用户名: 密码: 验证码:
渤海主要污染物环境容量及陆源排污管理区分配容量计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆源污染物排放总量控制是实现资源节约型、环境友好型社会经济可持续发展方式的基础内容,也是综合解决当前大气、地表水、土壤、海洋污染问题的有效手段。自我国1980’s中期开始陆源污染物排放总量控制研究,特别是2006年开始实施以COD减排为约束性指标的“目标总量控制管理”计划以来,由于“目标总量控制管理”方式自身固有的缺陷,即使自1990’s后期先后实施了“渤海综合整治规划”、“碧海行动计划”等国家级污染防治工程,渤海水质改善实际效果仍然不甚理想。具体表现在2010年渤海超标面积比2005年增加约50%。这样,根据美国、欧盟、日本等有益经验分析,我国陆源污染物排放总量控制迫切需要由现行的“目标总量控制”向“容量总量控制”的转变。然而,由于针对海洋三维空间数值模型的海洋环境容量计算方法发展滞后等原因,不仅关于渤海的报道多数将环境容量与分配容量混淆,而且计算结果也常常局限于部分海域或部分陆域,特别是至今尚没有在整体上实现科学精细地划分环渤海经济圈排污管理区。因此,本论文研究目的主要是得到以更加精准的环境容量计算结果为基础的环渤海区域排污管理区分配容量,为实现“容量总量控制管理”所必需的科学精准、细化具体的率定量化管理指标体系提供科学理论基础。
     对此,本论文研究内容主要有5个方面:(1)根据海洋环境容量的一般计算方法原理,建立适应海洋三维空间数值模型的海洋环境容量计算方法。(2)应用(1)建立的计算方法,计算渤海海域COD、氮和磷环境容量。(3)根据汇水区、集污区等一般准则,针对渤海实际纳污陆域范围,在科学确定环渤海排污管理带范围基础上,合理划分环渤海排污管理区。(4)在(2)基础上,应用多目标(非)线性规划方法,计算环渤海排污管理区COD、氮和磷分配容量。(5)根据COD、氮和磷陆源污染物超排率估算结果,初步探讨环渤海排污管理带陆源污染物排放总量控制率定量化分级管理模式。
     本论文主要研究结果是:
     1.渤海海域COD、氮和磷污染物环境容量计算。目前,根据污染物自净过程建立的海洋环境容量计算的一般方法原理只能适应箱式数值模型,而不能适应三维空间数值模型。这样,综合考虑水动力空间和生物地球化学时间变化特征,可以建立适应三维空间数值模型的污染物环境容量(EC)计算方法,可以称作“浓度梯度积分法”。根据数值模型在时间、空间、指标、标准等方面的特征,环境容量计算流程主要包括从纳污海域识别到环境容量计算结果评价8个环节。这里,采取渤海三维水动力(HAMSOM)-生物地球化学耦合模型进行COD、氮和磷污染物状态变量数值模拟运算。结果表明,模拟结果与监测结果基本吻合(第3章图3-5),其中氮相对偏差%(RSD)和相似性指数(SI)平均分别是51%和0.41,说明基本可以应用该模型计算渤海污染物环境容量。计算结果表明,在国家功能区水质标准条件下,渤海COD、氮(氨氮)和磷的环境容量分别约为980、93和13万吨/年,氮、磷环境容量密度(t/a/km~2约为黄海胶州湾和东海罗源湾的1/3。
     2.环渤海排污管理带陆源COD、氮和磷污染物分配容量计算。排污管理区陆源污染物分配容量计算主要包括三个环节:首先,综合考虑环渤海经济圈三省两市区域中污染物排入渤海的115个汇水区、13个集污区和17个直排海企业相应共计145个入海点,确定环渤海排污管理带范围涵盖37个地级市的343个县级行政区,19个地级市的105个县级行政区不在此范围内。在此基础上,将县级行政区作为环渤海排污管理带的最小行政区,并根据污染物主要入海途径将同一行政区内的多个汇水区和集污区予以归并,在环渤海排污管理带范围内可以划分为42个排污管理区,以及黄河中上游、海河上游和辽河上游3个密切关联的带外排污管理区,前者可分为黄河、海河和辽河排污管理区系。其次,应用多目标(非)线性规划方法,可以计算42个排污管理区COD、氮和磷污染物分配容量(AC):以各排污管理区分配容量最大为目标函数,相应约束条件主要有总量约束、水质控制点约束和非负约束条件,其中前者以海洋环境容量作为陆域分配容量阈值。最后,采用单纯形法可以计算排污管理区污染物分配容量。计算结果表明,对于COD、氮和磷污染物,环渤海排污管理“带内”分配容量平均占95%左右,而“带外”仅占5%左右。其中,黄河、海河和辽河排污管理区系分别平均占27%、30%和43%左右。分析表明,COD分配容量密度(DA)平均是3.9,其中面积占环渤海排污管理带总面积16%的区域高于均值,主要分布在北戴河区等32个排污管理区。
     3.环渤海排污管理带陆源污染物排放总量控制率定量化分级管理初探。
     根据陆源污染物排放总量控制五级量化管理模式,可以采用COD、氮和磷污染物超排率%对环渤海排污管理带实行分级量化管理,其中:超排率%=(污染物排放数量密度-行政区分配容量密度)/行政区分配容量密度。然而,在同样应用多目标(非)线性规划方法计算行政区分配容量中,目前尚无法具体确定所需要增设的经济发展、人口发展、污染物排放强度、工程减排等约束条件的函数化或参数化形式。在这种情况下,如果假设环渤海排污管理带行政区分配容量密度/排污管理区分配容量密度比值与青岛市结果基本相同,大约0.3,可以根据环渤海排污管理区分配容量密度粗略估算污染物超排率%。结果表明,根据COD超排率%,环渤海排污管理带范围内,需要实行红色和橙色管理的区域合计约53%,而绿色和蓝色合计约46%。
     总之,本论文主要工作是按照“目标总量控制”向“容量总量控制”转变关于率定量化指标要求,建立了针对海洋三维空间数值模型的污染物环境容量计算方法,浓度梯度积分法,并应用该方法计算了渤海COD、氮和磷污染物环境容量。同时,综合考虑汇水区、集污区、入海点等实际情况,科学确定了环渤海排污管理带范围,并合理划分了42个环渤海排污管理区。以上述两项结果为基础,应用多目标(非)线性规划方法计算得到了更加细化具体的42个环渤海排污管理区COD、氮和磷污染物分配容量,为建立以行政区为责任主体的环渤海排污管理带量化管理指标体系提供了量化理论基础。
     论文创新点主要是针对更加准确的环境容量计算结果的要求,建立了适应海洋三维空间数值模型的浓度梯度积分法。在此基础上,论文特色主要是得到了更加细化具体的42个环渤海排污管理区COD、氮和磷污染物分配容量,这为“十二五”规划时期环渤海排污管理带中共计343个县级行政区排放总量控制量化指标体系制定提供了科学基础。
Total Load control of Land-sourced pollutant is the basic content of achieving aresource-saving and environment-friendly socio-economic sustainable development.And it’s also an effective means to solve the atmosphere, surface water, soil andmarine pollution problems. Since the beginning of total pollutant load control researchin the middle of1980s, particularly the implementation of “Targeted Total LoadControl” plan in2006, in which COD reduction is the restricted index, the waterquality of Bohai Sea has not been improved to an extent satisfied, even after theimplementation of “Bohai Comprehensive Improvement Plan” and “Bohai Blue SeaAction plan”, due to the defects of “Targeted Total Load Control”. The areaexceeding the water quality standard of Bohai Sea increased by approximately50%in2010comparing with that in2005. According to the experience on total pollutant loadcontrol from U.S., EU and Japan, etc, it is more necessary to execute the “TotalPollutant Load Control based on Environment Capacity” instead of the “TargetedTotal Pollutant Load Control” for China. However, due to the reason that