用户名: 密码: 验证码:
多功能微机械陀螺及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪90年代,随着微电子技术的发展,相继出现各种样式的微机械陀螺。尽管存在多种微机械陀螺设计方案,但是绝大多数方案是利用驱动结构起振,引起质量块振动,通过敏感结构敏感角速度。此类微机械陀螺一般只能敏感一个方向上的角速度。相对上述陀螺,本文研究的多功能微机械陀螺利用旋转载体绕纵轴滚转作为驱动,可以敏感旋转载体纵轴方向的滚转角速度和垂直于旋转载体纵轴方向的横向角速度。此外,配合地理坐标基准,可以将横向角速度分解为偏航角速度和俯仰角速度。因此,多功能微机械陀螺能够敏感三个方向的角速度,陀螺信号可以解算出包括横向角速度、方位角、偏航角速度、俯仰角速度和滚转频率在内的五个参数,具有三个垂直安装的一般速率陀螺的功能,适用于旋转飞行器姿态控制。
     本文对多功能微机械陀螺及其应用进行了深入地探讨。研究内容包括:多功能微机械陀螺敏感偏航、俯仰及滚转三个方向角速度的机理;多功能微机械陀螺结构设计和制作工艺的改进;多功能微机械陀螺在单方向运动、圆锥运动和变滚转转速运动中的性能特征;多功能微机械陀螺信号提取五个参数的方法;多功能微机械陀螺信号解算算法;多功能微机械陀螺在旋转飞行器姿态控制中的应用。上述研究内容难度大,实用性强,具有创新性。本文主要研究成果:
     (1)推导了多功能微机械陀螺动力学模型和误差模型,理论论证了陀螺可以敏感旋转飞行器偏航、俯仰及滚转三个方向角速度的机理。根据多功能微机械陀螺设计参数,仿真得出陀螺一阶、二阶、三阶固有频率和振动模态。
     (2)针对原陀螺制作掩膜版“分步对准”产生对准累积偏差问题,提出了“一步对准”设计方案,解决了芯片基准问题,有效地消除了前一步对准偏差对后一步对准产生的累积偏差,提高了芯片生产的一致性。解决了陀螺制作工艺中光刻曝光时间过长和光刻胶使用中的部分问题;分析了湿法刻蚀过程中芯片表面出现坑点问题的若干原因,并提出了相应的解决措施。
     (3)理论论证和试验验证了在单方向运动、变滚转转速运动和圆锥运动中多功能微机械陀螺的性能特征。在圆锥运动中陀螺信号频率不等于旋转飞行器滚转频率,表明陀螺测量的是旋转飞行器绝对运动,陀螺信号频率(绝对运动频率)等于旋转飞行器滚转频率(相对运动频率)和圆锥运动频率(牵连运动频率)的叠加。在变滚转转速运动中陀螺标度因数和初始相位差的变化,提出多项式拟合陀螺标度因数和初始相位差的方法,在求解横向角速度和方位角时使用对应滚转频率下的标度因数和初始相位差。
     (4)提出单个多功能微机械陀螺结合加速度计基准解算包括横向角速度、方位角、偏航角速度、俯仰角速度、滚转频率在内的五个参数方法。陀螺信号幅值(包络)与横向角速度成正比,方位角等于陀螺与加速度计相位差减去陀螺初始相位差,沿方位角将横向角速度分解为偏航角速度和俯仰角速度。通过对偏航、俯仰及滚转三个角速度进行积分,可得到偏航、俯仰及滚转三个方向的角度。
     (5)编写基于Matlab的多功能微机械陀螺信号解算算法。通过三轴转台试验,验证了算法的有效性。提出利用两个垂直安装的多功能微机械陀螺信号彼此正交的特点,用两个信号代替原算法中的希尔伯特变换对,有效地提高了算法的实时性,并通过了试验验证。为保护算法的新颖性,编写了图形用户界面的微机械陀螺信号解算软件,并申请了软件著作权。
     (6)调试了多功能微机械陀螺样机,样机输出满足偏航和俯仰角度测量范围≤±10°,偏航和俯仰测量精度≤±1°,该测量范围和测量精度适用于旋转飞行器多通道控制。研究了多功能微机械陀螺在单通道控制中的用法。陀螺信号通过与线性化信号叠加,将陀螺信号的幅值信息(陀螺敏感输入横向角速度)转化为最终控制信号过零点信息,实现单通道控制。
     (7)研究线振动和冲击对多功能微机械陀螺的影响。线振动试验前中后陀螺零偏变化为1mV左右。冲击试验表明由于陀螺摆片偏心,陀螺在受到厚度方向的冲击时摆片绕扭转梁发生了偏摆。提出了通过增加陀螺扭转梁厚度的方法,减小陀螺在单位冲击加速度下的摆角幅度。试验证明陀螺扭转梁增厚约1/3倍,陀螺冲击响应信号幅值和宽度减小约18倍。
In1990s, with the development of the microelectronics technology, a wide variety of micro-machined gyroscopes appeared. Most of designs use the Coriolis force generated by the roll of the vibrational mass driven by the base to sense the angular rate of the carrier. This kind of gyroscopes may only sense one angular rate in one direction. Compared to those micro-machined gyroscopes, the paper studies the multi-functional micro-machined gyroscope which generates the gyroscope effect driven by the roll of carrier, and sense the roll angular rate in the vertical axis direction of rotating carrier and the transverse angular rate in the perpendicular direction of vertical axis of rotating carrier. In addition, the transverse angular rate can be decomposed into the yaw angular rate and pitch angular rate with the geographic coordinates of reference. Therefore, multi-functional micro-machined gyroscope can sense angular rate in three directions, and the signal of gyroscope can be calculated into the five parameters, including the transverse angular velocity, azimuth angle, yaw angular rate, pitch angular rate and roll frequency, which has the functions of three the general rate gyroscopes mounted vertically and fits for the attitude control of rotating aircraft.
