用户名: 密码: 验证码:
基于振动分析的核电冷却剂泵故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,中国已经成为世界上第二能源消费国。随着经济的持续增长,能源问题已经成为制约经济发展的重要因素。电力是能源问题中最为重要的环节。核电作为一种新能源和清洁能源为解决我国电力紧缺问题提供了有利条件。
     核电的产生来自于核电站,核电站因其重要性和敏感性备受关注,尤其是日本核电站泄露事故以来,核电站的安全性再次成为热点问题。安全问题已经成为核电发展的核心问题,如果核电生产过程的安全不能得到保证,那么就根本谈不上核电发展问题。只有安全地生产核电,才能更好地发挥其经济和社会效益。
     在核电站设备系统中,冷却剂泵是核岛中的核心机械设备。它能够驱动冷却剂在回路中循环流动实现热交换,它在核电站中的地位十分重要。冷却剂泵能否正常运行直接影响到整个核电设备的可靠性以及核电站的安全性。本文以核电站一回路中冷却剂泵的振动故障作为研究对象,采用自主研发的硬件数据采集平台,利用该平台采集冷却剂泵运行时产生的振动信号,并将这些振动信号进行分析处理从而建立故障诊断模型。本文围绕着核电冷却剂泵故障诊断的相关问题,在数据采集、特征提取、故障分类和智能故障诊断等方面展开了深入研究,主要的研究工作和成果包括:
     (1)结合冷却剂泵运行特点,从构建振动数据硬件采集平台到特征提取以及故障分类,论文建立了一套完整的冷却剂泵故障诊断系统(FDSRCP)。目前在国内专门针对冷却剂泵故障诊断的研究处于初级阶段,还没有形成具有完整体系架构的系统。论文在冷却剂泵故障诊断方面进行了积极地研究和探索,为冷却剂泵故障诊断的发展提供了技术支撑。
     (2)本文采用PXI面向仪器的总线接口平台,自主研发出数据采集模块PXI2120。它是一款采用16位高分辨率A/D,结合FPGA和PXI总线技术研发的新型振动信号采集模块。它能够对冷却剂泵产生的振动信号进行采集,通过PXI接口将数据传送给主机。PXI2120由采样模块、时钟模块、触发模块、存储模块以及PXI接口模块构成。它打破了国外厂商家在该领域的技术垄断。
     (3)对原始数据进行特征提取是故障诊断中的关键步骤。论文在分析对比相关特征提取算法基础上,首次将振动烈度、小波能量谱和小波能量最大分解层功率谱作为特征提取参数引入到冷却剂泵故障诊断系统中,提出了VSWEPS分析方法,VSWEPS是将三者相结合的时频特征提取方法。本文将振动烈度作为时域特征提取参数。振动烈度能够反映出振动能量的大小,通过振动的速度值可求得振动烈度。频域分析是特征提取最重要的工具,因为设备运行时产生的振动信号为非平稳信号,所以传统Fourier变换并不适用。小波变换能够用于分析非平稳信号,但是它不能准确分析出振动信号中包含的微弱信号,而这些微弱信号往往是故障的早期征兆。为此,本文在小波变换的基础上,采用了小波能量谱和小波能量最大分解层功率谱相结合的分析方法对振动信号进行特征提取。实验结果表明,利用VSWEPS方法对振动信号进行特征提取能够取得良好的效果,尤其适用于故障发生的早期阶段。
     (4)冷却剂泵故障进行分类时面临的一个难题是样本数据受到设备运行特点的制约,获取的数据是小样本数据集。传统人工神经网络并不适用于小样本数据集,而建立在统计学习理论基础上的支持向量机(SVM)算法特别适合小样本数据的训练学习。支持向量机利用核函数建立了非线性空间向线性空间的映射关系,很好地解决了数据维数灾难问题。本文深入全面地研究了支持向量机算法,详细讨论了其基本思想和实现算法,将支持向量机引入到冷却剂泵故障诊断中,通过对特征参数的分类识别,构造了基于C-支持向量机的多故障分类模型,它能够将多种振动故障类型一次性区分。实验结果验证了这种故障分类方法的有效性和实用性。
China has been becoming the second big country of energy consuming. As thecontinual growth of economy, it is the energy problem that has been the importantreason of constraining the economy development. In such a problem, power also hasthe most important role. Among all kinds of power, the nuclear power, as a new,cleaning energy, provides benefits for our shortage of power.