thedevelopment of calculation method of marine environment capacity usingthree-dimensional numerical models lags and etc., in many repots, not only theconcept of environmental capacity and allocated capacity is often mixed up, but alsothe calculation results are often limited to some area of the Bohai Sea or land aroundit. Particularly, up to now, Bohai pollutant discharge region has not been scientificallyand accurately divided. Therefore, the purpose of this research is to get the allocatedcapacities of pollutant discharge region around Bohai Sea based on the more accuratecalculation results of environment capacity of Bohai Sea, and to provide a scientificand theoretical basis for the scientific, accurate and quantitative management indicator system to achieve the implementation of “Total Discharge Control based onenvironment capacity”.
     The main contents of this research include:
     (1) According to the general principles of environment capacity’s calculation,establishing a method of calculating environment capacities, which is adapted to theocean three-dimensional numerical model.(2) Calculating the environmentalcapacities of pollutants of COD, nitrogen and phosphorus of the Bohai Sea using themethod established above.(3) According to the general principles of dividingcatchments and pollutant collecting areas and the actual land range whose pollutantentering into Bohai Sea, reasonably dividing the Bohai pollutant discharge regionBased on scientifically defining the range of Bohai discharge management belt.(4)Based on the results obtained in the (2), calculating the allocated capacities of COD,nitrogen and phosphorus of Bohai pollutant discharge regions with the method ofmulti-objective linear programming.(5) According to the estimated results ofdischarge rates of COD, nitrogen and phosphorus, preliminary proposing aquantitative and administration-leveled management system of total load control onBohai pollutant discharge region.Major results of this research are as follows:
     1. Calculation Environmental capacities of Pollutants of COD, Nitrogen andPhosphorus of Bohai Sea
     Currently, the general principles of the method of calculating environment capacitiesbased on pollutants’ self-purification can only be applied to the box-type numericalmodel, and cannot meet the demand of establishing three-dimensional numericalmodels. Therefore, considering the hydrodynamic space and biogeochemicaltime-varying characteristics, the method of calculating pollutants’ environmentcapacities (EC) can be established, which is adapted to the three-dimensionalnumerical model, and the results can be called “Concentration Gradient IntegralMethod”. According to the characteristics of the numerical model in terms of time,space, indicators and standards, environmental capacity calculation process includeseight sessions including from identifying waters the pollutant entering into to assessing the calculation results of environmental capacity. In this research, the Bohaithree-dimensional hydrodynamic (HAMSOM)-biogeochemical coupled model isapplied to numerical simulations of state variables of COD, nitrogen and phosphorus.The results show that the simulation results basically coincide with the monitoringresults, for nitrogen, the average relative deviation (RSD) and the similarity index (SI)is51%and0.42respectively, which illustrates that the model basically could be usedto calculate the environment capacities of pollutants of Bohai Sea. The results showthat the environment capacities of COD, nitrogen (ammonia) and phosphorus of theBohai Sea, were respectively about9.80,0.93and0.13million tons per year, and theenvironmental capacity density (t/a/km~2) of nitrogen and phosphorus wereapproximately1/3of Jiaozhou Bay of the Yellow Sea and Luoyuan Bay of the EastChina Sea under the conditions of water quality standards of the national functionalareas.