     In this paper, the multi-functional micro-machined gyroscope and its application are discussed. The study includes:the mechanism of multi-functional micro-machined gyroscope sensing yaw, pitch and roll angular rate in three directions; the improvements of structure of multi-functional micro-mechanical gyro design and production process; the performance characteristics of multi-functional micro-mechanical gyro in one direction motion, the coning motion and variable roll speed motion; the method of multi-functional micro-mechanical gyro signal extracting five parameters; the signal demodulation algorithm of multi-functional micro-machined gyroscope; the application of multi-functional micro-machined gyroscope in the attitude control of rotating aircraft. The above-mentioned researches are difficult, practical, and innovative.
     (1) The dynamics model and error model of the non-driven structure micro-machined gyroscope are deduced. The theory explains the mechanism that the gyroscope can sense the angular rates in three directions. The simulation obtains the first, second and third orders of the natural frequency of the gyroscope according to the design parameters of the gyroscope.
     (2) The original masks which use the "step-by-step alignment" marks have the problem of cumulative deviation. The "one-step alignment" marks are presented to eliminate the cumulative deviated caused by the former alignment deviation and improve the consistency of the chip production. Solve the problems of in the photolithography and wet etching process, including that the exposure time is too long, the photoresist problem, and the pits on the chip surfaces.
     (3) The theories and experiments verified the performance characteristics of multi-functional micro-mechanical gyro in one direction motion, the coning motion and variable roll speed motion. In the coning motion, the signal frequency of gyroscope is not equal to the roll frequency of rotating aircraft, which means that the gyroscope measures the absolute motion of the rotating aircraft. The signal frequency of gyroscope (absolute frequency of exercise) equal to the combination of the roll frequency of the rotating aircraft (frequency of relative motion) and the frequency of coning motion (frequency of convected motion). In variable roll speed motion, the scale factor and the initial phase of the gyroscope change. The polynomial fittings of scale factor and the initial phase are presented. The transverse angular velocity and azimuth are calculated with the scale factor and the initial phase corresponding to the roll frequency.
     (4) The method for solving transverse angular rate, azimuth, yaw angular rate, pitch angular rate and roll frequency from the signal of the multi-functional gyroscope is presented. The envelope of the gyroscope signal is proportional to the transverse angular rate. The azimuth is obtained by the phrase difference of the gyroscope and the accelerator. The transverse angular rate is divided along the azimuth into yaw and pitch angular rate. The yaw, pitch and roll angles are obtained by the integration of the yaw, pitch and roll angular rate.
     (5) The algorithm based on Matlab program is written, the validity of which is verified by the three-axis turntable test. The character that the two signals of two multi-functional micro-machined gyroscopes installed vertically are orthogonal to each other is presented. The two signals can be used to instead of the Hilbert transform in the original algorithm and effectively improve the real-time character of the algorithm and is tested by experiments. The graphical user interface of the micromachined gyroscope signal solver software was programed and applied the software copyright to protect the novelty of algorithm,.
     (6) Two prototypes of the multi-functional micro-machined gyroscopes are tested. The measurement range of the yaw and pitch of the two prototypes is positive-negative10degree, the measurement error of yaw and pitch of the two prototypes is less than positive-negative1degree, which can be used in the multi-channel control of the rotating aircraft. The theoretical analysis for the gyroscope used in the single-channel control of the rotating aircraft is introduced. The gyroscope signal adds the linearized signal, so the amplitudes of gyroscope signal change into the time of across zero.