     Nuclear power comes from nuclear power plant. The importance and sensitivityof nuclear power plant has got more concerns. Especially after the leak accident ofnuclear power plant in Japan, the safety of nuclear power plant became hot issuesonce again. The safety has been a problem that must be resolved in the developmentof nuclear power. If the safety of nuclear power’s generation could not be guaranteed,not to mention the development that will go on. It is only the safe generation ofnuclear power that can make the new energy sustainable and the economy and societybenefit from it.
     Among all the devices in nuclear power plant, the core machinery equipment isreactor coolant pump in nuclear island. It also plays an important role in nuclearpower plant, because it can make the heat exchange by driving the coolant flowcircularly in a loop. Whether the reactor coolant pump runs normally or not directlyaffects the reliability of all the nuclear power devices and the safety of nuclear powerplant. The research object of this thesis is the vibration fault of reactor coolant pumpin the primary loop in nuclear power plant. By using the hardware data acquisitionplatform we made by ourselves, some vibration signals are acquired when reactorcoolant pump is running. According to these vibration signals, a fault diagnosis modelis built. The thesis focuses on the fault diagnosis of reactor coolant pump, studyingfurther on data acquisition, feature extraction, fault classification and intelligent fault diagnosis. The main researches and conclusions include:
     (1) A completed FDSRCP system is proposed in this thesis, based on thecharacters of reactor coolant pump, building the hardware data acquisition platform,feature extraction and fault classification. Currently, the study of the fault diagnosis ofreactor coolant pump in China is still in its initial stage, a complete architecturesystem is not designed. This thesis gave a positive research on the fault diagnosis forreactor coolant pump in nuclear power plant. It provided technical support for thedevelopment of fault diagnosis for reactor coolant pump.
     (2) We developed a high precision data acquisition module PXI2120byourselves based on the general bus platform of PXI instrument-oriented. PXI2120issuch a new data acquisition module that uses16-bits high resolution A/D, combingthe technologies of FPGA with PXI. This platform can acquire the vibration signalswhen reactor coolant pump is running. These collected data will be sent to maincomputer through the PXI interface. All the designs of PXI2120are independentlydeveloped, including the design and implementation of sample module, timebasemodule, trigger module, stored module and PXI interface module. PXI2120breaks thetechnological monopoly of foreign companies in the domain.
     (3) Feature extraction from original data is the key step of fault diagnosis. In thisthesis, vibration severity, wavelet energy spectrum and power spectrum of waveletenergy maximum decomposition level are firstly used as feature parameters in thefault diagnosis system for reactor coolant pump, based on the comparison and analysisof related algorithms of feature extraction. We proposed a method of featureextraction named VSWEPS which is a method of time-frequency. Vibration severity issuitable for feature extraction in time-domain. Vibration severity that can get from thevalue of speed is able to affect how much the vibration energy is. That is why thevibration severity is as a parameter of feature extraction in time-domain. Frequencyanalysis is one of the most important tools in feature extraction, because the vibrationsignals from running devices are non-stationary signal, so traditional Fouriertransform can not be used here. Though wavelet transform can be used to analyzenon-stationary signal, it has no ability to accurate analyze faint signal in vibrationsignals. The faint signal is so important that it is often as a sign of fault. For thisreason, the methods of time-wavelet energy spectrum and power spectrum of waveletenergy maximum decomposition level are employed as a method of feature extractionfor vibration signals based on wavelet transform in this thesis. The experimentsshowed that better effects can be obtained by using VSWEPS as feature extraction for vibration signals, especially at the early stage that a fault would be happened.