     2. Calculation of allocated capacities of land-sourced COD, Nitrogen and Phosphorusof Bohai Pollutant Discharge Regions.
     The calculation of land-sourced pollutants allocated capacities of Pollutant DischargeRegion includes three main components: First, considering the145points locatedaround the three provinces and two cities in the Bohai economic region wherepollutant enters into Bohai, of which there are115catchment area Zone,19pollutant collection area and17enterprise whose pollutants are discharged into theBohai sea directly, and confirming that the Bohai Sea pollutant management zonecovers343county-level administrative regions belonged to37prefecture-levelcities and105county-level administrative regions belonged to19prefecture-levelcities are outside this range. On this basis, the county-level Administrative Region issetted as the minimum Administrative Region of Bohai Sea pollutant managementzone. According to the main path of pollutants entering into sea. catchments andpollutant collection areas in the same administrative district, are merged. So, Bohaipollutant management zone can be divided into42pollutant management regions and3closely related pollutant management areas outside the region, which is the middleand upper reaches of the Yellow River and theupstream of Haihe River and Liaohe River (see above), of which the former can be further divided into Yellow Riverpollutant discharge management district, Haihe pollutant discharge managementdistrict and Liaohe pollutant discharge management district respectively. Secondly,allocated capacities (AC) of COD, nitrogen and phosphorus of the42pollutantmanagement regions are calculated with the method of multi-objective (non-) linearprogramming. and of which the maximum of allocated capacity of pollutantmanagement regions is set as the objective function and the the total pollutant load,water quality and non-negative as constraints, and the former takes Bohai’senvironmental capacity as land allocated capacity’s threshold. Finally, allocatedcapacities of pollutants of the pollutant management regions can be calculated usingthe simplex method. The results show that, as for pollutants of COD, nitrogen andphosphorus, the allocated capacities within the Bohai Sea pollutant management zoneaccounts for about95%, and that outside thezone accounts for only about5%, ofwhich Yellow River pollutant discharge management district, Haihe pollutantdischarge management district and Liaohe pollutant discharge management districtaccounted for27%,30%and43%respectively. The analysis shows that the density ofCOD allocated capacity (DA) is an average of3.9, of which16%area of the BohaiSea pollutant management zone, mainly located at the29pollutant managementregions including Beidaihe District and so on, is higher than the mean value.
     3. The preliminary research on a quantitative and leveled management system of totalload control on Bohai Pollutant Discharge zone.
     According to the five level quantitative management model of the land-sourcedpollutants total load control, it could implement the level quantitative managementusing the COD, nitrogen and phosphorus pollutants superovulated%for the Bohaipollutant discharge region, of which: Super ovulation rate%=(Pollutant dischargenumber density-Allocated capacity density of Administrative Region)/Allocatedcapacity density of Administrative Region. However, in the same multi-objective(non-) linear programming method that calculates the allocated capacity ofAdministrative Region is still not possible to determine the demand for additionaleconomic development, population development, pollutant discharge intensity, project discharge reductions and other constraints of the function or parametric form. In thiscase, assuming that the ratio result of Allocated capacity density of the AdministrativeRegion/Allocated capacity density of Pollutant Discharge Region of the Bohai Sea isbasically the same with the result of Qingdao City which is about0.3, the ratioexceeding the allocated capacity can be estimated through the density of allocatedcapacities of Bohai pollutant management regions. The results showed that accordingto the COD ratio exceeding the allocated capacity (see above), within the Bohai Seapollutant management zone, the area needed to be managed with the level of red andorange together takes a proportion of approximately53%, and the area needed to bemanaged with the level of green and blue together takes a proportion ofapproximately46%.
     In short, in this research, according to the demand of quantitative indicators in theprocess of the “Targeted Total Load Control” converted to the “Total Pollutant LoadControl based on Environment Capacity” the method of calculating environmentcapacities and integral concentration gradient are established, which is adapted tothe ocean three-dimensional numerical model. And with the method, theenvironmental capacities of COD, nitrogen and phosphorus in Bohai are calculated.Considering the actual situation of the catchment, pollutant collection area and the seapoints, it is identified with the scope of the Bohai pollutant management and rationaldivision of42Bohai pollutant management district. Based on above two results, thisresearch use multi-objective (non-) linear programming method to get a more detailedcalculation of COD, nitrogen and phosphorus pollutants distribution capacities of42pollutant management area. And this research provides a theoretical basis for thequantitative management system of total load control on Bohai pollutant dischargeregion.
     The innovation of this research is, aimed at the demand of more accurate calculationresults of environmental capacity, establishing the concentration gradient integralmethod that adapted to the ocean three-dimensional numerical model. on this basis,more detailed allocated capacities of COD, nitrogen and phosphorus of42Bohai Sea pollutant management regions is obtained, which provides a scientific basis for thequantitative indicators management system of total load control on343county withinthe Bohai pollutant discharge zone during the12th Five-Year plan.
引文
1. Backhaus, J O.1983. A semi-implicitscheme for the shallow water equations for applicationsto shelf sea modeling. Cont. Shelf Res.,2:243-254
    2. Backhaus, J O.1985. A Three Dimensional Model for the Simulation of Shelf Sea Dynamics.Dt. Hydrogr. Z.,38(4):165-187
    3. Bryce, S.A., J.M. Omernik, and D.P. Larsen.1999. Ecoregions-a geographic framework toguide risk characterization and ecosystem management: Environmental Practice1(3):141-155.
    4. Chadderton R A, Miller A C, McDonnell A J. Analysis of wasteload allocationprocedures[J].Water Resource Bulletin,1981,17(5):760-766.
    5. Chen, L. Q.,2004. Environment assessment and study on the total quantity control ofpollution in the Laizhou Bay. Qingdao, Ocean University of China.(in Chinese with Englishabstract)
    6. Chen, S. J. et al.,1988. The research on the prediction of water quality and the physicalself-purification capability of the Bohai Sea and ten bays in China. Journal of ShangdongCollege of Oceanology18(2):1-80.(in Chinese)
    7. Clifton Pannell. China’s Urban Transition [J]. Journal of Geography,1995,94(3)
    8. Commission for Environmental Cooperation.1997. Ecological regions of North America:toward a common perspective. Commission for Environmental Cooperation, Montreal,Quebec, Canada.71p. Map (scale1:12,500,000). Revised2006.
    9. Cui, Z. G.,2008. Study on scheme of total emission control of main chemical pollution in13cities around Bohai Sea. Qingdao, Ocean University of China.(in Chinese with Englishabstract)
    10. Donald H. Burn,Edward A. McBean. Nonlinear optimization modeling of coliformbacteria[J]. Water, Air, and Soil Pollution,1987,32(1-2).
    11. Gallant, A.L., E.F. Binnian, J.M. Omernik, and M.B. Shasby.1995. Ecoregions of Alaska.U.S. Geological Survey Professional Paper1567. U.S. Government Printing Office,Washington D.C.73p.
