用户名: 密码: 验证码:
机械冲击荷载对邻近埋地管道的影响及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
埋地管道作为物流输送的一种有效手段,与现代工农业生产和人民生活的关系越来越密切。随着公路、铁路等基础设施的大量修建,由机械施工产生的冲击荷载必然对邻近埋地管道周围的地层产生扰动,给埋地管道的正常使用和安全运行带来不利影响。而油气管道一旦发生运行事故(破裂、爆管或渗漏),除了管道系统自身损坏造成的直接损失外,还有可能引发严重的次生灾害,造成土壤和地下水的污染,导致巨大的经济损失甚至人员伤亡,危及社会生产与生活安全。因此,为保障管道的安全,也为工程建设顺利进行,研究机械冲击荷载对埋地管道的影响及控制已成为当前岩土工程界和管道安全保护亟待解决的一项重要课题。
     有鉴于此,本文借助于理论分析、有限元数值计算和现场试验对机械冲击荷载作用下埋地管道的受力性状进行了综合研究,以此评估和控制施工振动对邻近埋地管道的影响。主要开展了如下几方面的研究工作:
     (1)对冲击荷载作了定性和定量描述,建立冲击物理模型,对运动方程求解推导了冲击荷载的数学表达式;基于波动理论,分析了冲击型点振源产生的振动波在岩土体中的传播特性,并给出了估算振动波影响范围的方法。结合理论分析和数值模拟,得到了存在衰减的粘弹性介质中振动波的传播规律。
     (2)对埋地管道受力的现行计算理论和方法进行了阐述,评述了现行管土相互作用理论分析模型的不足。在考虑管土接触面变形协调的基础上,采用应力函数法推导了埋地管道管周土压力的弹性解,建立了管周应力与管道截面刚度之间的解析关系,为管道受力计算提供了一种新的途径。
     (3)在对埋地管道受力分析的基础上,从理论上分析了冲击荷载对埋地管道的作用。基于Boussinesq方程,建立了埋地管道在地表冲击荷载作用下的受力表达式;基于Mindlin计算模型和无限梁弹性地基模型,建立了桩孔内冲击时冲击荷载作用下埋地管道的受力计算公式;基于单位脉冲δ函数属性及傅里叶级数,建立冲击荷载作用下埋地管道的Eular-Bernoulli地基梁分析模型,求解了冲击荷载下埋地管道的动力响应。为桥梁桩基施工振动对埋地管道的影响分析提供理论支持。
     (4)建立三维管土非线性接触有限元计算模型,分别从振源位置变化、管道埋深、冲击能量、管道与振源间距等方面分析了埋地管道在冲击荷载作用下的动力响应,并对影响因素作了参数敏感性分析;通过数值计算,着重论述了地表振动速度与管道变形的关系;针对冲击荷载的周期循环特性,对埋地管道的累积效应进行了相应计算和分析。
     (5)开展现场微震试验,通过试验分析了施工振动特性及对邻近埋地管道的影响,将其结果与相应数值计算结果进行了比较;并通过冲击振源的定位分析,得出了振动影响范围,为桥梁桩基施工振动研究提出了一种新的手段和方法。
     (6)在数值计算和现场试验的基础上,对桥梁桩基冲击钻孔施工振动可接受控制标准进行了探讨。通过对相关规范的深入剖析,结合管道承受振动荷载能力的计算,以此提出了邻近埋地管道冲击钻孔施工振动的控制标准,并从主动控制和被动控制两个方面系统总结了管道的保护和控制措施,在工程实际应用中取得了较好成效。研究成果可以直接应用于相近工程,研究方法为开展类似工程和研究提供参考。
As an effective transportation, buried pipeline has more and more close relationship with modern industrial manufacture, agricultural production and ordinary life. While large scales of infrastructure such as highways and railways, the disturbance, caused by machine constructing to surrounding ground of buried pipelines, has taken negative infection on the buried pipeline normal use and safe operation. Once the oil and gas pipeline has operation incidence (rupture, tube explosion, leakage), there would bring out server inducing disaster, pollution to the soil and underground water, huge economic loss and casualty and damage to the social product and the people's life, besides the direct loss caused by pipeline system damage. So the study on the influence and control of machine construct impact to adjacent buried pipelines has become a key program in Geotechnical Engineering and pipeline safety protection immediately.