     (7) The effects of linear vibration and shock on the multi-functional micro-machined gyroscope are studied. The bias of the gyroscope changed about1mV during the before, in and after the linear vibration test. The analysis on the cause of the shock-response signal shows that the pendulum of gyro deflects about the torsion girder when it is shocked in its thickness direction due to its mass off center. The method of increasing the thickness of the torsion girder of gyroscope is presented to reduce the deflection angle of pendulum under unit shock acceleration. The experiment results show that thickening the torsion girder by about 1/3times can reduce the amplitude and width of shock-response signal by about18times.
引文
[1]陈红梅,程向红,员亚利.低温超导核磁共振陀螺仪模型[J].中国惯性技术学报,2008.04,16(2):228-232.
    [2]王起飞.基于三自由度陀螺仪的导引头天线随动系统[J].航空兵器,1999,(2):39-45.
    [3]郭仲伟.三自由度陀螺稳定平台座标变换的一种新方案-电子座标变换器(原理)[J].清华大学学报,1981,21(2):55-62.
    [4]陈伟平,王浩,刘骁等.双自由度双解耦陀螺的结构设计与仿真[J].传感技术学报,2008.02,21(2):261-264.
    [5]罗超,张晓红.陀螺系统的解耦分析[J].自动化技术与应用,1987.03,6(3):26-32.
    [6]陈伟平,韩天,王浩等.一种双自由度双级解耦微机械陀螺的特性分析[J].传感技术学报,2007.11,20(11):2391-2394.
    [7]袁智荣,李智.一种新型磁阻传感器的研究及应用[J].测控技术,1999,18(1):39-40.
    [8]鄢泽洪,任思聪.一种新型航姿系统[J].西安电子科技大学学报,1999.08,26(4):506-509.
    [9]万健如,张建松,陈超等.垂直陀螺180°回转伺服变结构PID控制[J].天津大学学报,2006.08,39(8):913-917.
    [10]梁莉,傅飞,喻玉华.一种通用型无人机飞行控制与导航系统[J].洪都科技,2009,,:1-8.
    [11]和平.垂直陀螺"TC-7"的模拟试验分析[J].北京理工大学学报,1989,9(3):61-68.
    [12]贺国强.陀螺异常修正产生的原因及处置措施[J].中国民航学院学报,1988,(3):10-17.
    [13]何昆朋,曾建辉,梁海波等.微型导航系统中的陀螺漂移在线标定及补偿方法[J].哈尔滨工程大学学报,2011.01,32(1):62-68.
    [14]石宁东,安东,毛玉增.惯导系统的变参数锁定方位环小转角对准法[J].西北工业大学学报,1995.08,13(3):437-440.
    [15]王荣颖,许江宁,卞鸿巍.基于可观测性分析的方位旋转式惯导初始对准仿真研究[J].中国惯性技术学报,2009.02,17(1):15-19.
    [16]何昆鹏,曾建辉,梁海波等.微型导航系统中的陀螺漂移在线标定及补 偿方法[J].哈尔滨工程大学学报,2011.01,32(1):62-68.
    [17]戚九民,陈国光,田晓丽等.一种适用于速率陀螺的捷联航姿算法[J].哈尔滨工程大学学报,2005,26(5):325-329.
    [18]雷江涛,张秦南,王立文.一种速率陀螺启动过程的时变增益补偿控制技术[J].舰船电子工程,2012,32(1):41-42.
    [19]夏恩松,王艳东.基于速率陀螺反馈的位置跟踪系统仿真[J].江南大学学报,2006.08,5(4):449-451.
    [20]罗晓燕,史晓峰,蔡志权.基于Matlab的速率陀螺系统校准算法研究[J].航空计算技术,2006.07,36(4):92-95.
    [21]杜建福,吕恬生,张亚欧.单轴速率陀螺标定系统设计[J].计算机工程,2006.11,32(21):235-237.
    [22]张剑慧,汪立新,钱培贤.速率陀螺仪模拟测试系统设计与实现[J].国外电子测量技术,2005,(4):13-14.
    [23]陆仲达,徐凤霞,曾鸣.分离摆式积分陀螺加速度计外环摩擦试验研究[J].中国惯性技术学报,2007.08,15(4):505-508.
    [24]黄业绪,史忠科,曹社平.弹用速率积分陀螺浮子静平衡方法研究[J].传感技术学报,2007,20(12):2571-2573.
    [25]刘希杰,易维冲.积分陀螺加速度表摆性的重力效应[J].导弹与航天运载技术,1993,(5):10-14.
    [26]杨晔.液浮速率积分陀螺温控模型分析和参数设计[J].中国惯性技术学报,6(1),1998:35-40.
    [27]宋朝辉,贾孟军,李昕欣.电磁驱动电容检测微机械陀螺的设计[J].微纳电子技术,2003,(7/8):309-311.