    12. Ghosh S,Mujumdar P P.Risk minimization in water quality control problems of a riversystem[J].Advances in Water Resources,2006,29(3):458-470.
    13. Griffith, G.E., J.M. Omernik, C.M. Rohm, and S.M. Pierson.1994. Florida regionalizationproject. EPA/600/Q-95/002. U.S. Environmental Protection Agency, Environmental ResearchLaboratory, Corvallis OR.83p.73p.
    14. Griffith, G.E., J.M. Omernik, T.F. Wilton, and S.M. Pierson.1994. Ecoregions and subregionsof Iowa: A framework for water quality assessment and management. The Journal of the IowaAcademy of Science101(1):5-13.
    15. Griffith, G.E., S.B. Bryce, J.M. Omernik, and A. Rogers.2007. Ecoregions of Texas. TexasCommission on Environmental Quality. Austin, TX.125p.
    16. Gu Ruochuan,Dong Mei.Water quality modeling in the watershed-based approach for wasteload allocations[J].Water Science and Technology,1998,38(10):165-172.
    17. Guo, L. B., W. S. Jiang, F. Q. Li and X. L. Wang,2007. Environmental capacity calculationof COD and PHs in the Bohai Sea. Periodical of Ocean University of China37(2):310-316.(in Chinese with English abstract)
    18. Guo, Q, X. L. Wang, X. R. Han and J. T. Wang,2005. Spatial distribution of COD and itscontribution to the eutrophication in Bohai Sea. Marine Science29(9):71-75.(in Chinesewith English abstract)
    19. Hainbucher, D., H. Wei, T. Pohlmann, S. Jurgen and S. Z. Feng,2004. Variability of theBohai Sea circulation based on model calculations. Journal of Marine Systems44:153-174.
    20. Hisano T, Hayase T.Countermeasures against water pollution in enclosed coastal seas inJapan[J].Marine Pollution Bulletin,1991,23:479-484.
    21. Hu, X. M.,2007. Water quality numerical simulation and entrophication assessment in theLiaodong Bay. Dalian, Dalian University of Technology.(in Chinese with English abstract)
    22. Huang, D. J., Z. Y. Chen and J. L. Su,1996. The application of three-dimensional shelf seamodel in the Bohai Sea:Ⅰ. Numerical Simulation of tidal and wind-driven current. ActaOceanologica Sinica18(5):1-13.(in Chinese)
    23. Ji, M., Z. W. Sun, Z. L. Wang and J. H. Tao,1999. A simulation experiment of thebiodegradation process of COD from ocean outfall discharge in Bohai Bay. Oceanologia EtLimnologia Sinica30(6):731-736.(in Chinese with English abstract)
    24. Karmakar S,Mujumdar P P.A two-phase grey fuzzy optimization approach for water qualitymanagement of a river system[J].Advances in Water Resources,2007,30(5):1218-1235.
    25. Konovalov,S.M.1984.The large Marine Ecosystems of the Pacific Rim19~20IUCN GlandSwitzerland and NOAA U.S.A
    26. Li, S. Y., Y. C. Li, B. L. Chen and Q. H. Wu,1999. A new approach to determiningenvironmental capacity of coastal waters. Environmental Scienc20(4):96-99.(in Chinesewith English abstract)
    27. Liu, H. and B. S. Yin,2006. Numerical calculation on the content of nitrogen, phosphate andCOD in the Liaodong Bay. Marine Science Bulletin25(2):46-54.(in Chinese with Englishabstract)
    28. McMahon, G., S.M. Gregonis, S.W. Waltman, J.M. Omernik, T.D. Thorson, J.A. Freeouf,A.H. Rorick, and J.E. Keys.2001. Developing a spatial framework of common ecologicalregions for the conterminous United States. Environmental Management28(3):293-316.
    29. Modeling Subcommittee of the Chesapeake Bay Progam.Chesapeake Bay Watershed ModelLand Use and Model Linkages to the Airshed and Estuarine Models.2000.
    30. Omernik, J.M.1987. Ecoregions of the conterminous United States. Map (scale1:7,500,000).Annals of the Association of American Geographers77(1):118-125.
    31. Omernik, J.M.2004. Perspectives on the nature and definition of ecological regions.Environmental Management34(Supplement1):S27-S38.
    32. Omernik, J.M. Ecoregions: A spatial framework for environmental management. In:Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making.Davis, W.S. and T.P. Simon (eds.), Lewis Publishers, Boca Raton, FL.1995.49-62.
    33. Omernik, J.M., S.S. Chapman, R.A. Lillie, and R.T. Dumke.2000. Ecoregions of Wisconsin.Transactions of the Wisconsin Acadamy of Sciences, Arts, and Letters88:77-103.
    34. Ortolanol.Environmental Planning and Decision Making[M].New York:John Wiley&Sons,1984.
    35. Peng Z D,Yang K,Wang Y.The Primary Exploring of the Research Method of ASEC[J].China Environ Sci,1996,16(1)6-10.
    36. Qiao, L. L., R. Z. Liu, X. W. Bao and Z. Li,2008. Prognostic of environmental capacityvariation in Bohai based on the economy increase. China Population, Resources andEnvironmen18(2):76-81.(in Chinese with English abstract)
    37. Rachel C. Wagner,Theo A. Dillaha,Gene Yagow. An assessment of the reference watershedapproach for TMDLs with biological impairments[J]. Water, Air, and Soil Pollution,2007,181(1-4).
    38. Shih J S,Russell A G,McRae G J.An optimization model for photochemical air pollutioncontrol[J].European Journal of Operational Research,1998,106(1):1-14.
    39. Su, J. Y., S. K. iu, S. L. H, P. Y. Qin. S. M. Zou and S. H. Zhai,1992. Water qualitymanagement in Tai Lake. Journal of Hydraulic Engineerin37(11):22-36.(in Chinese withEnglish abstract)
    40. Thorolfsson S T.A new direction in the urban runoff and pollution management in the city ofBergen,Norway[J].Water Science and Technology,1998,38(10):123-130.