     (4) The classification for fault of reactor coolant pump faces to a problem thatthe sample data is constrained by the characteristic of device. The collecting of datasetis just small sample dataset. The support vector machine (SVM) algorithm based onstatistical learning theory is suitable for training and learning of small sample dataset.SVM uses kernel function to build a mapping relation from nonlinear space to linearspace, which gives a better solution to the problem of dimension disaster. The SVMalgorithms are comprehensively further studied in this thesis. The basic ideas andimplemental algorithms of SVM are discussed in detail. The SVM has beenintroduced into the fault diagnosis of reactor coolant pump. A multi-faultsclassification model based on C-SVM is also generated by recognizing the categoriesof feature parameters. This model can distinguish the categories of many vibrationfaults in one time. The experiments proved the effectiveness and practicality of theSVM-based method of classification.
引文
[1]上海市经济和信息化委员会.世界核电概况[EB/OL].http://www.sheitc.gov.cn/sjhdgk.htm,2011.
    [2]倚天商务信息网.美国西屋电气的竞争法宝是AP1000核电技术[EB/OL].http://www.ecchn.com/20061222ecnews5755823.html,2006.
    [3]维基百科.核电站[EB/OL]. http://zh.wikipedia.org/wiki/核电站,2012.
    [4]维基百科. Apollo program[EB/OL]. http://en.wikipedia.org/wiki/Project_Apollo,2012.
    [5] John S. Sohre. Operating problems with high-speed turbomachinery-causes andcorrection[C].23rd Annual Petroleum Mechanical Engineering Conference, Dallas,Texas,1968.
    [6] Beard R. V. Failure accommodation in linear system through selfreorganization[D]. Massachusetts: MIT,1971.
    [7] B. Lu, B.R Upadhyaya. Monitoring and fault diagnosis of the steam generatorsystem of a nuclear power plant using data-driven modeling and residual spaceanalysis[J]. Annals of Nuclear Energy,2005,32(9):22-23.
    [8] Man Cheol Kim, Poong Hyun Seong. A computational model for knowledge drivenmonitoring of nuclear power plant operstars based on information theory[J],Reliability Engineering and System,2006,91(3):35-36.
    [9] Keehoon Kim, Bartlett E.B.Nuclear power plant fault diagnosis using neuralnetworks with error estimation by series association[J]. IEEE Transactions onNuclear Science,1996,43(4):2373-2388.
    [10] Dorr R., Kratz F, Ragot J, et al. Detection, isolation, and identification ofsensor faults in nuclear power plants[J]. IEEE Transactions on Control SystemsTechnology,1996,5(1):42-60.
    [11] McInerny S.A, Dai Y. Basic vibration signal processing for bearing faultdetection[J]. IEEE Transactions on Education,2003,46(1):149-156.
    [12] I. Antoniadis, G. Glossiotis. Cyclostationary analysis of rolling-elementbearing vibration signals[J]. Journal of Sound and Vibration.2001,248(5):829-845
    [13] Rosich.A, Frisk.E, Aslund.J, et al. Fault diagnosis based on causalcomputations[J].IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2012,42(2):371-381.
    [14] A shleyG,Duggan P E, Shoe SWW,et al. Expert systems provide help in lifeextension,availability improvement [J]. Power Engineering,1988,92(5):46-50.
    [15] Doglas J Smith. Artificial intelligence-today’s new design and diagnostictool[J]. Power Enginerring,1989,93(1):26-30.
    [16] John Reason. Expert systems promise to cut critical machine down time[J]. Power,1987,131(3):17-24.
    [17] Doglas J Smith. Intellignet computer systems enhance power plant operations[J].Power Enginerring,1989,93(12):21-16.
    [18] Muszynska A. Vibrational diagnostics of rotating machinery malfunctions[J].Rotating Machinery,1992,(3):237-266.
    [19]濑田泰助.电力设备诊断技术の动向[J].电气评论,1987,72(6):522-534.
    [20]阿部胜男.火力发电设备の诊断技术动向とその事例[J].电气评论,1986,81(6):13-18.
    [21]土信田也.蒸气タービンの诊断技术と予防保全技术[J].富士时报,1993,(7):421-425.
    [22] Matsumoto H, Sato Y, Kato F, et al. Turbine control system based on predictionof rotor thermal stress[J]. IEEE Transactions on Power Apparatus and Systems,1982, PAS-101(8):2504-2512.