    [28]熊敏敏,王寿荣,裘安萍等.三自由度水平轴硅微机械陀螺结构设计与仿真[J].纳米技术与精密工程,2004.09,2(3):225-228.
    [29]陈雪萌,宋朝晖,李欣听等.一种高灵敏度硅微机械陀螺的设计与制造[J].传感器技术学报,2004.12,23(12):82-85.
    [30]陈永,焦继伟,熊斌等.一种基于滑膜阻尼效应的新型微机械陀螺[J].中国机械工程,2004.01,23(12):103-105.
    [31]段飞;焦继伟,王育才等.基于“8悬臂梁-质量块”结构的新颖x轴音叉式硅微机械陀螺[J].半导体学报,2007.10,28(10):1630-1635.
    [32]陈伟平,韩天,王浩等.一种双自由度双级解耦微机械陀螺的特性分析[J].传感技术学报,2007.11,20(11):2391-2394.
    [33]张燕燕,侯朝焕.一种新型解耦硅微机械陀螺的设计[J].微纳电子技 术,2008.02,45(2):100-103.
    [34]李锦明,郭慧芳,刘俊.一种三框架电容式硅微机械陀螺结构设计与仿真[J].传感技术学报,2008.02,21(2):258-260.
    [35]谭晓昀,刘晓为,丁学伟等.自激驱动方式的振动式微机械陀螺全差动接口电路[J].传感技术学报,2008.04,21(4):705-708.
    [36]文永蓬,王安麟,姜涛等.基于滑膜阻尼的间接连接型音叉式微机械陀螺[J].微细加工技术,2008.08,(4):43-46.
    [37]吕树海,徐淑静,徐永青等.新型MEMS热流陀螺的制造[J].传感技术学报,2008.02,21(2):248-250.
    [38]刘惠兰,冯丽爽,单志刚等.一种新型谐振式MOEMS陀螺的设计及分析[J].传感技术学报,2008.02,21(2):244-247.
    [39]何胜,王巍.高性能对称解耦结构的线振动陀螺[J].中国惯性技术学报,2009.10,17(5):577-581.
    [40]樊尚春,王路达,郭占社.新型谐振式微机械陀螺设计与仿真[J].中国惯性技术学报,2009.02,17(1):63-66.
    [41]陈伟平,陈宏,郭玉刚等.一种全对称微机械陀螺的双级解耦机构特性[J].纳米技术与精密工程,2009.05,7(3):239-244.
    [42]王安麟,文永蓬,姜涛等.一种音叉振动式微机械陀螺的性能变异分析[J].中国机械工程,2009.06,20(11):1270-1274.
    [43]陈李,陈德勇,王军波.一种电磁式微机械振动环陀螺的建模与优化[J].纳米技术与精密工程,2009.05,7(3):233-238.
    [44]张瀚,金小锋,邹江波.一种新型固支结构石英音叉陀螺的设计[J].仪表技术与传感器,2009,Z:313-315.
    [45]王瑞荣,杜康,李孟委等.基于共振隧穿二极管的微机械陀螺设计[J].传感技术学报,2010.05,23(5):647-650.
    [46]谭秋林,石云波,张文栋等.具有栅结构与静电梳齿驱动的电容式微机械陀螺的仿真、设计与测试[J].纳米技术与精密工程,2011.05,9(3):208-211.
    [47]Xuezhong Wu, Liqiang Xie, Jianchun Xing, et al. A Z-axis quartz tuning fork micromachined gyroscope based on shear stress detection[J]. IEEE SENSORS Journal,2012.05,12(5):1246-1252.
    [48]Cenk Acar, Andrei M. Shkel. MEMS vibratory gyroscopes:structural approaches to improve robustness[M] 2nd edition. Springer,2008.
    [49]P. Greiff, B. Boxenhorn, T. King, and L. Niles. Silicon monolithic micromechanical gyroscope[C]. Tech. Dig.6th Int.Conf. So lid-State Sensors and Actuators (Transducers'91), San Francisco, CA, June 1991:966-968.
    [50]J. Bernstein, S. Cho, A. T. King, A. Kourepenis and P. Maciel, et al. A micromachined comb-drive tuning fork rate gyroscope[C]. Proc. IEEE Microelectromechanical Systems, Fort Lauderdale, FL, Feb.1993:143-148.
    [51]M.W. Putty and K. Najafi. A micromachined vibrating ring gyroscope[C]. Tech. Dig. Solid-State Sens. Actuator Workshop, Hilton Head Island, SC,1994: 213-220.
    [52]Hopkin, I. D. Vibrating gyroscopes (automotive sensors)[C]. IEEE Colloquium on Automative Sensors. Digest No.1994/170. Solihull, UK,1994:1-4.