    41. US EPA. Technical Support Document for Water Quality-based Toxics Control[EB/OL].1991[2010-10-30].
    42. http://water.epa.gov/scitech/datait/models/allocation/19sch-emes.cfm.
    43. USEPA.Protocol for developing nutrient TMDLs[EB/OL]. Office of Water4503FWashington DC20460,EPA841-B-99-007,1999[2010-10-30].
    44. http://www.epa.gov/owow/tmdl/nutrient/pdf/nutrient.pdf
    45. Wang, Q.,2004. A numerical modeling study of the circulation and plankton ecosystemdynamics of the Bohai Sea. Qingdao, Ocean University of China.(in Chinese with Englishabstract)
    46. Wang, X. L. and K. Q. Li,2006. Marine environmental capacity of pollutants in Bohai Sea.Science Press, Beijing.(in Chinese)
    47. Wang, X. L., N. N. Deng, K. Q. Li, X. Y. Shi, C. J. Zhu, X. R. Han, C. S. Zhang and L. Wang,
    2004. Petroleum pollution condition and estimation of it environmental capacities summer inBohai Sea. Marine Environmental Science23(4):14-18.(in Chinese with English abstract)
    48. Wang, X. L., Z. G. Cui, K. Q. Li, S. K. Liang and C. J. Zhu, in press. The study on theestimation of the flux of COD and its allocation caoacity in the Bohai Sea.(in Chinese withEnglish abstract)
    49. Wang, X. L., Z. G. Cui, K.. Q. Li, X. R. Han, Y. B. Li and C. J. Zhu,2008. Study on the grosscontrol of氮environmental capacity in the peripheral zone of the Bohai Sea. Periodical ofOcean University of China38(4):619-622.(in Chinese with English abstract)
    50. Wang, Y.,2005. Numerical study on physical self-purification capability and environmentcapacity in Bohai Bay under the effect of tide current. Qingdao, Ocean University of China.(in Chinese with English abstract)
    51. Wei, H., T. Tian, F. Zhou and L. Zhao,2002. Numerical study on the water exchange of theBohai Sea: Simulation of the half-life time by dispersion model. Journal of Ocean Universityof Qingdao32(4):519-525.(in Chinese with English abstract)
    52. Wiken, E.1986. Terrestrial ecozones of Canada. Environment Canada. Ecological LandClassification Series No.19. Ottawa, Canada.
    53. Wu, J., Z. J. Wang,1983. The turn-over and self-cleaning capability of seawater in DalianBay. Marine Science7(6):32-35.(in Chinese)
    54. Xie, L.,2005. Key technologies on decision support system for pollution control based onenvironment capacity in Liaodong Bay. Wuhan, Wuhan University.(in Chinese with Englishabstract)
    55. Xu, C. J.,2006. Research on the environmental capacity based tatal pollutant dischargequantity control and system development. Hangzhou, Zhejiang University.(in Chinese withEnglish abstract)
    56. Zhou Yixing. The Metropolitan Interlocking Region inChina: A Preliminary Hypothesis [A].The Extended Metropolis: Settlement Transition in AsiaEdited [C]. byN. Ginsburg, B.Koppel and T. G. McGee, University of Hawaii Press, U. S.,1991.
    57. Zhu J.,2007. Research on contaminants transport law and environment capacity in coastalarea. Nanjing, Hohai University.(in Chinese with English abstract)
    58.包存宽,李彬,尚金城.水污染控制模式选择的研究[J].东北师大学报(自然科学版),1997,(02).
    59.包存宽,张敏,尚金城.流域水污染物排放总量控制研究——以吉林省松花江流域为例.地理科学,2000,20(1):61-64.
    60.鲍全盛,王华东.我国水环境非点源污染研究与展望[J].地理科学,1996,(01).
    61.曹芦林.感潮河段水环境容量计算方法探讨.上海环境科学,1998,(1):15-18.
    62.曹瑞钰,顾国维.水环境治理工程费用优化模型.同济大学学报,1997,25(5):548-552.
    63.曹升乐,于翠松,孙秀玲.年降水量和年径流量序列中特大(小)值分析处理方法研究.水文,1998,2:22-26.
    64.柴宁.大辽河水系主要污染物特征分析.环境保护科学,2006,32(3):19-21.
    65.常原飞,贾振邦,赵智杰等.辽河COD变化规律及其原因探讨.北京大学学报(自然科学版),2002,38(4):535-542.
    66.车伍,刘燕,李俊奇.国内外城市雨水水质及污染控制.给水排水,2003,29(10):37-42.
    67.陈春华.海口湾海水表观重金属络合容量研究.海洋学报,1997,19(5):68-75.
    68.陈剑.中国都市圈竞争的大格局——三大都市圈的现实与机遇[J].市场与发展,2003(3).
    69.陈静生,周家义.中国水环境重金属研究.北京:中国环境科学出版社,1992.
    70.陈力群.莱州湾海洋环境评价与污染总量控制方法研究.青岛:中国海洋大学硕士学位论文,2004.
    71.陈六一,张明,徐鹏炜,黄燕.浙江省太湖流域水环境管理思路研究[J].环境污染与防治,2010,(09).
    72.陈素艳.清河水源涵养生态功能保护区规划研究[J].环境保护与循环经济,2008,(04).
    73.陈文颖,方栋,薛大知.总量控制规划中允许排放量的平权分配.环境污染与防治,1998,20(4):4-7.
    74.陈文颖,侯盾.基于多人合作对策思想的总量控制优化治理投资费用分摊方法.环境科学学报,1999,19(1):57-62.
    75.陈艳卿.论国家水污染物排放标准体系调整思路与当前工作重点[J].中国环境管理,2003,(S1).
    76.陈羿汀.浅析我国污染物总量控制制度的缺陷与完善——以太湖水污染为例[J].四川行政学院学报,2008,(02).
    77.楚君.排污权水污染物(COD)初始分配方法研究[D].郑州大学,2010.