    [23]冈奇光芳,内田恭嗣,松本茂.火力发电所の设备诊断[J].保守支援システムの最新动向.东芝レビユー,1998,53(6):23-26.
    [24]中岛秀雄,德平真.大型蒸气タービン辆振动诊断システム[J].火力原子力发电,1987,38(12):1389-1398.
    [25] Horiguchi M., Fukawa N., Nishimura K. Development of nuclear power plantdiagnosis technique using neural networks[C]. Proceedings of the FirstInternational Forum on Applications of Neural Networks to Power Systems, Seattle,WA, USA,1991:279-282.
    [26] Nelson W R. REACTOR:An expert system for diagnosis and treatment of nuclearreactor accidents[C]. In Proc National Confon Artificial Intelligence.Pittsburgh,1982:296-301.
    [27] Folleso K. The Integrated surveillance and control system ISACS-an advancedcontrol room prototype[C]. Int Conf on Design and Safety of Advanced NuclearPower Plants, Tokyo,1992.
    [28]张晓华,奚树人.核电站故障诊断专家系统综述[J].核动力工程,1999,20(3):264-268.
    [29] Bhativagar R, Miller Don W, Hajek Bran K. An integrated operator advisor systemfor plant monitoring, procedure managerrent and diagmsis[J]. Nuclear Technology.1999,89(3):281-317.
    [30] Hajek B.K, Miller D.W, Bhatnagar R., et al. A generic task approach to a realtime nuclear power plant fault diagnosis and advisory system[C]. Proceedingsof the International Workshop on Artificial Intelligence for IndustrialApplications, Hitachi City,1988:154-160.
    [31] Shah, M.D. Fault detection and diagnosis in nuclear power plant—A briefintroduction[C].2011Nirma University International Conference on Engineering(NUiCONE), Ahmedabad, Gujarat,2011:1-5.
    [32] Se Woo Cheon, Soon Heung Chang, Hak Yeong Chung, et al. Application of neuralnetworks to multiple alarm processing and diagnosis in nuclear power plants[J].IEEE Transactions on Nuclear Science,1993,40(1):11-20.
    [33] Bimal Patel, Carolyn D. Heising. Statistical analysis of the Ft. Calhoun reactorcoolantpump system[J]. Annals of Nuclear Energy,1997,24(3):167-175.
    [34] K. Nabeshima, T. Suzudo, S. Seker, et al. On-line neuro-expert monitoring systemfor Borssele Nuclear Power Plant[C]. Proceedings of the8th Symposium on NuclearReactor Surveillance and Diagnostics. Sweden,2003:397-404.
    [35] Jyoti K. Sinha. Vibration-based diagnosis techniques used in nuclear powerplants: An overview of experiences[J]. Nuclear Engineering and Design,2008,238(9):2439-2452.
    [36]褚福磊,卢文秀,张伟,等.水泵水轮机组状态监测与故障诊断系统[J].水力发电,1999,(2):31-34.
    [37]彭志科,何永勇,卢青,等.用小波时频分析方法研究发电机碰摩故障特征[J].中国电机工程学报,2003,23(5):75-79.
    [38]冯志鹏,刘立,张文明.基于小波时频框架分解方法的滚动轴承故障诊断[J].振动与冲击,2008,27(2):110-114.
    [39]高金吉.旋转机械振动故障原因及识别特征研究[J].振动、测试与诊断,1995,15(3):1-7.
    [40]高金吉.高速涡轮机械振动故障机理及诊断方法研究[D].北京:清华大学,1993.
    [41]徐小力,梁福平,许宝杰,等.旋转机械状态监测及预测技术研究[J].北京机械工业学院学报,1999,14(4):5-13.
    [42] Qin Zhang,Xuegao An, Jin Gu. FBOLES-outline of a frequency-based on-line expertsystem approach for fault diagnoses in nuclear power plants[J]. ReliabilityEngineering and System Safety,1993,40(2):165-172.
    [43]魏仁杰,申世飞.压水堆核电站专家系统的研究[J].核动力工程,1994,15(5):408-411.
    [44]冯俊婷.基于主元分析的核电站主冷却剂泵故障诊断[J].原子能科学技术,2003,37(5):365-399.
