part Ⅲ Coal-char particle arrays, streams and clouds. Progress in Energy and Combustion Science,1994, 20:487-618.
    [100]E. J. Anthony, D. L. Granatstein. Sulfation phenomena in fluidized bed combustion systems. Progress in Energy and Combustion Science,2001, 27:215-236.
    [101]J. R. Arthur. Reactions between carbon and oxygen. Transactions of the Faraday Society,1951,47:164-178.
    [102]V. S. Babkin. Filtrational combustion of gases. Present state of affairs and prospects. Pure and applied chemistry,1993,65(2):335-344.
    [103]S. W. Baek. Ignition of Particle Suspensions in Slab Geometry. Combustion and Flarne,1990,81:366-377.
    [104]S. W. Baek, K. Y. Ahn. Ignition and Explosion of Carbon Particle Clouds in a Confined Geometry. Combustion and Flame,1994,96: 121-129.
    [105]J. Bi, C. Luo, K.-I. Aoki, S. Uemiya, T. Kojima. A numerical simulation of a jetting fluidized bed coal gasifier. Fuel,1997,76(4):285-301.
    [106]A. Bliek. W. M. V. Poelje, W. P. M. v. Swaaij, F. P. H. v. Beckum. Effects of intraparlicle heat and mass transfer during devolatilization of a single coal particle. AIChE Journal,1985,31(10):1666-1681.
    [107]S. Choi, C. H. Kruger. Modeling coal particle behavior under simultaneous devolatilization and combustion. Combustion and Flame, 1985,61:131-144.
    [108]J. Cooper, W. L. H. Hallett. A numerical model for packed-bed combustion of char particles. Chemical Engineering Science,2000,55: 4451-4460.
    [109]X. Du, K. Annamalai. The Transient Ignition of Isolated Coal Particle. Combustion and Flame,1994,97:339-354.
    [110]X. Du, C. Gopalakrishnan, K. Annamalai. Ignition and combustion of coal particle streams. Fuel,1995,74(4):487-494.
    [111]R. H. Essenhigh, M. K. Misra, D. W. Shaw. Ignition of Coal Particles:A Review. Combustion and Flame,1989,77:3-30.
    [112]M. A. Field. Rate of combustion of size-graded fractions of char from a low-rank coal between 1200°K and 2000°K. Combustion and Flame, 1969,13:237-252.
    [113]W. Fu, Y. Zhang, H. Han, D. Wang. A general model of pulverized coal devolatilization. Fuel,1989,68:505-510.
    [114]W. B. Fu, B. L. Zhang, S. M. Zheng. A relationship between the kinetic parameters of char combustion and the coal's properties. Combustion and Flame,1997,109:587-598.
    [115]S. I. Futko, K. V. Dobrego, E. S. Shmelev, A. V. Suvorov, S. A. Zhdanok. Thermal recovery of sorbents by filtration combustion. Combustion Science and Technology,2007,179:883-903.
    [116]A. N. Hayhurst, M. S. Parmar. Does solid carbon burn in oxygen to give the gaseous intermediate CO or produce CO2 directly:Some experiments in a hot bed of sand fluidized by air. Chemical Engineering Science,1998,53(3):427-438.
    [117]J. R. Howell, M. J. Hall, J. L. Ellzey. Combustion of hydrocarbon fuels within porous inert media. Progress in Energy and Combustion Science, 1996,22:121-145.
    [118]L. Jia, E. J. Anthony, I. Lau, J. Wang. Study of coal and coke ignition in fluidized beds. Fuel,2006,85:635-642.
    [119]J. C. Lee, R. A. Yetter, F. L. Dryer. Transient numerical modeling of carbon particle ignition and oxidation. Combustion and Flame,1995, 101:387-398.
    [120]J. C. Lee, R. A. Yetter, F. L. Dryer. Numerical simulation of laser ignition of an isolated carbon particle in quiescent environment. Combustion and Flame,1996,105:591-599.
    [121]N. Libis, J. B. Greenberg, Y. Goldman. A numerical investigation of aspects of coal powder combustion in a counterflow combustor. Fuel, 1994,73(3):405-411.
    [122]A. Makino, C. K. Law. Quasi-steady and transient combustion of a carbon particle Theory and experimental comparisons. Twenty-first Symposium (International) on Combustion/The Combustion Institute.1986:183-191.
    [123]A. Makino, C, K. Law. An analysis of the transient combustion and burnout time of carbon particles. Proceedings of the Combustion Institute,2009,32:2067-2074.
    [124]V. Manovic, M. Komatina, S. Oka. Modeling the temperature in coal char particle during fluidized bed combustion. Fuel,2008,87:905-914.
    [125]G. Marban. J. J. Pis, A. B. Fuertes. Characterizing fuels for atmospheric fluidized bed combustion. Combustion and Flame,1995,103:41-58.
