用户名: 密码: 验证码:
海洋环境中有机污染物降解机理及构效关系的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以拟除虫菊酯类农药中的氰戊菊酯、烷基酚中的壬基酚和多环芳烃三类海洋环境中的有机污染物作为研究对象,在有机污染物的降解机理和构效关系两个方向,采用密度泛函理论,进行了五方面的研究工作:氰戊菊酯农药在水体中的光降解反应机理;4-壬基酚在水体中的光降解反应机理;多环芳烃在沉积物中发生微生物降解的定量结构-性质关系(QSAR);多环芳烃在水体中发生微生物降解的定量结构-性质关系;多环芳烃在水体中发生光降解的定量结构-性质关系。研究结果确定了氰戊菊酯农药和壬基酚在水体中发生光降解过程的过渡态及反应路径,得到了完整反应机理;成功建立了多环芳烃污染物在不同环境进行不同类型降解的定量结构-性质关系。为今后有机污染物的降解以及其在海洋环境中的迁移转化方面的研究提供一定的理论依据。
     (1)用密度泛函理论(DFT)研究了氰戊菊酯农药在水体中的光降解反应机理。在B3LYP/6-31G*水平上对该反应体系的反应物、中间体、过渡态和产物进行了几何结构优化。计算结果表明,反应过程主要包括·OH自由基对羰基碳原子的亲核进攻和取代反应。通过振动分析和内禀反应坐标(IRC)跟踪方法对过渡态及其所处的反应路径进行了确认,并通过红外光谱分析及自然键轨道(NBO)分析多方面考察了反应过程中新键形成和旧键断裂的细节。溶剂化效应的计算结果表明,极性溶剂可以增加自由基结合的稳定化能,并降低反应通道的活化能,有利于反应的进行。
     (2)用密度泛函理论,研究了壬基酚在海水中由羟基自由基·OH诱发的光降解机理。通过NBO电荷分析,推测出·OH与壬基酚的反应主要包括苯环的碳加成和酚羟基上的氢提取,其中邻位加成和酚羟基的氢提取是主要的反应通道。B3LYP/6-31+G(d,p)水平上优化了所有反应物、产物、中间体的结构,并用优化过渡态方法(TS)找到反应势能面上的过渡态,借助振动分析对过渡态予以确认。各反应通道的中间体或产物与实验上测得的产物和中间体相一致
     (3)用密度泛函理论和逐步多元线性回归方法(SMLR),研究了17种多环芳烃(PAHs)的化学结构与其在沉积物中发生微生物降解活性间(-logt1/2)的关系。在B3LYP/6-31+G(d,p)水平上,优化了所有多环芳烃的结构并计算了振动频率。结果表明,整个分子的摇摆振动频率(Freq)与-logt1/2之间有较高的相关系数,这是由多环芳烃具有较大共轭体系的特殊结构造成的。根据回归分析,筛选了影响生物降解活动的主要因素,并建立了定量构效关系方程-logt1/2=12.049-0.013Freq-0.159N-5.329ELUMO+16.528NEHOMO-0.003IRIn。对建立的模型的评估结果表明,模型有良好的相关关系和较好的预测能力。QSAR模型表明多环芳烃的微生物降解活性和分子结构密切相关:苯环的化学键强度在生物降解过程中起关键作用;此外,较低分子量的PAHs比高分子量的PAHs更容易降解。
     (4)用密度泛函理论和逐步多元线性回归方法,研究了水体中22种多环芳烃的化学结构与微生物降解速率(kb)间的关系。在B3LYP/6-31+G(d,p)水平上,优化了分子的构型并进行了振动频率分析,并用基于自洽反应场(SCRF)中的极化连续介质模型(PCM)考虑了溶剂效应。结果显示,多环芳烃在水体中的微生物降解速率和它的化学结构紧密相关,多环芳烃的共轭苯环的面内弯曲振动频率与微生物降解速率kb间存在很高的相关关系。通过线性回归,获取了影响微生物降解速率的主要因素,并成功建立了QSAR模型kb=-0.653+0.001Freq+0.068Q C+0.049N1。对QSAR模型的统计学评价表明所研究的相关关系在统计学上是显著的,模型具有良好的预测能力。共轭苯环的振动频率在预测其降解速率中比前线轨道能量重要,这一事实表明苯环的弯曲在酶的初期催化氧化中很重要。
     (5)对多环芳烃在水体中的光降解研究,用密度泛函理论和逐步多元线性回归方法,研究了水体中12种多环芳烃的化学结构与光降解活性logkb间的关系。在B3LYP/6-31+G(d)水平上优化了多环芳烃的结构,并在计算中考虑了溶剂效应。用计算得到的多个量子化学参数,建立了多环芳烃结构与光降解活性间的定量结构-性质关系logkb=6.046+54.830EHOMO+0.272N1。研究结果表明,最高占有轨道的能量是光解活性的主要影响因素,这是因为分子最高占有轨道能量越高,其电子就越容易受到激发而脱离轨道,该分子就容易发生分解。
In this thesis, three kinds of organic pollutants including fenvalerate,nonylphenol and polycyclic aromatic hydrocarbons (PAHs) are selected as theresearch objects. For the two research fields of degradation mechanism and thequantum structure-activity relationship (QSAR), by using density functional theory,the research includes five aspects: the photodegradation mechanism of fenvalerate inwater; the photodegradation mechanism of4-n-nonylphenol in water; a QSAR studyon the biodegradation of PAHs in aged contaminated sedments; QSAR for predictingbiodegradation rates of PAHs in aqueous systems; a QSAR study on thephotodegradation of PAHs in aqueous systems. On one hand, the transition states,intermediates and reaction pathways for the photodegradation of fenvalerate andnonylphenol are confirmed and the full reaction mechanisms are obtained. On theother hand, quantum structure-activity relationship on the biodegradation andphotodegradation of PAHs in different surroundings are established. The researchresults can provide certain theoretical basis for the degradation and transformation oforganic pollutants in marine environment.
     (1) The photodegradation mechanism of fenvalerate in water has beeninvestigated by density functional theory. The geometries of reactants, transition states,intermediates and products are optimized at B3LYP/6-31G*level. The calculatedresults indicate that the reaction process mainly includes the nucleophilic attack andthe substitution reaction by hydroxyl radical to carbonyl group. By vibrationalfrequency analysis and intrinsic reaction coordinate method, the transition state and itsreaction pathway are confirmed. Moreover, the changes of natural population analysis,calculated using Natural bond orbital method, are analyzed along with the degradationreaction which can explain the variation of chemical bonds. Additionally, the solventeffect is also investigated and the results show that the reaction preferably takes placein water.