    [45]李晓东,奚树人. M-P人工神经网络的核电站故障诊断系统[J].清华大学学报(自然科学版),2003,43(12):1623-1626.
    [46]刘冰.基于故障树的安注系统故障诊断专家系统研究[D].哈尔滨:哈尔滨工程大学,2009.
    [47]张燕,周志伟,董秀臣.核电厂实时故障诊断专家系统的设计与实现[J].原子能科学技术,2006,40(4):420-423.
    [48]张和林,黄卫刚,刘晓波,等.基于神经网络的概率安全分析的核电站故障诊断[J].原子能科学技术,2002,36(6):494-497.
    [49]任鹏寅,陈力生,盖秀清.基于Bayes网络的反应堆冷却剂泵智能故障诊断研究[J].中国修船,2007,20(S1):49-51.
    [50]陈志辉,夏虹,王涛涛.基于小波分析的主冷却剂泵转子故障诊断方法研究[J].核动力工程,2008,29(3):108-112.
    [51] Qin Shuren, Zhong Youming. A New envelop algorithm of Hilbert-Huang transform[J].Mechanical Systems and Signal Processing,2006,20(8):1941-1952.
    [52] Lima, Francisco Joailton de, Garcia, et al. An architecture proposal for theprotection system of a PWR nuclear plant[J]. Latin America Transactions, IEEE(Revista IEEE America Latina),2006,4(6):399-402.
    [53] Naser J. Modernization of instrumentation and control in nuclear power plants[M].IAEA:IAEA-Tecdoc-1016,1998.
    [54] Ion S., Bull A., Mayson R. Design options for new nuclear plants[J]. PowerEngineering Journal,2002,16(4):193-198.
    [55] Na M.G., Jung D.W., Shin S.H, et al. A model predictive controller forload-following operation of PWR reactors[J]. IEEE Transactions on NuclearScience,2005,52(4):1009-1020.
    [56]李键.核电站及其安全[J].电力建设,1985,58-62.
    [57] In Soo Koo, Whan Woo Kim. Development of reactor coolant pump vibrationmonitoring and a diagnostic system in the nuclean power plant[J].Instrumentation System and Automation Transactions,2000,39(3):309-316.
    [58] Danqing Yuan, Peipei Wang, Xufeng Wong, et al. Design and numerical simulationon guide vane of AP1000reactor coolant pump[C].2011International Conferenceon Consumer Electronics, Communications and Networks (CECNet), XianNing,2011:4016-4019.
    [59]钟秉林,黄仁.机械故障诊断学[M].(第3版).北京:机械工业出版社,2006.
    [60] Yong Suk Suh, Je Yun Park, Hyun Tai Kang, et al. An overview of instrumentationand control systems of a Korea standard nuclear power plant: A signal interfacestandpoint[J]. Nuclear Engineering and Design,2008,238(12):3508-3521.
    [61]熊诗波.大型复杂机械系统的状态监测和故障诊断[J].振动、测试与诊断,2000,20(4):233-235.
    [62]盛兆顺,尹琦玲.设备状态监测与故障诊断技术及应用[M].北京:化学工业出版社,2003.
    [63]张鹏举,陈昆昌,李仁旺,等.转子自适应动平衡测试系统的研究[J].计算机工程,2008,34(16):249-251.
    [64]陈虹微.旋转机械振动特征及诊断方法[J].噪声与振动控制,2009,(1):134-136.
    [65]马建仓,刘小龙.航空发动机转子振动信号的早期故障分析[J].计算机测量与控制,2010,18(2):276-279.
    [66]曲庆文,马浩,柴山.油膜振荡及稳定性分析[J].润滑与密封,1999,6:56-59.
    [67]孟庆丰,李树成.旋转机械油膜涡动稳定性特征提取与监测方法[J].振动工程学报,200619(4):446-451.
    [68]刘永阔,谢春丽,成守宇,等.核电站分布式智能故障诊断系统研究与设计[J].原子能科学技术,2011,45(6):688-694.
    [69] H.M. Hashemian. On-line monitoring applications in nuclear power plants[J].Progress in Nuclear Energy,2011,53(2):167-181.