    78.崔凤军.城市水环境承载力及其实证研究[J].自然资源学报,1998,13(1):58-62.
    79.崔树彬河流水环境承载力及其定量化研究[J]水问题论坛,2003,38(1):28-32
    80.董保华.黄河水资源保护30年回顾与展望[J].人民黄河,2006,(11)
    81.董亮.GIS支持下西湖流域水环境非点源污染研究[D].浙江大学,2001.
    82.董战峰.国家水污染物排放总量分配方法研究[D].南京大学,2010
    83.杜可喜,李善祥.环渤海地区经济发展战略若干问题[J].地理学与国土研究,1997,13(1)
    84.范磊,汪飞.步履沉重的环渤海经济圈的发展[J].天津商学院学报,1997(4)
    85.方国华,于凤存,曹永潇.中国水环境容量研究概述[J].安徽农业科学,2007,(27).
    86.方秦华,张珞平,洪华生.水污染负荷优化分配研究[J].污染控制,2005,12;29-31.
    87.房春生,王菊,刘林,马小凡,赵文晋.城市污水处理厂项目的总量控制问题初探[A].2007中国环境科学学会学术年会优秀论文集(上卷)[C],2007.
    88.高娟,李贵宝,华珞,杜霞.日本水环境标准及其对我国的启示[J].中国水利,2005,(11).
    89.葛继志,陈巨华,万一.淮河水污染及其治理的现状和展望[J].安徽大学学报(自然科学版),2000,(02).
    90.郭宏飞,倪晋仁,王裕东.基于宏观经济优化模型的区域污染负荷分配[J].应用基础与工程科学学报,2003,11(3):133-142.
    91.郭怀成,徐云麟,洪志明,等.我国新经济开发区水环境规划研究[J].环境科学进展,1994,2(6):14-22.
    92.郭家祯.基于投入产出模型的多目标优化分析[D].江苏大学,2010
    93.郭蕾.水污染物排放总量控制研究[D].江苏大学,2010
    94.郭全.渤海夏季营养盐和叶绿素分布特征及富营养化状况分析[D].中国海洋大学,2005.
    95.郭希利,李文岐.总量控制方法类型及分配原则[J].中国环境管理,1997,10(5):47-48
    96.国峰,李紫薇,隋洪波,蒋晓山.浅谈我国海洋突发性污染事件应急反应系统运行现状[A].中国海洋学会2007年学术年会论文集(上册)[C],2007.
    97.何翎.关于当前推进环渤海区域经济合作的思路和操作[J].环渤海经济瞭望,1996(3).
    98.何少苓,彭静.论提高水域纳污与自净能力的水动力潜力[J].水环境论坛,2001,33(增刊):18-22.
    99.洪宇.国际跨界水环境管理经验探析——以莱茵河为例[J].科技情报开发与经济,2008,(26).
    100.侯思琰,李娜,张彤.白洋淀及入淀河流限制排污总量研究[J].海河水利,2009,(02)
    101.胡序威,周一星,顾朝林等.中国沿海城镇密集地区空间集聚与扩散研究[M].北京:科学出版社,2000.
    102.黄峻桢.洛阳江水环境容量与污染物总量控制方案研究[J].海峡科学,2008,(03).
    103.黄雪莲,杨传勇,梁敬祖.ArcGIS Engine中矢量数据叠加分析的实现及应用[J].城市勘测,2010,(03).
    104.黄艺,蔡佳亮,郑维爽,周丰,郭怀成.流域水生态功能分区以及区划方法的研究进展[J].生态学杂志,2009,(03).
    105.黄勇华,潘伟斌,曹英姿.岐江河城区段污染物总量控制研究[J].环境科学与管理,2007,(03).
    106.惠婷婷.水污染控制单元划分方法及应用[D].辽宁大学,2011
    107.姜太良.1991.莱州湾西南部的物理自净能力.海洋通报,10(2):73~75
    108.荆春燕,黄蕾,曲常胜.跨界流域环境管理与预警——欧洲经验与启示[J].环境监控与预警,2011,(01)
    109.匡国瑞.1985.环境容量在养虾海湾中的应用.海洋湖沼通报,10(2):73~75
    110.李京文.中国环渤海经济圈及其与韩国发展合作关系的展望[J].经济纵横,1996(10).
    111.李鸣.鄱阳湖重金属污染特征研究及环境容量估算[D].南昌大学,2010.
    112.李如忠,钱家忠,汪家权.水污染物允许排放总量分配方法研究[J].水利学报,2003,5(5):112-116.
    113.李如忠,汪家权,钱家忠.区域水污染负荷分配的Delphi—AHP法[J].哈尔滨工业大学学报,2005,37(1):84-88.
    114.李如忠.区域水污染物排放总量分配方法研究[J].环境工程,2002,20(6):61-63.
    115.李树斌,张爱华,原海燕.汤河水污染综合防治研究[J].海河水利,1994,(03).
    116.李树斌,张爱华.洹河水污染物总量控制研究.水资源保护.1993,4:18-23.
    117.李长义,苗丰民.辽宁海洋功能区划.北京:海洋出版社,2006.12.
    118.李智勇,崔青江,李树斌,张爱华,李京.淇河水环境规划研究[J].海河水利,1994,(06)
    119.梁博,王晓燕,曹利平.最大日负荷总量计划在非点源污染控制管理中的应用[J].水资源保护,2004,(04).
    120.梁博,王晓燕.我国水环境污染物总量控制研究的现状与展望[J].首都师范大学学报(自然科学版),2005,(01).
    121.梁博,王晓燕.我国水环境污染物总量控制研究的现状与展望[J].首都师范大学学报(自然科学版),2005,(01).
    122.廖文根.水环境承载能力及其评价体系探讨[EB/OL].http://www.cws.net.cn/CWSnet/shuihj/wyh01113021.html,2001-11-30
    123.林高松,李适宁,江峰.基于公平区间的污染物允许排放量分配方法[J].水利学报,2006,37(1):52-57.
    124.凌向韶,喻娓厚.湖南省水功能区污染物总量控制分析[J].湖南水利水电,2007,(03).