    [126]M. A. Martins, L. S. Oliveira, A. S. Franca. Modeling and simulation of petroleum coke calcination in rotary kilns. Fuel,2001,80:1611-1622.
    [127]T. X. Phuoc, P. Durbetakip. Heat and mass transfer analysis of a coal particle undergoing pyrolysis. International Journal of Heat and Mass Transfer,1987,30(11):2331-2339.
    [128]K. W. Ragland, T. C. Jehn, J. T. Yang. Coal combustion at high Reynolds number. Eighteenth Symposium (International) on Combustion, The Combustion Institute,1981:1295-1303.
    [129]K. W. Ragland, C. A. Weis. Combustion of single coal particle in a jet. Energy,1979,4:341-348.
    [130]K. W. Ragland, J.-T. Yang. Combustion of millimeter sized coal particles in convectiveflow. Combustion and Flame,1985,60:285-297.
    [131]L. H. S(?)rensen, E. Gjernes, T. Jessen, J. Fjellerup. Determination of reactivity parameters of model carbons, cokes and flame-chars. Fuel, 1996,75(1):31-38.
    {132] L. H. S(?)rensen, J. Saastamoinent, J. E. Hustadt. Evaluation of char reactivity data by different shrinking-core models. Fuel,1996,75(11): 1294-1300.
    [133]M. L. d. Souza-Santos. Solid Fuels Combustion and Gasification. New York:Marcel Dekker Incorporation,2004:56-59.
    [134]B. R. Stanmore. Modeling the combustion behavior of petroleum coke. Combustion and Flame,1991,83:221-227.
    [135]H. Thunman, B. Leckner. Ignition and propagation of a reaction front in cross-current bed combustion of wet biofuels. Fuel,2001,80:473-481.
    [136]S. R. Turns. An introduction to combustion:Concepts and applications. 2nd Edition. New York:McGraw-Hill,2000:653-654.
    [137]S. P. Visona, B. R. Stanmore. Modeling NOx Release from a Single Coal Particle Ⅱ. Formation of NO from Char-Nitrogen. Combustion and Flame,1996,106:207-218.
    [138]S. P. Visona, B. R. Stanmore. Modeling NOx Release from a Single Coal Particle I. Formation of NO from volatile nitrogen. Combustion and Flame,1996,105:92-103.
    [139]S. Wang, H. Lua, Y. Zhao, R. Mostofi, H. Kim, LijieYin. Numerical study of coal particle cluster combustion under quiescent conditions. Chemical Engineering Science,2007,62:4336-4347.
    [140]X. S. Wang, B. M. Gibbs, M. J. Rhodes. Modelling of circulating fluidized bed combustion of coal. Fuel,1994,73(7):1120-1127.
    [141]C. Wendt, C. Eigenbrod, O. Moriue, H. J. Rath. A model for devolatilization and ignition of an axisymmetric coal particle. Proceedings of the Combustion Institute,2002,29:449-457.
    [142]C. K. Westbrook, F. L. Dryer. Chemical Kinetic Modeling Of Hydrocarbon Combustion. Progress in Energy and Combustion Science, 1984,10:1-57.
    [143]F. Winter, M. E. Prah, H. Hofbauer. Temperatures in a fuel particle burning in a fluidized bed The effect of drying, devolatilization, and char combustion. Combustion and Flame,1997,108:302-314.
    [144]F.Winter,C.Wartha,H.Hofbauer,S.Wiedner,T.Burgler,H.Stiasny. .4lternative fuels for the sinter process.1999 Ironmaking conference proceedings.1999:559-564.
    [145]M.Xie,X.Liang.Numerical simulation of combustion and ignition-quenching behavor of a carbon packed bed.Combustion Science and Technology,1997,125:1-24.
    [146]Z.Yunhau,L.Huilin,H_Yurong,J.Ding,Y.L.jie.Numerical prediction of combustion of carbon particle clusters in a circulating fluidized bed riser.Chemical Engineering Journal,2006.118:1-10.
    [147]M.Zhang,JuanYn,X.Xu.A new flame sheet model ro relect the influence of the oxidation of CO on the combustion of a carbon particle. Combustion and Flame,2005,143:150.158.
    [148]H.Zhou,A.D.Jensen,P.Glarborg,P.A.Jensen,A.Kavaliauskas. Numerical modeling of straw combustion in a fixed bed.Fuel,2005.84: 389-403.
    [149]'陈新民.火法冶金过程物理化学.北京:冶金工业出版社,1984.
    [150]秦民生,杨天钧.炼铁过程的解析与模拟.北京:冶金工业出版社, 1991.
    [151]张一敏.球团理论与工艺北京:冶金工业出版社,1997.
    [152]M.Rossberg.Z.Elektrochem,1956,60:952.
    [153]C.K.Law.Combustion Physics.New York:Cambridge University Press. 2006:602-611.