    [70] Lei You, Fuchun Sun, Pan He, et al. Study and design of monitoring system ofreactor coolant pump in nuclear power plant[C].18th International Conferenceon Nuclear Engineering,2010,1:651-657.
    [71] James W. Cooley, John W. Tukey. An algorithm for the machine calculation ofcomplex Fourier series[J].Math. Comp,1965,19:297-301.
    [72] Duhanmel P, Holtmann H. Split-radix FFT algorithm[J]. Electronics Letters,1984,20(1):14-16.
    [73]胡广书.数字信号处理理论、算法与实现[M].第2版.北京:清华大学出版社,2003.
    [74]游磊,李近,方方,等.高速转子组件振动在线监测系统的研究与设计[J].计算机测量与控制,2012,19(12):2931-2933.
    [75] Staszwski W J, Worden K, Tomlinson G R, et al. Time-frequency analysis in gearfault detection using the Wigner-Ville distribution and patternrecognition [J]. Mechanical System and Sinal Processing,1997,11(5):673-692.
    [76] Daubechies. The wavelet transform, time-frequency localization and signalanalysis[J]. IEEE Trans. Inform. Theory,1990,36:951-1005.
    [77] Ervin S, Igor D, Jin Jiang. Time–frequency feature representation using energyconcentration: An overview of recent advances[J]. Digital Signal Processing,2009,19(1):153-183.
    [78] S.A. Neild, P.D. McFadden, M.S. Williams.A review of time-frequency methods forstructural vibration analysis[J]. Engineering Structures,2003,25(6):713-728.
    [79]王国富,张海如,张法全,等.时频展缩随机共振用于航空发动机转子故障检测[J].航空动力学报,2011,26(3):603-610.
    [80]向玲,唐贵基,胡爱军.旋转机械非平稳振动信号的时频分析比较[J].振动与冲击,2010,29(2):42-45.
    [81]向强,秦开宇.基于线性正则变换与短时傅里叶变换联合的时频分析方法[J].电子学报,2011,39(7):1508-1512.
    [82] WANG Huaqing, LI Ke, SUN Hao, et al. Feature extraction method based onpseudo-wigner-ville distribution for rotational machinery in variableoperating conditions[J]. Chinese Journal of Mechanical Engineering,2011,24(4):661-668.
    [83] Gabor D. Theory of communication. Part1: The analysis of information[J].Journal of the Institution of Electrical Engineers-Part III: Radio andCommunication Engineering,1946,93(26):429-441.
    [84]维基百科. Wigner quasi-probabilitydistribution[EB/OL].http://en.wikipedia.org/wiki/Wigner-Ville_distribution.
    [85] P. Goupillaud, A. Grossman, J. Morlet. Cycle-octave and relatedtransforms inseismic signal analysis[J]. Geoexploration,1984,23(1):85-102.
    [86] Stéphane Mallat. A theory for multiresolution signal decomposition:The WaveletRepresentation[J].IEEE Transctions on Pattern Analysis and MachineIntelligence,1989,11(7):674-693.
    [87]褚福磊,彭志科,冯志鹏,等.机械故障诊断中的现代信号处理方法[M].北京:科学出版社,2009.
    [88] Huang N E, Shen Z, Steven R.L, et al. The empirical mode decomposition and thehilbert spectrum for non-linear non-stationary time series ana lysis[C]. Proc.R. Soc, London,1998:903-995.
    [89] Huang N E. A new view of non-lincarwaves: the hilbert spectrum[J]. Annual Reviewof Fluid Mechanics,1999,31(5):417-457.
    [90]胡劲松.面向旋转机械故障诊断的经验模态分解时频分析方法及实验研究[D].浙江:浙江大学,2003.
    [91] W. McCulloch, W. Pitts. A logical calculus of the ideas immanent in nervousactivity[J]. Bulletin of Mathematical Biophysics,1943,7:115–133.
    [92] Rosenblatt, Frank. The perceptron: a probabilistic model for informationstorage and organization in the brain[J]. Psychological Review,1958,65(6):386–408.
    [93] J. J. Hopfield. Neural networks and physical systems with emergent collectivecomputational abilities[C]. Proceedings of the National Academy of Sciences ofthe USA,1982,79(8):2554–2558.