     (2) The photodegradation mechanism of nonylphenol in water induced by·OHhas been investigated by density functional theory. By the analysis of NBO charges,we speculate the main reaction for·OH and nonylphenol include carbon addition tobenzene ring and hydrogen abstraction to phenolichydroxyl. The geometries ofreactants, transition states, intermediates and products are optimized atB3LYP/6-31G*level. By vibrational frequency analysis and intrinsic reactioncoordinate method, the transition state and its reaction pathway are confirmed. Theconfirmed intermediates and products are agree with the experimental results.
     (3) The relationship between the chemical structure and biodegradation activityof17PAHs was studied using density functional theory and stepwise multiple linearregression analysis methods. The equilibrium geometries and vibration frequencyhave been investigated at B3LYP/6-31+G(d,p) level. One high correlation coefficientwas found between the wagging vibration frequency of the whole molecule and-logt1/2, which is resulted by the special structural characteristic with a bigconjugated system. By means of regression analysis, the main factors influencingbiodegradation activity were screened, and the equations of quantitativestructure-activity relationship were established-logt1/2=12.049-0.013Freq-0.159N-5.329ELUMO+16.528NEHOMO-0.003IRIn. The evaluation of the developed QSARshowed that the relationships are significant and the model had good predictive ability.The QSAR model showed that the biodegradation activity was closely related tomolecular structure: the chemical bond strength of benzene ring played an importantrole in biodegradation process; In addition, low molecular weight PAHs are moredegradable than the high molecular weight compounds.
     (4) The relationship between chemical structures and biodegradation rateconstants of22PAHs was studied using density functional theory and stepwisemultiple linear regression analysis method. The equilibrium geometries and vibrationfrequency have been investigated at B3LYP/6-31+G(d,p) level by thinking Solventeffects using a selfconsistent reaction field based on the polarizable continuum model.It was concluded that the biodegradation rate was closely related to its molecularstructure, and there was one high correlation coefficient between the in-plane bending vibration frequency of the conjugated ring of PAHs and biodegradation rate constant.By means of regression analysis, the main factors affected biodegradation rate wereobtained and the equation of QSAR was successfully established kb=-0.653+0.001Freq+0.068Q C+0.049N1. Statistical evaluation of the developed QSAR showedthat the relationships are statistically significant and the model had good predictiveability. The fact that a bending frequency is more important than the HOMO orLUMO energies in predicting kb suggests that the bend of benzene ring might play animportant role in the enzymatic catalysis of the initial oxidation step.
     (5) The relationship between chemical structures and photodegradation activityof12PAHs was studied using density functional theory and stepwise multiple linearregression analysis method. The equilibrium geometries and vibration frequency havebeen investigated at B3LYP/6-31+G(d,p) level by thinking Solvent effects using aselfconsistent reaction field based on the polarizable continuum model. It wasconcluded that the photodegradation activity was closely related to its molecularstructure. By means of regression analysis, the main factors affectingphotodegradation rate include the energy of the highest occupied orbital EHOMOandthe number of benzene ring N1, and the equation of QSAR was successfullyestablished logkb=6.046+54.830EHOMO+0.272N1. Statistical evaluation of thedeveloped QSAR showed that the relationships are statistically significant and themodel had good predictive ability. EHOMOis the most important factor influcing thephotodegradation of PAHs, because the higher EHOMOis, the more easily electron willbe excited and the more easily molecular will be degraded.
引文
[1]阿碧.持久性有机污染物严重破坏海洋环境.中国海洋报,2005.
    [2]余刚,黄俊,张彭义.持久性有机污染物:倍受关注的全球性环境问题.环境保护.2001,4:37-39.
    [3]杨桂朋,孙晓春.海水中农药的光化学降解研究.中国海洋大学学报(自然科学版),2007,4:550~556.
    [4]刘维屏.农药环境化学[M].化学工业出版社,2006,203.
    [5]褚嘉杰.拟除虫菊酯类农药降解机理的理论研究.[硕士学位论文].青岛:中国海洋大学,2007.
    [6]庞国芳,曹颜忠,范春林.毛细管气相色谱法测定农产品中多种拟除虫菊酯农药残留量的研究[J].现代商检科技,1998,8(1):1~6
    [7]赵华,李康,徐浩.甲氰菊酯农药环境行为研究.浙江农业学报,2004,6(5):299~304.
    [8] Katagi T. Photodegradation of Esfenvalerate in Clay Suspensions. Journal of Agricultural andFood Chemistry,1993,47:2178~2183.
    [9]岳永德,花日茂.拟菊酯杀虫剂的光敏降解研究.环境科学学报,1992,12(4):465~472.
    [10] Katagi T. Photodegradation of the Pyrethroid Insecticide Esfenvalerate on Soil, Clay Minerals,and Humic Acid Surfaces. Journal of Agricultural and Food Chemistry,1991,39:1351~1356.
    [11]钱建国,王克欧,戴广茂.溴氰菊酯在溶液中的光化学降解.环境科学学报,1988,8(3):275~285.
    [12]何华,徐存华,孙成,等.三种丙烯菊酯系列产品的光解和水解稳定性.农业生态环境,2003,19(2):43~46.
    [13]朱忠林,单正军,蔡道基.溴氟菊酯的光解、水解与土壤降解.农村生态环境,1996,12(4):5~7.
    [14] Oudou H C, Hansen H C B. Sorption of lambda-cyhalothrin, cypermethrin, del-tamethrinand fenvalerate to quartz, corundum,kaolinite and montmorillonite. Chemosphere,2002,49:1285~1294.
    [15Cotham W E, Bidleman T F. Degradation of Malathion, Endosulfan, and Fenvalerate inSeawater and Seawater/Sediment Microcosms. Journal of Agricultural and Food Chemistry.1989,37:824~828.
    [16]刘乾开,朱国念.氰戊菊酯在水中的降解.浙江农业大学学报,1993,19(3):293~297.
    [17]张大弟,张晓群,周建平,等.杀灭菊酯在稻田水中的消解.农业环境保护,1990,9(6):7~12.
    [18] Lutnicka H, Bogacka T, Wolska L. Degradation of Pyrethroids in an Aquatic EcosystermModel. Water Research,1999,33(16):3441~3446.
    [19苏大水,樊德方.甲氰菊酯在土壤中的降解与移动性.环境科学学报,1989,9(4):476~453.
    [20]何华,徐存华,孙成.高效氯氰菊酯在土壤中的降解动态.中国环境科学,2003,23(5):490~492.
    [21]朱鲁生,王军,樊德方.甲氰菊酯和辛硫磷及其混剂的土壤微生物降解.应用生态学报,2003,14(6):1023~1025
    [22] Buxton G V, Greenstock C L, Helman W P, et al. Critical Review of rate constants forreactions of hydrated electrons Chemical Kinetic Data Base for Combustion Chemistry. Part3: Propane. Journal of Physical and Chemical Reference Data,1988,17:513~886
    [23] Draper W M. Solar Photooxidation of Pesticide in Dilute Hydrogen Peroxide. Journal ofAgricultural and Food Chemistry,1984,32:231~237.