    [154]A.Jensen,J.E.Johnsson,J.Andries,K.Laughlin,G.Read,M.Mayer, H.Baumann,B.Bonn.Formation and reduction of NOx in pressurized fluidized bed combustion of coal.Fuel,1995,74(11):1555-1569.
    [155]M.L.Hobbs,P.T.Radulovic,L.D.Smoot.Modeling fixed-bed coal gasifiers.AIChE Journal,1992,38(5):681.702.
    [156]M.L.Hobbs,P.T.Radulovic,L.D.Smoot.Combustion and gasification of coals infixed-beds.Prog.Energy Combust.Sci.,1993,19: 505-586.
    [157]L. D. Smoot, P. J. Smith. Coal combustion and gasification. New York: Plenum Press,1985.
    [158]N. M. Laurendeal. Heterogeneous kinetics of coal char gasification and combustion. Progress in Energy and Combustion Science,1978,4(4): 221-270.
    [159]S. C. Saxena. Devolatilization and combustion characteristics of coal particles. Progress in Energy and Combustion Science,1990,16:55-94.
    [160]I. W. Smith. The intrinsic reactivity of carbons to oxygen. Fuel,1978,57: 409-414.
    [161]I. W. Smith. The combustion rates of coal chars:A review. Nineteenth symposium (International) on combustion/The combustion institute 1982: 1045-1065.
    [162]J. M. Smith. Chemical Engineering Kinetics. New York:McGraw-Hill Book Company,1981.
    [163]P. J. Smith, L. D. Smoot. One-Dimensional Model for Pulverized Coal Combustion and Gasification. Combustion Science and Technology, 1980,23:17-31.
    [164]S. N. Oka. Fluidized Bed Combustion. New York:Marcel Deker,2004: 295-300.
    [165]I. Giassman, R. A. Yetter. Combustion (Fourth Edition). New York: Academic Press,2008:531-539.
    [166]B. R. Stanmore, P. Gilot. Review—calcination and carbonation of limestone during thermal cycling for CO2 sequestration. Fuel Processing Technology,2005,86:1707-1743.
    [167]R. Barker. The reversibility of the reaction CaCO3←→CaO+CO2. Journal of Applied Chemistry and Biotechnology,1973,23:733-742.
    [168]M. F. Couturier. Sulphur dioxide removal in fluidized bed combustors. PhD thesis. Kingston, Canada:Queen's University,1986.
    [169]Q. Zhong, I. Bjerle. Calcination kinetics of limestone and the micro structure of nascent CaO. Thermochimica Acta,1993,223: 109-120.
    [170]F. Garcia-Labiano, A. Abad, L. F. d. Diego, P. Gayan, J.Adanez. Calcination of calcium-based sorbents at pressure in a broad range of COj concentrations. Chemical Engineering Science,2002,57: 2381-2393.
    [171]G. D. Silcox, J. C. Kramlich, D. W. Pershing. A mathematical model for the flash calcination of dispersed CaCO3 and Ca(OH)2 particles. Ind. Eng. Chem. Res.,1989,28:155-160.
    [172]I. Ar, G. Dogu. Calcination kinetics of high purity limestones. Chemical Engineering Journal,2001,83:131-137.
    [173]M. Hartman, O. Trnka, V. Vesely, K. Svoboda. Predicting the rate of thermal decomposition of dolomite. Chemical Engineering Science,1996, 51(23):5229-5232.
    [174]K. Natesan, W. O. Philbrook. Mathematical Model for Reaction Rate and Temperature Profile During Oxidation of Magnetite Pellets. Ironmaking Conference.Toronto, CANADA 1969:411-417.
    [175]W. E. Ranz. Friction and transfer coefficients for single particles and packed beds. Chemical Engineering Progress,1952,48(5):247-253.
    [176]D. Kunii, M. Suzuki. Particle-to-fluid heat and mass transfer in packed beds of fine particles. International Journal of Heat and Mass Transfer, 1967,10:845-852.
    [177]D. Shin, S. Choi. The combustion of simulated waste particles in a fixed bed. Combustion and Flame,2000,121:167-180.
    [178]M. F. Modest. Radiative heat transfer,2nd Ed. Academic press,2003: 456-457.
    [179]W. M. Rohsenow, J. P. Hartnett, Y. I. Cho. Handbook of heat transfer. 3rd Edition. New York:McGraw-Hill, Inc,1998:13.12.
    [180]W. Schotte. Thermal conductivity of packed beds. AIChE Journal,1960, 6(1):63-67.
    [181]S. V. Patankar. Numerical heat transfer and fluid flow. Washington: Hemisphere Publishing Corporation,1980:1-197.
    [182]陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2001.
    [183]H. Zhou, J. P. Zhao, C. E. Loo, B. G. Ellis, K. F. Cen. ZJU-BHP Billiton iron ore sintering model validation studies. ISIJ International. Manuscript ID:ISIJINT-2012-084,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700