    125.刘成,王兆印,何耘,吴永胜.环渤海湾诸河口水质现状的分析[J].环境污染与防治,2003,(04).
    126.刘成,王兆印,何耘,吴永胜.环渤海湾诸河口水质现状的分析[J].环境污染与防治,2003,(04).
    127.刘国材,宿华.国外水污染控制与管理政策[J].水资源保护,1993,(02)
    128.刘洪滨.环渤海地区经济发展与海洋产业结构调整[J].东岳论丛,2003(1).
    129.刘娜,高辉,熊德琪.浅析海水自净能力及海域污染总量控制[A].中国海洋学会2005年学术年会论文汇编[C],2005.
    130.刘小龙.东北亚经济合作的态势与环渤海地区战略的选择[J].经济论坛,1995(10).
    131.刘兴盛,张防修,陈丹枫.太湖流域污染物总量控制研究[J].中国水利,2004,(15).
    132.刘勇.基于混合遗传算法的灰色多目标规划问题研究[D].西安建筑科技大学,2007.
    133.卢杰.国外大河大湖区域治理对鄱阳湖开发的借鉴[J].企业经济,2010,(10).
    134.卢新德.环渤海地区应成为中国经济第三次腾飞的“龙头”[J].观察与思考,1993(1)
    135.栾秀芝.基于海洋环境容量的临海产业布局优化模式研究[D].中国海洋大学,2010.
    136.吕唤春.千岛湖流域农业非点源污染及其生态郊应的研究[D].浙江大学,2002.
    137.马绍赛.1998.乳山湾东流区丰水期(8月)有机物及营养盐的环境容量.海洋水产研究[J].19(2):33~36
    138.马文敏,李淑霞,康金虎1西北干旱区域城市水环境承载力分析方法研究进展[J].宁夏农学院学报,2002,23(4):68-70,86.
    139.孟伟,刘征涛,范薇.渤海主要河口污染特征研究[J].环境科学研究,2004,(06).
    140.孟伟,张楠,张远,郑丙辉.流域水质目标管理技术研究(Ⅰ)——控制单元的总量控制技术[J].环境科学研究,2007,(04).
    141.孟伟,张远,郑丙辉.水环境质量基准、标准与流域水污染物总量控制策略[J].环境科学研究,2006,(03).
    142.庞莹莹.湖泊流域纳污能力及污染负荷分配研究[D].郑州大学,2010.
    143.裴相斌,赵冬至,基于GIS的海湾陆源污染物排海总量控制的空间优化分配方法研究——以大连湾为例[J].环境科学学报,2000,20(3):294-298.
    144.彭静,廖文根,何少苓,等.珠江三角洲河口区水环境承载能力与协同调控初探[EB/OL].http://www.cws.net.cn/CWSnet/shuihj/wyh011130210.html,2001-11-30.
    145.彭文启.基于水环境信息系统的水环境承载能力调控模式研究[EB/OL].http://www.cws.net.cn/CWSnet/shuihj/wyh011130206.html,2001-11-30.
    146.蒲俊,等.MATLAB6.0数学手册[M].浦东电子出版社,2002.
    147.邱爱军,訾香梅.渭河污染物总量控制方案研究[J].水资源与水工程学报,2006,(02).
    148.邱俊永.基尼系数法在黄河中上游流域水污染物总量分配中的应用研究[D].江苏大学,2010
    149.饶卫振.基尼系数计算方法新思考[J].统计与决策,2007(7):28-29.
    150.沙健,李青,石春力,朱倩,王绪鹏,王玉秋.基于美国TMDL计划下的湖库流域模型化管理概述[A].中国环境科学学会2009年学术年会论文集(第一卷)[C],2009.
    151.申献辰.水环境承载能力及其定量描述方法[J].水环境论坛,2001,33(增刊):26-29.
    152.沈剑飞.2007.涪江遂宁段水环境容量研究.成都:西南交通大学硕士论文.
    153.沈晔娜.流域非点源污染过程动态模拟及其定量控制[D].浙江大学,2010.
    154.沈珍瑶,谢彤芳.一种改进的灰关联分析方法及其在水环境质量评价中的应用[J].水文,1997,(03).
    155.盛虎,李娜,郭怀成等.流域容量总量分配及排污交易潜力分析[J].环境科学学报,2010,30(3):655-663.
    156.石洪华,王保栋等.2012.广西沿海重要海湾环境承载力评估[J].海洋环境科学,2012,31(1):62-66
    157.石雅君,崔晓建,陈斐.2003年上半年渤海湾海水环境质量初步分析[J].海洋信息,2004,(01).
    158.孙培艳.渤海富营养化变化特征及生态效应分析[D].中国海洋大学,2007.
    159.孙郅博.水污染物总量分配方案的研究[D].吉林农业大学,2008.
    160.谭映宇.海洋资源、生态和环境承载率研究及其在渤海湾的应用[D].中国海洋大学,2010.
    161.汪俊启,张颖.总量控制中水污染物允许排放量公平分配研究[J].安庆师范学院学报(自然科学版),2000,(03).
    162.汪恕诚.水环境承载能力分析与调控:中国水利学会成立70周年大会学术报告[J].水环境论坛,2001,33(增刊):127.
    163.王亮,张宏伟,岳琳.水污染物总量行业优化分配模型研究[J].天津大学学报(社会科学版),2006,8(1):59-63.
    164.王明远,肖静.莱茵河化学污染事件及多边反应[J].环境保护,2006,(01).
    165.王勤耕,李宗恺,陈志鹏.总量控制区域排污权的初始分配方法[J].中国环境科学,2000,20(1):68-72.
    166.王淑华.区域水环境承载力及其可持续利用研究[D].北京:北京师范大学,1996.
    167.王铁柱.入出境水质连续传递法计算大江河水环境容量[A].中国环境保护优秀论文集(2005)(下册)[C],2005.
    168.王同生.莱茵河的水资源保护和流域治理[J].水资源保护,2002,(04).