    [24] Lin W C, Wang S L, Cheng C Y, Ding W H. Determination of alkylphenol residues in breastand commercial milk by solid-phase extraction and gas chromatography-mass spectrometry.Food Chemistry2009,114(2),753-757.
    [25] Basheer C, Lee H K, Tan K S. Endocrine disrupting alkylphenols and bisphenol-A in coastalwaters and supermarket seafood from Singapore. Marine Pollution Bulletin2004,48(11-12):1161-1167.
    [26] Rice C P, Schmitz-Afonso I, Loyo-Rosales J E, Link E, Thoma R, Fay L, Altfater D, CampM J. Alkylphenol and Alkylphenol-Ethoxylates in Carp, Water, and Sediment from theCuyahoga River, Ohio. Environmental Science&Technology2003,37(17):3747-3754.
    [27] Dachs J, Van R, D A, Eisenreich S J. Occurrence of Estrogenic Nonylphenols in the Urbanand Coastal Atmosphere of the Lower Hudson River Estuary. Environmental Science&Technology1999,33(15):2676-2679.
    [28] Shao B, Han H, Tu X, Huang L. Analysis of alkylphenol and bisphenol A in eggs and milk bymatrix solid phase dispersion extraction and liquid chromatography with tandem massspectrometry. Journal of Chromatography B,2007,850(1-2):412-416.
    [29] Nagao T, Wada K, Marumo H, Yoshimura S, Ono H. Reproductive effects of nonylphenol inrats after gavage administration: a two-generation study. Reproductive Toxicology2001,15(3):293-315.
    [30]陈兵,麦碧娴,杨清书,段菁春,盛国英,傅家谟,伶仃洋水和沉积物中烷基酚的分布特征.华南理工大学学报(自然科学版)2006,34(5):11-14.
    [31]杨佰娟,蒋凤华,徐晓琴,陈军辉,黎先春.固相萃取柱上衍生气相色谱-质谱法测定水中烷基酚.分析化学2007,35(5):633-637.
    [32] Hofstetter T B, Schwarzenbach R P, Bernasconi S M. Assessing Transformation Processes ofOrganic Compounds Using Stable Isotope Fractionation. Environmental Science&Technology2008,42(21):7737-7743.
    [33] Neam u M., Frimmel F H. Photodegradation of endocrine disrupting chemical nonylphenolby simulated solar UV-irradiation. Science of the Total Environment.2006,369:295-306.
    [34] Brand N, Mailhot G, Bolte M. Degradation photoinduced by Fe(III): method of alkylphenolethoxylates removal in water. Environ Sci Technol.1998,32:2715–20.
    [35] Brand N, Mailhot G, Sarakha M, Bolte M. Primary mechanism in the degradation of4-octylphenol photoinduced by Fe(III) in wateracetonitrile solution. Journal ofPhotochemistry and Photobiology A: Chemistry.2000,135:221–8.
    [36] Kohtani S, Koshiko M, Kudo A, Tokumura K, Ishigaki Y, Toriba A, et al. Photodegradationof4-alkylphenols using BiVO4photocatalyst under irradiation with visible light from solarsimulator. Appl. Catal., B Environ.2003,46:573–86.
    [37] Santos A, Yustos P, Quintanilla A, Rodriguez S, Garcia-Ochoa F. Route of the catalyticoxidation of phenol in aqueous phase. Appl Catal, B Environ2002,39:97-113.
    [38] Mazellier P, Leverd J. Transfromation of4-tert-octylphenol by UV irradiation and by anH2O2/UV process in aqueous solution. Photochem Photobiol Sci2003,2:946–53.
    [39] Watanabe N, Horikoshi S, Kawabe H, Sugie Y, Zhao J C, Hidaka H. Photodegradationmechanism for bisphenol A at the TiO2/H2O interfaces. Chemosphere.2003,52:851–859.
    [40] Baird C. Environmrntal Chemistry. New York: W H Freeman and Company,1995.276~278
    [41] Stegeman J J, Lech J J. Cytochrome p-450monooxygenase system in aquatic species:Carcinogen metabolism and biomarkers for carcinogen and pollutant exposure. EnvironHealth Perspectives,1991,90:101~109
    [42] Varanas U. Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment.Boca Raton, FL, USA: CRC Press Inc,1989
    [43]杨发忠,颜阳,张泽志,苏永庆.多环芳烃研究进展.云南化工,2005,32(2):44~48.
    [44]于小丽,张江.多环芳烃污染与防治对策.油气田环境保护,1996,6(4):53-56.
    [45]董瑞斌,许东风,刘雷,等.多环芳烃在环境中的行为.环境与开发,1999,14(2):10-11.
    [46]王重刚,郑微云,余群,等.苯并(a)芘和芘对梭鱼肝脏谷胱甘肽过氧化酶活性的影响.海洋科学,2002,26(6):35-38.
    [47] Forlin L,Haux C.Increased excretion in t he bile of17b-[3H] estradiol-derived radioactivityin rainbow trout treated with b-naphthoflavone.Aquatic Toxicology,1985,6:197-208.
    [48] Johnson L L, Casillas E, Sol S, et al. Contaminant effects on reproductive success in selectedbenthic fish. Marine Environmental Research,1993,35:165-170.
    [49]张宝旭,贾凤兰,阮明,等.多环芳烃对金属硫蛋白缺欠小鼠微核及红细胞的影响.卫生毒理学杂志,2002,16(3):133-135.
    [50] Stein J E, Hom T, Sanborn H R, et al. Effects of exposure to a contaminated-sediment extracton the metabolism and disposition of17b-estradiolin English sole (Parophrys vetulus).Comparative Biochemistry and Physiology,1991,99C (1/2):231-240.
    [51] Gibson D T, Mahadevan V, Jerina R M, Yagi H. Oxidation of the carcinogens benzo[a]pyreneand dibenz[a,h]anthracene to dihy-drodiols by a bacterium.Science,1975,189:295~297.
    [52]郑天凌,庄铁城,蔡立哲.细菌在海洋污染环境中的生物修复作用.厦门大学学报.2001,40(2):524~534.
    [53]郭楚玲,郑天凌,洪华生.多环芳烃的生物降解和生物修复.海洋环境科学.2000,19(3):24~29.
    [54]田雷,白云玲,钟建江.微生物降解有机污染物的研究进展.工业微生物,2000,30:46-50.
    [55]王蕾.降解多环芳烃优良菌的筛选分离及代谢性能研究.[硕士学位论文].西安:西安建筑科技大学,2007.