    [94] Rumelhart, David E., Hinton, et al. Learning representations byback-propagating errors[J]. Nature,1986,323:533–536.
    [95]钱征文,程礼,赵兵兵,等.基于BP神经网络的叶片损伤度评估方法[J].航空动力学报,2011,26(4):794-800.
    [96]赵海东,缪旭东,吕世聘.基于神经网络的军用飞机故障预报系统研究[J].系统工程与电子技术,2003,25(7):894-896.
    [97]边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000.
    [98] Vladimir N. Vapnik. The nature of statistical learning theory[M].Springer-Verlag,1995.
    [99]张学工.统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-41.
    [100] Ukil, A., Baden-Daettwil. Memristance View of Piezoelectricity[J]. IEEE SensorsJournal,2011,11(10):2514-2517.
    [101]祝诗平,李鸿征,朱杰斌.传感器与检测技术[M].北京:北京大学出版社,2006.
    [102]张正松,傅尚新.旋转机械振动监测及故障诊断[M].北京:机械工业出版社,1991.
    [103]李红旗,李世义,吴日恒.基于压电式加速度计的弹丸初速存储测试系统[J].电子器件,2007,30(4):1361-1364.
    [104] Caesar G. Integrating PXI with VXI, GPIB, USB, and LXI instrumentation[C].Autotestcon,2005. IEEE, Florida Orlando,2005:26-29.
    [105] Jie Kong, Hong Su, Zhi-Qiang Chen, et al. Development of multi-channel gatedintegrator and PXI-DAQ system for nuclear detector arrays[J]. NuclearInstruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment,2010,622(1):215-218.
    [106] Barrera E., Ruiz M., Lopez S, et al. PXI-based architecture for real-time dataacquisition and distributed dynamic data processing[J]. IEEE Transactions onNuclear Science,2006,53(3):923-926.
    [107]徐宇亮,陈西宏,王强.基于PXI振动自动测试系统开发研究[J].计算机测量与控制,2008,16(11):1571-1587.
    [108]游磊.基于VXI虚拟仪器总线的内弹道测试系统的实现[D].成都:四川大学计算机学院,2006.
    [109]孙群,孟晓风,梁帆.基于PXI总线的飞控设备自动测试系统[J].计算机工程,2008,34(13):239-241.
    [110]陈明浩. PXI数据采集模块硬件设计[D].成都:电子科技大学,2009.
    [111] Alan V. Oppenheim, Alan S. Willsky. Signals and Sytems[M].2nd ed. MIT:PrenticeHall,1997.
    [112]邹湘,吕军光,周莉,等.基于PCI总线的WDM驱动程序设计[J].核电子学与探测技术,2008,28(2):321-324.
    [113]许世杰. PXI数据采集模块硬件设计[D].成都:电子科技大学,2009.
    [114]北京航空航天大学ATE实验室. PXI总线接口技术[EB/OL].http://wenku.baidu.com/view/51576242336c1eb91a375d21.html.
    [115] Viviana Fanti, Roberto Marzeddu,Paolo Randaccio. PCI card with DMA capabilitiesfor digital imaging detectors[C]. Proceedings of the7th International Workshopon Radiation Imaging Detectors—IWORID2005, Grenoble,2006,563(1):108-111.
    [116] Zirui Huang, Xien Ye. Audio and Video Transmission Card Based on PCI9054BusController[C].2010Second International Workshop on Education Technology andComputer Science (ETCS). WuHan,2010:382-385.
    [117]张利群,朱利民,钟秉林.几个机械状态监测特征量的特性研究[J].振动与冲击,2001,20(1):20-22.
    [118] Lei You, Jun Hu, Fang Fanga, et al. Fault diagnosis system of rotating machineryvibration signal[C].CEIS2011, DaLi,2011:671-675.
    [119]杨青,田枫,王大志.基于提升小波和递推LSSVM的实时故障诊断方法[J].仪器仪表学报,2011,32(3):596-602.
    [120] You Lei, Hu Jun, Fang Fang. Research on the feature extraction method of rotorfault based on wavelet energy spectrum[J]. Journal of Information andComputational Science,2011,8(15):3393-3400.