    169.王西琴,张艳会.辽宁省辽河流域污染现状与对策[J].环境保护科学,2007,(03).
    170.王晓鹏.河流水质综合评价之主成分分析方法[J].数理统计与管理,2001,(04).
    171.王修林,邓宁宁,李克强,石晓勇等.2004.渤海夏季石油烃污染现状及其环境容量估算.海洋环境科学,23(4):14-18
    172.王修林,邓宁宁,李克强,石晓勇等.2004.渤海夏季石油烃污染现状及其环境容量估算.海洋环境科学,23(4):14-18.
    173.王修林,李克强,葛明.2006a.胶州湾氮、磷营养盐海洋环境容量:迁移-转化箱式数值模型与计算.见:王修林等著.胶州湾主要化学污染物海洋环境容量.北京:科学出版社.165-187
    174.王修林,李克强,石晓勇.2006b.胶州湾主要化学污染物海洋环境容量.北京:科学出版社
    175.王修林,李克强.2006.渤海主要化学污染物海洋环境容量.北京:科学出版社.
    176.王修林,石晓勇,江玉,张力军,韩秀荣,1998.影响海洋环境质量的重要海洋过程研究.98青年海洋论坛-海洋可持续发展论文集,北京:海洋出版社,121-125
    177.王媛,牛志广,王伟.基尼系数法在水污染物总量区域分配中的应用[J].中国人口·资源与环境,2008,18(3):177-180.
    178.王宗志,金菊良,张玲玲.东湖污染物来源的智能识别方法[J].水科学进展,2006,(05).
    179.王宗志,王银堂,胡四一.水库控制流域汛期分期的有效聚类分析[J].水科学进展,2007,(04).
    180.王宗志,赵丽霞.流域代表性污染物智能识别模型[J].黑龙江水利科技,2010,(02).
    181.邬凤祥.环渤海经济圈与“哑铃”发展战略[J].技术经济与管理研究,1995(4).
    182.吴东芳,魏民,宿华,蔡宇.松花江流域纳污能力核定及实例分析[J].水利发展研究,2008,(09)
    183.吴凯.环渤海区域水环境问题及其防治对策[J].地理科学,1997,(03).
    184.吴亚琼.总量控制下排污权交易制度若干机制的研究[D].武汉:华中科技人学,2004.
    185.吴悦颖,李云生,刘伟江.基于公平性的水污染物总量分配评估方法研究[J].环境科学研究,2006,19(2):66-70,
    186.席北斗,霍守亮等.2011.美国水质标准体系及其对我国水环境保护的启示.环境科学与技术[J],2011,34(5):100-103
    187.夏建新,任华堂,陶亚.基于TMDL的深圳湾海域水污染防治规划研究[A].中国环境科学学会2009年学术年会论文集(第一卷)[C],2009.
    188.夏星辉,周劲松,杨志峰,陈静生.黄河流域河水氮污染分析[J].环境科学学报,2001,(05)
    189.邢乃春,陈捍华.TMDL计划的背景、发展进程及组成框架[J].水利科技与经济,2005,(09).
    190.徐律涂.万家寨引黄工程水资源保护问题及对策——流域水污染防治与污染物总量控制的应用[J].水系污染与保护,1997,(02)
    191.许洪余,王照之,刘年丰,白保柱,罗津新.墨水湖水污染物总量控制方案的优化研究[J].环境科学与技术,1993,(03).
    192.许祥左.煤矿企业排污总量控制探讨[J].煤炭科技,2002,(01)
    193.严如忠.污染物总量控制指标层次分配模式研究[J].环境导报,2002(2):12-14.
    194.杨丽蓉,孙然好,陈利顶.流域地表水体污染过程的时空差异及其影响机制分析:以温榆河中上游地区为例[J].环境科学,2011,(01).
    195.杨龙飞.非线性双层规划的算法研究[D].山东科技大学,2010.
    196.殷倩.海洋污染模拟与控制决策支持系统建模研究[D].中国海洋大学,2010.
    197.于保华,陈瑛.渤海海洋污染与赤潮[J].海洋信息,2000,(04).
    198.于晓颖.点源与集中治理相结合还浑河本色[J].辽宁城乡环境科技,1997,(04)
    199.张广海.论环渤海经济区的区域整合[J].地理学与国土研究,1998,14(3).
    200.张鹤.辽河流域控制单元划分与典型污染物识别[D].辽宁大学,2011
    201.张慧霞.环渤海地区城市与产业布局研究[J].生产力研究,1995(4)
    202.张静.深圳湾水环境综合评价及环境容量研究[D].大连海事大学,2010.
    203.张明生.德国水资源管理的启示[J].科技通报,2008,(02)
    204.张楠,孟伟,张远,郑丙辉.辽河流域河流生态系统健康的多指标评价方法[J].环境科学研究,2009,(02).
    205.张秀敏.滇池污染物的总量控制[J].云南环境科学,1993,(01).
    206.张秀敏.滇池污染物总量控制与综合治理工程[J].云南环境科学,1993,(03).
    207.张远,张明,王西琴.中国流域水污染防治规划问题与对策研究[J].环境污染与防治,2007,(11).
    208.张远,张楠,孟伟.辽河流域河流生态系统健康的多要素评价[J].科技导报,2008,(17).
    209.赵杰.简说环渤海经济区形成的依据及发展战略[J].商业经济研究,1994(8).
    210.赵亮,魏皓,冯士筰.2002b.渤海氮磷营养盐的循环和收支.环境科学,23(1):78-81.
    211.郑凡东,孟庆义,王培京,金桂琴.北京市温榆河水环境现状及治理对策研究[J].北京水务,2007,(05)
    212.中村武弘.1980.海水交换率大村湾水质污浊预测研究.第27回海岸工程学讲演论文集.487~491
    213.周晓冬.非线性约束规划的若干算法研究[D].西安建筑科技大学,2009
    214.周一星,张莉.改革开放下的中国城市经济区[J].地理学报,2003,58(2).
    215.周一星.城市地理学[M].北京:商务印书馆,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700