    [56]李春玉.多环芳烃的土壤降解特性及其影响因子研究:[硕士学位论文].南京:南京农业大学,2008.
    [57Park K S, Sims R C, Dupont R R, Doucette W J, Matthews J E. Fate of PAH compounds in2soil typessinfluence of volatilization, abiotic loss and biological activity. EnvironmentalToxicology&Chemistry.1990,9:187-195.
    [58] Heitkamp M A, Cerniglia C E. Effects of chemical structure and exposure on the microbialdegradation of polycyclic aromatic-hydrocarbons in fresh-water and estuarine ecosystems.Environmental Toxicology&Chemistry.1987,6:535-546.
    [59] Bossert I D, Bartha R. Structure-biodegradability relationships of polycyclic aromatichydrocarbons in soil. Bull. Environmental Toxicology&Chemistry.1986,37:490-495
    [60] Herbes S E. Rates of microbial transformation of polycyclic aromatic-hydrocarbons in waterand sediments in the vicinity of a coal-coking waste-water discharge. Applied andEnvironmental Microbiology.1981,41:20-28.
    [61] Herbes S E, Schwall L R. Microbial transformation of polycyclic aromatic hydrocarbons inpristine and petroleum contaminated sediments. Applied and Environmental Microbiology.1978,35:306-316.
    [62Bastow T P, van Aarssen B G K., Alexander R, Kagi R I. Biodegradation of aromaticland-plant biomarkers in some australian crude oils. Organic Geochemistry.1999,30:1229-1239.
    [63] Bayona J M, Albaiges J, Solanas A M, Pares R., Garrigues P, Ewald M. Selective aerobicdegradation of methyl-substituted polycyclic aromatic hydrocarbons in petroleum by puremicrobial cultures. International Journal of Environmental Analytical Chemistry.1986,23:289-303.
    [64] Solanas A M, Pares R, Bayona J M, Albaiges J. Degradation of aromaticpetroleum-hydrocarbons by pure microbial cultures. Chemosphere.1984,13:593-601.
    [65] Volkman J K, Alexander R, Kagi R I, Rowland S J, Sheppard P N. Biodegradation ofaromatic hydrocarbons in crude oils from the barrow sub-basin of western australia. OrganicGeochemistry.1984,6:619-632.
    [66Knightes C D, Peters C A. Aqueous phase biodegradation kinetics of ten PAHs.Environmental Engineering Science2003,20:207-218.
    [67] LeBlond J D, Schultz T W, Sayler G S. Observations on the preferential biodegradation ofselected components of polyaromatic hydrocarbon mixtures. Chemosphere.2001,42:333-343.
    [68] Guha S, Peters C A, Jaffe P R. Multisubstrate biodegradation kinetics of naphthalene,phenanthrene, and pyrene mixtures. Biotechnol. Bioeng.1999,65:491-499.
    [69] Cerniglia C E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation.1992,3:351-368.
    [70]梁佩芝,顾继东.红树林厌氧环境对多环芳烃类有毒物的降解预测.生态科学,2003,22(2):97-103.
    [71]聂麦茜,张志杰,雷萍.优势短杆菌对多环芳烃的降解性能.环境科学,2001,22(6):83-85.
    [72]张志杰,聂麦茜,葛碧洲.一株芽孢杆菌对多环芳烃的降解性能.水处理技术,2003,29(5):276-278.
    [73] Dan L M, James R M, Donald R L, Biodegradation of mixtures of polycyclic aromatichydrocarbon under aerobic and nitrate-reducing conditions. Chemosphere,1999,38(6):1313-1321.
    [74] Michiei S, Chantal H, Charles W G. Two distinctgene clusters encode pyrene degradation inMycobacteri um sp. strain S65.Microbiology Ecology,2004,48:209-220.
    [75Fasnacht M P, Blough N V. Environmental Science&Technology.2002,36:4364-4369.
    [76] Zepp R G, Schlotzhauer P F. In Polynuclear Aromatic Hydrocarbons, Jones P W, Leber P,Eds., Ann Arbor Science Publishers: Ann Arbor, MI,1979, pp141-158.
    [77] Mill T, Mabey W R, Lan B Y, Baraze A. Chemosphere1981,10:1281-1290.
    [78] Fukud K, Inagaki Y, Maruyama T, Kojima H I, Yoshida T. Chemosphere1988,17:651-659.
    [79] Sigman M E, Zingg S P, Pagni R M, Burns J H. Tetrahedron Letters.1991,32:5737-5740.
    [80] Sigman M E, Chevis E A, Brown A, Barbas J T, Dabestani R, Burch E L. Journal ofPhotochemistry and Photobiology A: Chemistry.1996,94:149-155.
    [81] Sigman M E, Schuler P F, Ghosh M M, Dabestani R T. Environmental Science&Technology.1998,32:3980-3985.
    [82] McConkey B J, Hewitt L M, Dixon D G, Greenberg B M. Water, Air,&Soil Pollution.2002,136:347-359.
    [83] Miller J S, Olejnik D. Water Research.2001,35:233-243.
    [84] Vialaton D, Richard C, Baglio D, Paya-Perez A B. Journal of Photochemistry andPhotobiology A: Chemistry,1999,123:15-19.
    [85] Lehto K, Vuorimaa E, Lemmetyinen H. Journal of Photochemistry and Photobiology A:Chemistry,2000,136:53-60.
    [86] Blough N V, Zepp R G. In Active Oxygen in Chemistry, Foote C S, Valentine J S, GreenbergA, Liebman J F, Eds.,Chapman and Hall: New York,1995, pp280-333.
    [87] Steenken S, Warren C J, Gilbert B C. Generation of radical-cations from naphthalene andsome derivatives, both by photoionization and reaction with SO–4˙: formation and reactionsstudied by laser flash photolysis. Jornal of the Chemical Society, Perkin Transactions2.1990,335-342.
    [88] Fasnachtand M P, Blough N. Mechanisms of the Aqueous Photodegradation of PolycyclicAromatic Hydrocarbons. Environmental Science&Technology,2003,37:5767-5772.
    [89] Turro N J. Modern Molecular Photochemistry, University Science Books: Sausalito, CA,1991.
    [90]郭嘉,罗晔,陈延林.燃煤烟气中多环芳烃(PAHs)光化学降解的研究.能源环境保护,2006,20(2):25-28.
    [91]罗晔,郭嘉,陈延林,等.光化学降解汽车尾气中多环芳烃污染物的研究.应用化工,2005,34(12):754-756.
    [92]徐香.丙烯腈在过渡金属铜表面化学吸附及镧、锰配合物的密度泛函研究:[硕士学位论文].青岛:中国海洋大学,2006.