    [53]Tanaka, K., Mochida, Y., Sugimoto, S., Moriya, K., Hasegawa, T., Atsuchi, K., and Ohwada, K. A micromachined vibrating gyroscope. Proc., Eighth IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS'95), Amsterdam, Netherlands, 1995, pp.278-281.
    [54]Clark, W. A., Howe, R. T., and Horowitz, R. Surface micromachined Z-axis vibratory rate gyroscope[C]. Technical Digest. Solid-State Sensor and Actuator Workshop, Hilton Head Island, S.C.,1996:283-287.
    [55]Juneau, T., Pisano, A. P., and Smith, J. H. Dual axis operation of a micromachined rate gyroscope[C]. Proc., IEEE 1997 Int. Conf. on Solid State Sensors and Actuators (Tranducers'97), Chicago,1997:883-886.
    [56]M. Lutz, W. Golderer, J. Gerstenmeier, J. Marek, B. Maihofer, S. Mahler, H. Munzel, and U. Bischof. Aprecision yaw rate sensor in silicon micromachining[C], Transducers 1997, Chicago, IL,1997:847-850.
    [57]T. K. Tang, R. C. Gutierrez, C. B. Stell, V. Vorperian, G. A. Arakaki, J. T. Rice, W. J. Li, I. Chakraborty, K. Shcheglov, J. Z. Wilcox, and W. J. Kaiser. A packaged silicon MEMS vibratory gyroscope for microspacecraft[C]. Proc. IEEE Micro Electro Mechanical Systems Workshop (MEMS'97), Japan,1997:500-505.
    [58]D. R. Sparks, S. R. Zarabadi, J. D. Johnson, Q. Jiang, M. Chia, O. Larsen, W. Higdon, and P. Castillo-Borelley. A CMOS integrated surface micromachined angular rate sensor:It's automotive applications[C]. Tech. Dig.9th Int. Conf. Solid-State Sensors and Actuators (Transducers'97), Chicago, IL,1997:851-854.
    [59]Y. Oh, B. Lee, S. Baek, H. Kim, J. Kim, S. Kang, and C. Song. A surface-micromachined tunable vibratory gyroscope [C]. Proc. IEEE Micro Electro Mechanical Systems Workshop (MEMS'97), Japan,1997:272-277.
    [60]K. Y. Park, C. W. Lee, Y. S. Oh, and Y. H. Cho. Laterally oscillated and force-balanced micro vibratory rate gyroscope supported by fish hook shape springs [C] Proc. IEEE MicroElectro Mechanical Systems Workshop (MEMS'97), Japan, 1997:494-499.
    [61]R. Voss, K. Bauer,W. Ficker, T. Gleissner,W. Kupke, M. Rose, S. Sassen, J. Schalk, H. Seidel, and E. Stenzel. Silicon angular rate sensor for automotive applications with piezoelectric drive and piezoresistive read-out [C]. Tech. Dig.9th Int. Conf. Solid-State Sensors and Actuators (Transducers'97), Chicago, IL,1997: 879-882.
    [62]R. Hulsing. MEMS inertial rate and acceleration sensor [J]. IEEE AES Systems Magazine.1998,13(11):17-23.
    [63]A. Kourepenis, J. Bernstein, J. Connely, R. Elliot, P. Ward, and M.Weinberg. Performance of MEMS inertial sensors [C]. Proc. IEEE Position Location and Navigation Symposium,1998:1-8.
    [64]Mochida, Y., Tamura, M., and Ohwada, K. A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes [C]. Proc., Twelfth IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS'99), Orlando, FL,1999:618-623.
    [65]Funk, K., Emmerich, H., Schilp, A., Offenberg, M., Neul. R., and Larmer, F. A surface micromachined silicon gyroscope using a thick polysilicon layer [C]. Proc., Twelfth IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS'99), Orlando, FL,1999:57-60.
    [66]Park, K. Y., Jeong, H. S., An, S., Shin, S. H., and Lee, C. W. Lateral gyroscope suspended by two gimbals through high aspect ratio ICP etching. Proc., IEEE 1999 Int. Conf. on Solid State Sensors and Actuators (Tranducers'99), Sendai, Japan,1999:972-975.
    [67]S. Lee, S. Park, J. Kim, and D. Cho. Surface/bulk micromachined single-crystalline-silicon micro-gyroscope [J]. IEEE/ASME Journal of Micro electromechanical Systems,2000,9(4):557-567.
    [68]Jiang, X., Seeger, J. I., Kraft, M., and Boser, B. E. A monolithic surface micromachined Z-axis gyroscope with digital output[C]. Digest of Technical Papers, 2000 Symposium on VLSI Circuits, Honolulu,2000:16-19.