    [121]游磊,方方,李平勇,等.轴流泵振动加速度状态监测诊断系统的研究与设计[J].四川大学学报(工程科学版),2011,43(S1):236-245.
    [122]樊新海,李胜利,安钢,等.装甲车辆传动装置振动烈度监测与评估[J].兵工学报,2009,30(3):272-275.
    [123]章步云,周书民.非平稳信号的快速傅里叶变换与小波分析的比较[J].通信技术,2002,7:1-2.
    [124] Mohammed O.A., Abed, N.Y, Ganu, S. Modeling and characterization of inductionmotor internal faults using finite-element and discrete wavelet transforms[J].IEEE Transactions on Magnetics,2006,42(10):3434-3436.
    [125] Stéphane Mallat. A wavelet tour of signal processing[M].3rd ed. Elsevier Inc,2009.
    [126]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005.
    [127] I.Daubechies. Ten lectures on wavelets[M].Philadelphia Pennsylvania:SIAM Press,1992.
    [128] I. Daubechies. Orthonormal bases of compactly supported wavelets[J].Communications on Pure and Applied Mathematics,1988,41(7):909-996.
    [129] MALLAT S A. Multiresolution approximations and wavelet orthonormal bases ofL2(R)[J]. Transactions of the American Mathematical Society,1989,315(1):69-87.
    [130]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2003.
    [131]张奉军,周燕,曹建国. MALLAT算法快速实现方法及其应用研究[J].自动化与仪器仪表.2004,6:4-5.
    [132]何正嘉,孙海亮,訾艳阳.自适应对小波基函数构造与机械故障诊断应用研究[J].中国工程科学,2011,13(10):83-92.
    [133]谭善文,秦树人,汤宝平.小波基时频特性及其在分析突变信号中的应用[J].重庆大学学报,2001,24(2):12-17.
    [134]李舜酩.二进离散小波能量谱及其对微弱信号的检测[J].中国机械工程,2004,15(5):394-397.
    [135]张超.基于支持向量机的汽轮机轴系振动故障智能诊断研究[D].河北:华北电力大学,2009.
    [136]王雷.支持向量机及其在汽轮机组性能监测和故障诊断中的应用研究[D].南京:东南大学,2007.
    [137] Wechsler H.,Duric Z., Fayin Li, et al. Motion estimation using statisticallearning theory[J].IEEE Transactions on Pattern Analysis and MachineIntelligence,2004,26(4):466-478.
    [138] Vapnik, V.N. An overview of statistical learning theory[J]. IEEE Transactionson Neural Networks,1999,10(5):988-999.
    [139]邓乃扬,田英杰.支持向量机-理论、算法与拓展[M].北京:科学出版社,2009.
    [140]白鹏,张喜斌,张斌.支持向量机理论及工程应用实例[M].西安:西安电子科技大学出版社,2008.
    [141]徐金量,陈五星,唐耀阳,等.基于粗糙集理论和支持向量机算法的核电厂故障诊断方法[J].核动力工程,2009,30(4):52-54.
    [142] Lei Wang, Ping Xue, Kap Luk Chan. Two Criteria for Model Selection in MulticlassSupport Vector Machines[J]. Systems, Man, and Cybernetics, Part B: Cybernetics,IEEE Transactions on,2008,38(6):1432-1448.
    [143] Mu, T., Nandi A.K. Multiclass classification based on extended support vectordata description[J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEETransactions on,2009,39(5):1206-1216.
    [144] Engin Avci, Derya Avci. A novel approach for digital radio signal classification:Wavelet packet energy–multiclasssupport vector machine (WPE–MSVM)[J]. ExpertSystems with Applications,2008,34(3):2140-2147.
    [145] V.Vapnik. Statistical Learning Theory[M]. USA:John Wiley&Sons, Inc,1998.
    [146] U.Kre el. Pairwise classification and support vetor machines[M]. MA, USA: MITPress Cambridge,1999.
    [147]张孝远,周建中,黄志伟,等.基础粗糙集合多类支持向量机的水电机组振动故障诊断[J].2010,30(20):88-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700