    [93]王菊.主客体分子体系:环己烷及其衍生物包结于分子反应器内的理论研究:[博士学位论文].北京:北京化工大学,2008.
    [94]赵炳坤.氧原子、甲氧基和乙氧基在Rh(111)表面吸附的密度泛函研究:[硕士学位论文].天津:天津大学,2008.
    [95Kohn W, Sham L J. Self-consistent Equations Including Exchange and Correlation Effects,Physical Review.1965, A140:1131-1138.
    [96] Slate J C. The Self-Consistent Field for Molecular and Solids: Quantum Theory of Molecularand Solids. McGraw-Hill, New York.1974,4:20.
    [97] Salahub D R, Zerner M C. The Challenge of d and f Electrons, American Chemical Society:Washington D C,1989,394:166.
    [98] Pople J A, Gill P M W, Johnson B G. Kohn-Sham Density-Functional Theory Within a FiniteBasis Set. Chemical Physics Letters,1992,199:557-560.
    [99] Labanowski J K, Andzelm J W. Density Functional Methods in Chemistry, Springer-Verlag:New York,1991.
    [100] Johnson B G, Frisch M J, An Implementation of Analytic Second Derivatives of theGradient-Corrected Density Functional Energy. Journal of Chemical Physics,1994,100:7429.
    [101] Parr R G, Yang W, Density-Functional Theory of Atoms and Molecules, Oxford Univ. Press:Oxford,1989.
    [102] Guerra C F, Snijders J G., te Velde G, Baerends E J. Towards an order-N DFT method.Theoretical Chemistry Accounts: Theory, Computation, and Modeling,1998,99(6):391-403.
    [103] Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review,1964, B136:864-871.
    [104]冯璐.含碱金属与碱土金属氢化物的双氢键体系的理论研究:[博士学位论文].吉林:吉林大学,2011.
    [105]韩德刚,高盘良.化学动力学基础[M].北京大学出版社,1998,142.
    [106]赵新生.化学反应理论导论[M].北京大学出版社,2003,53.
    [107]王琪.化学动力学导论[M].吉林人民出版社,1982,146.
    [108]魏运洋,李建.化学反应机理导论[M].科学出版社,2004,10.
    [109]林梦海.量子化学计算方法与应用[M].科学出版社,2004,198.
    [111]魏小锋.离子液体结构及催化反应机理的理论研究:[博士学位论文].济南:山东大学,2009.
    [112] Reed A E, Weinstock R B, Weinhold F J. Natural population analysis. Journal of ChemicalPhysics,1985,83:735-746.
    [113] Carpenter J E, Weinhold F J. Journal of Molecular Structure: THEOCHEM,1988,169:41-62.
    [114] Hehre W J, Radom L P, Scheyer V R, Pople J A. Ab initio Molecular Orbital Theory, JohnWilley&Sons,1986.
    [115]王伟周.几种典型体系分子间相互作用的理论研究:[博士学位论文].四川:四川大学,2004.
    [116]徐兰.蒽醌化合物光解动力学及其机理研究:[硕士学位论文].大连:大连理工大学,2006.
    [117]王连生.有机污染化学.北京:高等教育出版社,2004.
    [118]陈景文.有机污染物定量结构-性质关系与定性结构-活性关系.大连:大连理工大学出版社,1999.
    [119]徐兰.蒽醌化合物光解动力学及其机理研究:[硕士学位论文].大连:大连理工大学,2006.
    [120] Karelson M, Lobanov V S, Katritzky A R. Quantum-Chemical Descriptors in QSAR/QSPRStudies. Chemical Reviews,1996.96:1027-1043
    [121Elliott M, Farnham A W, Janes N F, Needham P H, Pulman D A., Stevenson J H. Aphotostable pyrethroid. Nature,1973,246:169-170.
    [122] Elliott M A, Farnham A W, Janes N F, Needham P H, Pulman D A. Synthetic insecticidewith a new order of activity. Nature,1974,248:710-711.
    [123] Elliott M, Janes N F, Potter C. The Future of pyrethroids in insect control. Annual Review ofEntomology,1978,23:443-469.
    [124] Elliott M. The pyrethroids: early discovery, recent advances and the future. PesticideScience,1989,27:337-351.
    [125] Yoshioka H. Development of fervalerate,a new and uniqe synthetic pyrethroid containing thephenylisovaleric acid moiety. Review of Plant Protection Research,1978,11:39-52.
    [126] Stall D C, Staal G B, Cerf D C.2-anilino-3-methylbutyrates and2-(isoindolin-2-yl)-3-methylbutyrates, two novel groups of synthetic pyrethroid esters not containing a cyclo-propane ring. Pesticide Science,1980,11:224-241.
    [127] Katsuda Y. Development of and future prospects for pyrethroid chemistry. Pesticide Science.1999,55,775-782.
    [128] Berg H. Pesticide use in rice and rice-fish farms in the Mekong Delta, Vietnam. CropProtection,2001,20:897-905.
    [129] Donald D K, Beverly A R, Charles S H, Anthony J K. Movement of cypermethrin,decamethrin, permethrin, and their degradation products in soil. Journal of Agricultural andFood Chemistry,1981,29:239-245.
    [130] Becke A D. Density-functional thermochemistry. III. The role of exact exchange. Journal ofChemical Physics,1993,98:5648-5652.
    [131] Lee C, Yang W, Parr R G. Development of the Collendash,Salvetti correlation-energyformula into a functional of the electron density. Physical Review B,1988,37:785-789.
    [132] Hehre W J, Radom L, Schleyer P V R., Pople J A. Ab initio Molecular Orbital Theory, Wiley,New York,1986.
    [133] Fukui K. A formulation of the reaction coordinate. Journal of Chemical Physics,1970,74:4161-4163.
    [134] Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bondrbitaldonorndash, acceptor viewpoint. Chemical Reviews,1988,88:899-926.
    [135] Simkin B Y, Sheikhet I. Quantum Chemical and Statistical Theory of Solutions: AComputational Approach, Ellis Horwood, London,1995.
    [136] Barone V, Cossi M, Tomasi J. Geometry optimization of molecular structures in solution bythe polarizable continuum model. Journal of Computational Chemistry.1998,19:404-417.
    [137] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R,Montgomery J A, Vreven J T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J,Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, HadaM, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O,Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J,Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J,Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G,Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K,Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G,Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, PengC Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W,Gonzalez C, Pople J A. Gaussian03, Revision B.05, Gaussian, Inc.: Pittsburgh, PA,2003.
    [138Potter T L, Simmons K, Wu J, Sanchez-Olvera M, Kostecki P, and Calabrese E. StaticDie-Away of a Nonylphenol Ethoxylate Surfactant in Estuarine Water Samples.Environmental Science&Technology,1999,33:113-118.