    [69]H. Xie and G. K. Fedder. A CMOS-MEMS lateral-axis gyroscope [C]. Proc. 14th IEEE Int. Conf. Microelectromechanical Systems, Interlaken, Switzerland,2001: 162-165.
    [70]H. Luo, X. Zhu, H. Lakdawala, L. R. Carley, and G. K. Fedder. A copper CMOS- MEMS z-axis gyroscope[C]. Proc.15th IEEE Int. Conf. Microelectromechanical Systems, Las Vegas, NV,2001:631-634.
    [71]W. Geiger,W.U. Butt, A. Gaisser, J. Fretch, M. Braxmaier, T. Link, A. Kohne, P. Nommensen, H. Sandmaier, and W. Lang. Decoupled Microgyros and the Design Principle DAVED[J]. Sensors and Actuators A (Physical),2002,95(2-3):239-249.
    [72]J. A. Geen, S. J. Sherman, J. F. Chang, and S. R. Lewis. Single-chip surface-micromachining integrated gyroscope with 50 deg/hour root Allan variance[C]. Dig. IEEE Int. Solid-State Circuits Conf., San Francisco, CA,2002: 426-427.
    [73]Seshia, A. A., Howe, R. T., and Montague, S. An integrated microelectromechanical resonant output gyroscope [C] Proc, The Fifteenth IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS 2002), Las Vegas,2002: 722-726.
    [74]G. He and K. Najafi. A single crystal silicon vibrating ring gyroscope [C]. Proc., The Fifteenth IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS 2002), Las Vegas,2002:718-721.
    [75]H. Xie and G. K. Fedder. Fabrication, Characterization, and Analysis of a DRIE CMOSMEMS Gyroscope [J]. IEEE Sensors Journal,2003,3(5):622-631.
    [76]Karnick, D.; Ballas, G.; Koland, L.; Secord, M.; Braman, T.; Kourepenis, T. Honeywell gunhard inertial measurement unit (IMU) development[C]. Position Location and Navigation Symposium, PLANS 2004.26-29,2004:49-55.
    [77]C. Acar, and A. Shkel. Inherently Robust Micromachined Gyroscopes with 2-DOF Sense-Mode Oscillator [J]. Journal of Microelectromechanical Systems.2006, 15(2):380-387.
    [78]Byoung-doo Choi; Sangjun Park; Hyoungho Ko; Seung-Joon Paik; Yonghwa Park; Geunwon Lim; Ahra Lee; Sang Chul Lee; Carr, W.; Setiadi, D.; Mozulay, R.; Dong-il Cho. The first sub-deg/hr bias stability, silicon-microfabricated gyroscope. Solid-State Sensors, Actuators and Microsystems,2005. TRANSDUCERS'05.5-92005:180-183.
    [79]A. Sharma, M.F. Zaman, and F.A. Ayazi.0.2 deg/hr Micro-Gyroscope with Automatic CMOS Mode Matching [C]. IEEE International Solid-State Circuits Conference,2007. ISSCC 2007:.386-610.
    [80]J. Roman, E. Cretu, P. Rombouts, et al. A closed-loop digitally controlled MEMS gyroscope with unconstrained sigma-delta force-feedback[J]. IEEE SENSORS Journal,2009.03,9(3):297-305.
    [81]A. R. Schofield, A. A. Trusov, A. M. Shkel. Micromachined gyroscope concept allowing interchangeable operation in both robust and precision modes[J]. Sensors and Actuators A:Physical,2011, (165):35-42.
    [82]J. Cho, J.A. Gregory, K.Najafi. Single-crystal-silicon vibratory cylindrical rate integrating gyroscope (cing)[C]. IEEE Transducer'11, Beijing, China, 2011.06:2813-2816.
    [83]A. Kulygin, C. Kirsch, P. Schwarz, et al. Decoupled surface micromachined gyroscope with single-point suspension[J]. Journal of microelectromechnical system. 21(1),2012.02:206-216.
    [84]张福学,王宏伟,张伟.利用旋转载体自身角速度驱动的硅微机械陀螺[J].压电与声光,2005.04,27(2):109-117.
    [85]张福学,毛旭,张伟.旋转体自身驱动的硅微机械陀螺[J].中国工程科学,8(8),2006.08.41-45.
    [86]王宏伟,毛旭,张伟等.旋转载体用硅微机械陀螺的敏感元件[J].压电与声光,2006.04,28(2):170-172.
    [87]张福学,张伟,严庆文.无驱动硅微机械陀螺[J].压电与声光,2008.12,30(6):660-663.
    [88]张福学,严庆文,吴立锋,张伟.无驱动结构硅微机械陀螺的原理分析和性能测试.仪表技术与传感器.2009,B11:16-24.