    [139] Blackburn M A, Waldock M J. Concentrations of alkylphenols in rivers and estuaries inEngland and wales. Water Research,1995,29:1623-1629.
    [140] Rudel R A, Melly S J, Geno P W, Sun G, Brody J G. Identification of alkylphenols andother estrogenic phenolic compounds in wastewater, Septage, and groundwater on CapeCod, massachusetts. Environmental Science&Technology,199832:861-869.
    [141] Ahel M, Schaffner C, Giger W. Behaviour of Alkylphenol Polyethoxylate Surfactants in theAquatic Environment--III. Occurrence and Elimination of their persistent metabolites duringinfiltration of river water to groundwater. Water Research,1996,30:37-46.
    [142] Kuch H, Ballschmiter K. Determination of endocrine-disrupting phenolic compounds andestrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range.Environmental Science&Technology,2001,35:3201-3206.
    [143] Snyder S, Keith T, Verbrugge D, Snyder E, Gross T, Kannan K, Giesy, J. Analyticalmethods for detection of selected estrogenic compounds in aqueous mixtures.Environmental Science&Technology,1999,33:2814-2820.
    [144Bennie D T, Sullivan C A, Lee H B, Peart T E, Maguire R J. Occurance of alkylphenolsand alkylphenol mono-and diethoxylates in natural waters of the laurentian great lakesbasin and the upper St. Lawrence river, Science of the Total Environment,1997,193:263-275.
    [145] Bennett E R, Metcalfe C D. Distribution of Alkylphenol Compounds in Great lakessediments, United States and Canada. Environmental Toxicology and Chemistry,1998,17:1230-1235.
    [146] Marcomini A, Pavoni B, Sfriso A, Orio A A. Persistent metabolites of alkylphenolpolyethoxylates in the marine environment. Marine Chemistry,1990,29:307-323.
    [147] Van Ry D, Dachs J, Gigliotti C, Brunciak P, Nelson E, Eisenreich S. Atmospheric seasonaltrends and environmental fate of alkylphenols in the lower hudson river estuary.Environmental Science&Technology,2000,34:2410-2417.
    [148] Guenther K, Heinke V, Thiele B, Kleist E, Prast H, Raecker T. Endocrine disruptingnonylphenols are ubiquitous in food. Environmental Science&Technology,2002:36(8):1676-1680.
    [149Servos M R. Review of the aquatic toxicity, estrogenic responses and bioaccumulationof alkylphenols and alkylphenols polyethoxylates. Water Quality Research Journal ofCanada,1999,34:123-177.
    [150] Staples C, Mihaich E, Carbone J, Woodbrun K, Klecka G. A weight of evidenceanalysis of the chronic ecotoxicity of nonylphenol ethoxylates, nonylphenol ethercarboxylates, and nonylphenol. Human and Ecological Risk Assessment,2004,10:999-1017.
    [151] LeBlanc G, Mu X, Rider C V. Embryotoxicity of the alkylphenol degradation product4-nonylphenol to the crustacean Daphnia magna. Environmental Health Perspectives,2000,108:1133-1138.
    [152] Soares A, Guieysse B, Jefferson B, Cartmell E, Lester J N. Nonylphenol in the environment:A critical review on occurrence, fate, toxicity and treatment in wastewaters” EnvironmentInternational,2008,34:1033-1049.
    [153] Chin Y P, Miller P L, Zeng L, Cawley K, Weavers L K. Photosensitized degradation ofBisphenol A by dissolved organic matter. Environmental Science&Technology,2004,38:5888–94.
    [154] Canonica S, Jans U, Stemmler K, Hoigne J. Transformation kinetics of phenols in water:photosensitization by dissolved natural organic material and aromatic ketones.Environmental Science&Technology,1995,29:1822-31.
    [155] Ahel M, Scully F E, Hoigne J, Giger W. Photochemical degradation of nonylphenol andnonylphenol polyethoxylates in natural waters. Chemosphere,1994,28(7):1361–1368.
    [156] Kohtani S, Hiro J, Yamamoto N, Kudo A, Tokumura K, Nakagaki R. Adsorptive andphotocatalytic properties of Ag-loaded BiVO4on the degradation of4-n-alkylphenols undervisible light irradiation. Catalysis Communications,2005,6:185–189.
    [157] Babaeia A A, Mesdaghiniaia A R, Haghighib N J, Nabizadeha R, Mahvia A H. Modeling ofnonylphenol degradation by photo-nanocatalytic process via multivariate approach. Journalof Hazardous Materials,2011,185:1273-1279.
    [158] Neamtu M, Frimmel F H. Photodegradation of endocrine disrupting chemical nonylphenolby simulated solar UV-irradiation. Science of the Total Environment,2006,369:295–306.
    [159]邓南圣.天然水中过氧化氢生成及其光化学反应的研究.环境科学进展.1997,5(6):1-16.
    [160]张乃东,郑威.羟自由基·OH在水处理中的应用.哈尔滨商业大学学报,2001,17(3):22-28.
    [161]王云海,刘永东,罗云敬,钟儒刚.过氧亚硝酸与酪氨酸的反应机理.物理化学学报,2008,24(7):1207-1213.
    [162] Mariana N, Fritz H F. Photodegradation of endocrine disrupting chemical nonylphenol bysimulated solar UV-irradiation. Science of the Total Environment,2006,369:295–306.
    [163] Haritash A K, Kaushik C P. Biodegradation aspects of polycyclic aromatic hydrocarbons(PAHs): a review. Journal of Hazardous Materials,2009,169:1–15.
    [164] Clar E. Polycyclic Hydrocarbons. Academic Press-Springer Verlag, London,1964
    [165] Patnaik P. A Comprehensive Guide to the Properties of Hazardous Chemical Substances.2nd ed., John Wiley&Sons Publishers,1999.
    [166] Kaushik C P, Haritash A K. Polycyclic aromatic hydrocarbons (PAHs) and environmentalhealth. Our Earth,2006,3:1–7.
    [167] Haritash A K, Kaushik C P. Seasonal and spatial occurrence and distribution of respirableparticulate-bound atmospheric polycyclic aromatic hydrocarbons in Hisar city and theirpotential health-risks, Asian Journal of Water, Environment and Pollution,2011,8:73-80.
    [168] Wild S R, Jones K C. Polynuclear aromatic hydrocarbons in the United Kingdomenvironment: a preliminary source inventory and budget. Environmental Pollution,1995,88:91–108.
    [169] Harayama S. Polycyclic aromatic hydrocarbon bioremediation design, Current Opinion inBiotechnology,1997,8:268-273.
    [170] Karelson M, Lobanov V S. Quantum-chemical descriptors in QSAR/QSPR studies.Chemical Reviews,1996,96:1027-1043.
    [171Hermens J, Balaz S, Damborsky J, Karcher W, Mtiller M, Peijnenburg W, Sabljic A,Sjbstrom M. Assessment of QSARs for Predicting Fate and Effects of Chemicals in theEnvironment: An international european project SAR&QSAR in Environmental Research.1995,3:223-236.
    [172] Chen K X, Jiang H L, Ji R Y. Computer aided drug design principle, method and application.Shanghai Science and Technology Press, Shanghai,2000.
    [173] Kovalishyn V, Aires-de-Sousa J, Ventura C, Leit o R E, Martins F. QSAR modeling ofantitubercular activity of diverse organic compounds. Chemometrics and IntelligentLaboratory Systems,2011,107:69-74.
    [174] Toropova A P, Toropov A A, Benfenati E, Gini G. Co-evolutions of correlations for QSARof toxicity of organometallic and inorganic substances: An unexpected good predictionbased on a model that seems untrustworthy. Chemometrics and Intelligent LaboratorySystems,2011,105:215-219.
    [175] Duchowicz P R, Mercader A G, Fernández F M, Castro E A. Prediction of aqueous toxicityfor heterogeneous phenol derivatives by QSAR. Chemometrics and Intelligent LaboratorySystems,2008,90:97-107.
    [176] Schultz T W, Mark T D, Walker J D, Aptula A P. Quantitative structure–activity relationships(QSARs) in toxicology: a historical perspective, Journal of Molecular Structure:THEOCHEM,2003,622:1-22.
    [177] Boethling R S, Lynch D G, Thom G C. Predicting ready biodegradability of premanufacturenotice chemicals, Environmental Toxicology&Chemistry,2003,22:837-844.
    [178] Philipp B, Hoff M, Germa F, Schink B, Beimborn D, Mersch-Sundermann V. BiochemicalInterpretation of Quantitative Structure-Activity Relationships (QSAR) for Biodegradationof N-Heterocycles: A Complementary Approach to Predict Biodegradability, EnvironmentalScience&Technology.2007,41:1390-1398.
    [179Veith G D, Mekenyan O G, Ankley G T, Call D J. A QSAR analysis of substituent effects onthe photoinduced acute toxicity of PAHs. Chemosphere.1995,30:2129-2142.
    [180] McConkey B J, Duxbury C L, Dixon D G, Greenberg B M. Toxicity of a PAHphotooxidation product to the bacteria Photobacterium phosphoreum and the duckweedLemna gibba: effects of phenanthrene and its primary photoproduct, phenanthrenequinone.Environmental Toxicology&Chemistry,1997,16:892-899.
    [181] de Lima Ribeiro F A, Ferreira M M C. QSAR model of the phototoxicity of polycyclicaromatic hydrocarbons. Journal of Molecular Structure: THEOCHEM,2005,719:191-200.
    [182Chen J, Peijnenburg W, Quan X, Yang F. Quantitative structureeproperty relationships fordirect photolysis quantum yields of selected polycyclic aromatic hydrocarbons. Science ofthe Total Environment,2000,246:11-20.
    [183] Chen J, Peijnenburg W, Quan X, Chen S, Martens D, Schramm K W, Kettrup A. Is itpossible to develop a QSPR model for direct photolysis half-lives of PAHs under irradiationof sunlight? Environmental Pollution,2001,114:137-143.
    [184] Chen J, Quan X, Yan Y, Yang F. Peijnenburg W. Quantitative structureeproperty relationshipstudies on direct photolysis of selected polycyclic aromatic hydrocarbons in atmosphericaerosol. Chemosphere,2001,42:263-270.
    [185] Zhou Z, Dai Q, Gu T. A QSAR model of PAHs carcinogenesis based on thermodynamicstabilities of biactive sites. Journal of chemical information and modeling,2003,43:615-621.
    [186] Niu J, Yu G. Molecular structural characteristics governing biocatalytic oxidation of PAHswith hemoglobin. Environmental Toxicology and Pharmacology,2004,18:39-45.
    [187] Ma B, Chen H H, Xu M M, Hayat T, He Y, Xu J M. Quantitative structureeactivityrelationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation inrhizosphere based on molecular structure and effect size. Environmental Pollution,2010,158:2773-2777.
    [188] Wammer K H, Peters C A. Polycyclic aromatic hydrocarbon biodegradation rates: astructure-based study. Environmental Science&Technology,2005,39:2571-2578.
    [189] Dimitriou-Christidis P, Autenrieth R L, Abraham M H. Quantitatives structure-activityrelationships for kinetic parameters of polycyclic aromatic hydrocarbon biotransformation.Environmental Toxicology&Chemistry,2008,27:1496–1504.
    [190] Lei L, Khodadoust A P, Suidana M T, Tabak H H. Biodegradation of sediment-bound PAHsin field contaminated sediment. Water Research,2005,39:349–361.
    [191Schmitt H, Altenburger R, Jastorff B, Schüürmann G. Quantitative structure activityanalysis of the algae toxicity of nitroaromatic compounds. Chemical Research in Toxicology,2000,13:441-450.
    [192] Morley J O, Oliver A J, Charlton M H. Structure–activity relationships in3-isothiazolones.Organic&Biomolecular Chemistry,2005,3:3713-3719.
    [193] Chen J, Peijnenburg W, Quan X, Chen S, Martens D, Schramm K W, Kettrup A. Is itpossible to develop a QSPR model for direct photolysis half-lives of PAHs under irradiationof sunlight? Environmental Pollution,2001,114:137-143.
    [194] Hatipo lu A, inarA Z. A QSAR study on the kinetics of the reactions of aliphatic alcoholswith the photogenerated hydroxyl radicals. Journal of Molecular Structure: THEOCHEM.2003,631:189-207.
    [195Moody J D, Freeman J P, Doerge D R, Cerniglia C E. Degradation of phenanthrene andanthracene be cell suspensions of Mycobacterium sp. Strain PYR-1. Applied andEnvironmental Microbiology.2001,67:1476-1483.
    [196] Samanta S K, Chakraborti A K, Jain R K. Degradation of phenanthrene by different bacteria:evidence for novel transformation sequences involving the formation of1-naphthol. AppliedMicrobiology and Biotechnology,1999,53:98-107.
    [197] Schneider J, Grosser R, Jayashimuhulu K, Xue W, Warshawsky D. Degradation of pyrene,benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. Strain RJGII-135, isolatedfrom a former coal gasification site. Applied and Environmental Microbiology,1996,62:13-19.
    [198] Vila J, Lopez Z, Sabate J, Minguillon C, Solanas A M, Grifoll M. Identification of a novelmetabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of theisolate on two-and three-ring polycyclic aromatic hydrocarbons. Applied andEnvironmental Microbiology,2001,67:5497-5505.