    [89]吴立锋,严庆文,徐鸿卓,孙成祥,张伟,张福学.无驱动结构微机械陀螺理论分析.传感技术学报.2010,2(23):196-200.
    [90]姚建军.结构参数对捷联惯导系统静态圆锥运动的影响[J].中国惯性技术学报,2008.06,16(3):294-300.
    [91]余杨,张洪钱.捷联惯导系统中的圆锥和伪圆锥运动研究[J].中国惯性技术学报,2006.10,14(5):1-4.
    [92]李风民.希尔伯特变换及其应用研究[J].中国无线电,2006,(7):53-54.
    [93]严光洪,束滋德.包络分析法在某航行体振动信号处理中的应用[J].振动、测试与诊断,2000.09,20(3):202-205.
    [94]吉训生,王寿荣.硅微陀螺信号处理方法—基于前向线性预测小波变换方法[J].高技术通讯,2008.02,18(2):151-154.
    [95]黄振峰,毛汉领,郝宇宁.基于DSP的小波变换算法研究[J].机床与液压.2008.05,36(5):202-204.
    [96]崔敏,马铁华,范锦彪等.基于DSP的旋转弹用微小型导航系统设计[J].火力与指挥控制,2010.06,35(6):170-172.
    [97]雷万云,王立,李言俊.基于小波变换的红外图像末制导信息处理方法研究[J].弹箭与制导学报,2000.05,(2):1-10.
    [98]冯小虎,朱家海.基于小波域维纳滤波的激光陀螺数据处理研究[J].航空精密制造技术,2008.12,44(6):17-20.
    [99]卢海曦,夏敦柱,周百令.基于遗传小波神经网络的MEMS (?)它螺误差建模[J].中国惯性技术学报,2008.04,16(2):216-219.
    [100]王其,徐晓苏.快速小波变换及其在光纤陀螺信号处理中的应用[J].大连海事大学学报,2007.11,33(4):10-13.
    [10l]李杰,曲芸,刘俊.模平方小波阈值在MEMS陀螺信号降噪中的应用[J].中国惯性技术学报,2008.04,16(2):236-239.
    [102]许刚,董士崇.小波变换算法的C语言实现[J].电脑知识与技术,2005,(6):55-57.
    [103]刘建锋,江涌,丁传红.小波变换在激光陀螺信号处理中的应用与实现[J].系统仿真学报,2008.02,20(3):716-719.
    [104]时伟.小波分析在车载激光陀螺定位定向系统中的应用研究[D].国防科学技术大学,2005.
    [105]丁杨斌,申功勋,王缜等.小波分析在光纤陀螺信号处理中的工程应用[J].光电工程,2007.05,34(5):121-125.
    [106]李颖,陈兴林.宋申民.小波神经网络用于光纤陀螺漂移误差辨识[J].光学精密工程,2007.05,15(5):773-778.
    [107]高宁.陀螺漂移信号的小波去噪及其误差模型的研究[D].天津大学,2004.
    [108]严庆文,张宗恺,刘庆晨,等.一种适用于旋转载体自动驾驶仪的硅微机械陀螺.仪表技术与传感器,2009,(B11):302-305.
    [109]辛玉忠,刘常凯.判断与衡量两个信号相似性的内积表达式[J].潍坊学院学报,2002.07,2(4):10-12.
    [110]易彦,周凤岐,周军.旋转导弹单通道控制方法研究[J].飞行力学,2000.12,18(4):50-53.
    [111]严庆文,张福学,吴立锋等.一种适用于旋转弹单通道控制的硅微机械陀螺仪[J].中国惯性技术学报,2009.10,17(5):599-603.
    [112]陈罗婧,刘莉,于剑桥.双通道控制旋转导弹自动驾驶仪解耦控制研究[J].北京理工大学学报,2008.01,28(1):11-14.
    [113]郭雯雯,周军.空空导弹双通道控制的多变量频域设计方法[J].火力与指挥控制,2009.12,34(12):68-70.
    [114]陈乃川.双通道测角传感器在航天控制中的应用[J].航天控制,1996,(1):40-47.
    [115]陈罗婧,刘莉,于剑桥.双通道控制旋转导弹自动驾驶仪回路的数学变换及其耦合性分析[J].北京理工大学学报,2007.10,27(10):847-850.
    [116]韩艳铧,周凤岐,周军等.一种飞行器姿态控制的三通道独立设计方法[J].弹箭与制导学报,2004,24(2):5-7.
    [117]姚勤,诸毓武,吴宇.导弹三通道俯仰控制回路的数字化技术研究[J].指挥控制与仿真,2011.08,33(4):106-109.
    [118]童春霞,王正杰,张天桥.BTT导弹耦合通道控制系统的变结构解耦设计[J].导弹与制导学报,2005,25(2):125-127.