    [199] Molina M, Araujo R, Hodson R E. Cross-induction of pyrene and phenanthrene in aMycobacterium sp. isolated from polycyclic aromatic hydrocarbon contaminated riversediments. Canadian Journal of Microbiology,1999,45:520-529.
    [200Lopes T J, Furlong E T. Occurrence and potential adverse effects of semivolatile organiccompounds in streambed sediment, United States,1992-1995. Environmental Toxicology&Chemistry2001,20,727-737.
    [201] Miles C J, Delfino J J. Priority pollutant polycyclic aromatic hydrocarbons in Floridasediments. Bulletin of Environmental Contamination and Toxicology,1999,63:226-234.
    [202] Luthy R G, Dzombak D A, Peters C A, Roy S B, Ramaswami A, Nakles D V, Nott B R.Remediating tar-contaminated soils at manufactured-gas plant sites. Environmental Science&Technology,1994,28:266A-276A.
    [203] Cerniglia C E. Biodegradation of polycyclic aromatic hydrocarbons. Current Opinion inBiotechnology,1993,4:331-338.
    [204] Kristine H W, Catherine A P. Polycyclic Aromatic Hydrocarbon Biodegradation Rates: AStructure-Based Study. Environmental Science&Technology,2005,39:2571-2578.
    [205] Kay L S, Carl E C. Environmental aspects of PAH biodegradation. Biotechnology andApplied Biochemistry,1995,54:291-302.
    [206Petros D C, Robin L A, Michael H A. Quantitative structure-activity relationships for kineticparameters of polycyclic aromatic hydrocarbon biotransformation. EnvironmentalToxicology&Chemistry,2008,27:1496–1504.
    [207] Kathy L P, Dominic M D T, Stanley I S. Prediction of Soil Sorption Coefficients usingModel Molecular Structures for Organic Matter and the Quantum MechanicalCOSMO-SAC Model. Environmental Science&Technology,2011,45(3):1021–1027.
    [208] Gebhard B L, Stephen E C. Quantitative structure property relationship for predictingchlorine demand by organic molecules. Environmental Science&Technology,2010,44(7):2503–2508.
    [209] Burkhard L P, Sheedy B R. Evaluation of screening procedures for bioconcentratableorganic chemicals in effluents and sediments. Environmental Toxicology&Chemistry,1995,14:697-711.
    [210] Peters C A, Luthy R G. Coal-tar dissolution in water-miscible solvents-experimentalevaluation. Environmental Science&Technology1993,27:2831-2843.
    [211Reichardt C. Solvent Effects in Organic Chemistry, Marburg, Germany: Wiley-VCH.1990,pp147–181.
    [212] James T H. Chemical Reaction Dynamics in Solution. Annual Review of Physical Chemistry,1985,36:573–597.
    [213] Sundberg R J, Carey F A. Advanced Organic Chemistry: Structure and Mechanisms, NewYork: Springer.2007, pp359–376.
    [214] Barone V, Cossi M, Tomasi J. Geometry optimization of molecular structures in solution bythe polarizable continuum model. Journal of Computational Chemistry,1998,19:404-417.
    [215Gibson D T, Parales R E. Aromatic hydrocarbon dioxygenases in environmentalbiotechnology. Current Opinion in Biotechnology,2000,11:236-243.
    [216] Ball A S, Jackson A S. The recovery of lignocellulose-degradin enzymes from spentmushroom compost. Bioresource Technology,1995,54:311–314.
    [217] Hofrichhter M, Vares T, Kalsi M, Galkin S, Schneibner K, Fritsche W, Hatakka A.Production of manganese peroxidase and organic acids and mineralization of14C-labelledlignin (14C-DHP) during solid state fermentation of wheat straw with the white rot fungusNematoloma forwardii. Applied and Environmental Microbiology,1999,65:1864–1870.
    [218Rehmann K, Noll H P, Steiberg C E W, Kettrup A A. Pyrene degradation by Mycobacteriumsp. Strain KR2, Chemosphere,1998,36(14):2977–2992.
    [219] Cajthaml T, Moder M, Kacer P, Sasek V, Popp P. Study of fungal degradation products ofpolycyclic aromatic hydrocarbons using gas chromatography with ion trap massspectrometry detection. Journal of Chromatography A,2002,974:213–222.
    [220] Tsai J C, Kumar M, Lin J G. Anaerobic biotransformation of fluorene and phenanthrene bysulfate-reducing bacteria and identification of biotransformation pathway. Journal ofHazardous Materials,2009,164(2–3):847–855.
    [221] Cerniglia C E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation.1992,3:351–368.
    [222] Dimitriou-Christidis P, Autenrieth R L, McDonald T J, Desai A M. Measurement ofbiodegradability parameters for single unsubstituted and methylated polycyclic aromatichydrocarbons in liquid bacterial suspensions. Biotechnol Bioeng.2007,97:922–932.
    [223Grimmer G, Misfeld J.1983. Environmental carcinogens: a risk for man? Concept andstrategy of the identification of carcinogens in the environment. In: Grimmer, G.(Ed.),Environmental carcinogens: Polycyclic Aromatic Hydrocarbons, Chemistry, Occurrence,Biochemistry, Carcinogenicity. CRC Press, Boca Raton, FL, pp.1-26.
    [224] Grimmer G, Pott F. Occurrence of PAH. In: Grimmer, G.(Ed.), Environmental carcinogens:Polycyclic Aromatic Hydrocarbons, Chemistry, Occurrence, Biochemistry, Carcinogenicity.CRC Press, Boca Raton, FL,1983,61-128.
    [225] Mekenyan O G, Ankley G T, Veith G D, Call D J. QSARs for photoinduced toxicity:1.Acute lethality of polycyclic aromatic hydrocarbons to Daphnia magna. Chemosphere.1994,28:567-582.
    [226] Smith J H, Mabey W R, Bahonos N, Holt B R, Lee S S, Chou T W, Venberger D C, Mill T1979, Environmental Pathways of Selected Chemicals in Fresh Water Systems: Part II.Laboratory Studies (Interagency Energy-Environment Research Report EPA-600/7-78-074).Environmental Research Laboratory Office of Research and Development, USEnvironmental Protection Agency, Athens, GA.
    [227] Chen J, Peijnenburg W, Quan X, Chen S, Martens D, Schramm K W, Kettrup A. Is itpossible to develop a QSAR model for direct photolysis half-lives of PAHs under irradiationof sunlight? Environmental Pollution,2001,114:137-143.
    [228]卢桂宁,党志,陶雪琴,张德聪。多环芳烃光解活性的量子化学研究.环境化学.2005,24(4):459-462.
    [229] Fasnacht M P, Blough N V. Aqueous Photodegradation of Polycyclic AromaticHydrocarbon. Environmental Science&Technology,2002,36:4364-4369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700