    [119]魏华.基于MEMS陀螺的自动驾驶仪设计[D].南京理工大学硕士学位论文,2007.
    [120]李年裕,刘藻珍,谢永成.直接自适应控制在自旋导弹制导系统中的应用研究[J].弹箭与制导学报,2004,24(3):101-103
    [121]袁天保,刘新建,秦子增.自旋弹道导弹连续预测控制研究[J].弹箭与制导学报,2005,25(3):474-477.
    [122]孟秀云,刘藻珍,邹静涛.旋转弹(箭)控制系统建模与仿真研究[J].弹箭与制导学报,2002,22(1):51-55.
    [123]马建伟,郭治,侯保林.旋转弹仓的鲁棒控制器设计[J].火力与指挥控制,2006.10,31(10):15-17.
    [124]张萌,马铁华,曹咏弘等.旋转弹导航系统研究[J].兵工学报,2008.07,29(7):793-797.
    [125]曹云.旋转弹箭单通道侧喷控制方案设计与仿真[D].南京理工大学,2011.
    [126]周琪,秦永元,赵长山.旋转弹用横滚隔离捷联惯导稳定回路设计[J].中国惯性技术学报,2009.08,17(4):383-387.
    [127]崔星,张晓明,刘俊等.旋转弹载免驱动三轴MEMS陀螺的信号提取算法[J].弹箭与制导学报,2011.08,31(4):21-23.
    [128]张锐,李君龙.旋转弹制导技术的研究[J].航天控制,2003.08,23(3):43-45.
    [129]张玲,刘建业,赖际舟.旋转光纤捷联惯性导航系统的误差调制分析[J].弹箭与制导学报,2009.04,29(2):1-3.
    [130]李年裕,刘藻珍,谢永成.某自旋导弹姿态控制系统的设计与仿真[J].火炮发射与控制学报,2003,,;30-32.
    [131]跃青.便携式红外寻的防空导弹-部位安排与结构[J].上海航天,1998,(3):54-60.
    [132]郭战兵.便携式红外寻的防空导弹-红外导引头[J].上海航天,1998,(4):51-61.
    [133]杨秋澄,亢清珍.超音速旋转弹翼式"X-X”型导弹弹翼部分的诱导滚转力矩[J].航空学报,1983,(1):8-15.
    [134]王进,陈万春,殷兴良.具有脉冲姿控发动机的自旋导弹动态分析与控制设计[J].宇航学报,2008.07,29(4):1329-1335.
    [135]邹晖,陈万春,殷兴良.基于动态逆的自旋导弹控制器设计[J].弹箭与制导学报,2004,24(3):257-260.
    [136]李海涛,曹咏弘,祖静.等效旋转矢量法在旋转弹姿态解算中的应用[J].测试技术学报,2011,25(4):281-291.
    [137]贾政望,郭治.高速旋转弹的姿态控制系统设计[J].火炮发射与控制学报,2011.09,(3):88-91.
    [138]王磊,郝永平,肖长等.一种大动态惯导技术在旋转弹上的仿真与实验研究[J].弹箭与制导学报,2009.04,29(2):4-8.
    [139]汪树和.自旋导弹弹体自旋角速度的确定[J].哈尔滨工程大学学报,1980,(2):15-28.
    [140]代刚,李枚,苏伟.自旋导弹捷联式陀螺/地磁姿态测量方法[J].中国惯性技术学报,2010.12,18(6):702-705.
    [141]黄自强.自旋导弹控制方法的研究[J].红外与激光工程,1999.12,28(6):10-16.
    [142]丁放.自旋导弹控制信号的直接脉冲调宽方法[J].弹箭与制导学报,1993.12,(1):1-6.
    [143]丁放,叶剑谷.自旋导弹平均合成控制力的仿真研究[J].兵工学报弹箭分册,1992,(1):15-28.
    [144]季向东,王文周.自旋导弹制导控制系统六自由度数字仿真研究[J].情报指挥控制系统与仿真技术,2000,(7):58-64.
    [145]杜汝林,刘显战,徐宝华等.一种抗高冲击的压电陀螺[J].压电与声光,1995.06,17(3):20-23.
    [146]陈艳,孟丽娜.石英微机械陀螺封装抗高g值冲击有限元分析[J].仪表技术与传感器,2009,(S1):50-52.
    [147]刘滨春.关于冲击力矩对高速自转陀螺的影响[J].延边大学学报,2000.12,26(4):279-281.
    [148]陈莲,周海亭.计算橡胶隔振器静态特性的数值分析方法[J].振动与冲击,2005,24(3):120-123.
    [149]黄金威,杨朋军,于云峰等.惯性平台橡胶减振器弹性特性的有限元分析[J].机械设计,2006.11,23(11):51-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700