     This dissert made an integrated analysis on the buried pipeline force character in the machine impact loads by theoretic analyzing, finite element numerical simulation and field testing, which could be used to evaluate and handle construct vibration to the adjacent buried pipelines. It was comprised of the following aspects.
     (1) Quantitative and qualitative illustrating to impact loads, building the impact physic model and deducing the mathematic expression by solving the motion equation had been carried out. Moreover, based on the wave theory, propagation characteristic of vibration waves caused by impact in clay was analized and the influence scope of vibration waves was evaluated. Combined theoretical analysis with numerical simulation, propagation law of vibration waves in attenuate viscoelasticity medium was acquired.
     (2) The present computational theories and methods about mechanical analysis of buried pipelines was expatiated and the deficiency of popular pipe-soil interaction theoretic analysis model was reviewed. In favor of the contact surface deformation accordance, the elastic solution of soil stress around the buried pipelines was deduced by stress function method. In this way, the relationship between stress around pipeline and section stiffness was built and the methods for calculating soil pressure on rigid and flexible pipelines were unified.
     (3) Based on the mechanical analysis of buried pipelines, impact loads acting on the pipelines was analyzed in theory for the first time. In view of the Boussinesq equation, mechanical calculate expression of buried pipeline under impact loads on the earth's surface was established. Also, based on the Mindlin calculate model and elastic ground of boundless beam model, mechanical calculate formula of buried pipeline under impact loads inside the pile was set up. Besides, found on the unit impulse function of δ and Fourier series, ground beam model of Eular-Bernoulli for buried pipeline under impact loads was established and the dynamical response of buried pipeline was solved. The methods could provide theoretical support for analysis of bridge pile foundation construction effecting on buried pipelines.
     (4) By constructing the3-dimension pipe-soil nonlinear contact finite element model, dynamic response of buried pipelines under impact loads was studied from the aspects of vibration source, pipeline depth, impact energy, the distance between pipeline and vibration source. Furthermore, parametric sensitivity was analized. Through numerical calculation, the relationship between vibration velocity on the ground surface and pipeline deformation was discussed emphatically. According to periodic cycle loads, the accumulative effect of buried pipelines was calculated and analyzed from the aspects of displacement.
     (5) By the means of field microseism experiments, the construction vibration character and the influence on the adjacent buried pipelines were studied, which compare with the outcome of numerical simulation. Through locating analysis of impact vibration source, the vibration affect area was setted. And it put out a new method for vibration research on bridge pile foundation construction.
     (6) Based on simulating calculation and field testing, reasonable control standard of vibration caused by punching construction was discussed. By analyzing relative specifications and calculating the pipeline load ability, a control standard was put on desk on vibration caused by punching construction. Besides, pipeline protection and control measures were summarized systematicly from aspects of initiative and passivity control. And the practical application in engineering obtained preferably effect. The achievements in task research may have an immediate utilization in close projects. Also the study method provides reference for developing and researching similar projects.
引文
[1]蒲明,马建国.2010年我国油气管道新进展[J].国际石油经济,2011,(3):26-34
    [2]中华人民共和国石油天然气管道保护法[S].北京:法律出版社,2010
    [3]梁振泽.冲孔桩机施工技术及施工质量控制[J].西部探矿工程2007,(9):70-72
    [4]A.Marston and A.O.And erson.The theory of loads on pipes in Ditch and Tests of Cement and Clay Drain Tile and Sewer Pipe[M].Ames:lowa Eng.ExPt.Sta.1913.
    [5]曾国熙.土坝下管道竖向土压力的计算[J].浙江大学学报,1960,(1):79-97
    [6]GB50332-2002,给水排水工程管道结构设计规范[S].北京:中国建筑工业出版社,2002
    [7]Newmark N.M., Hall W. J. Pipeline design to resist large fault displacement[J], Earthquake Engineering Res Inst,1975:416-425
    [8]Parmelee R A, Ludtke C A, Seismic soil-structure inter action of buried pipelines[A].Proc of US National Conf Earthq Eng[C]. Oakland:EERI,1975,406-415
    [9]G.E.Muleski, T.Ariman, C.R.Aumen. A shell model of a buried pipe in seismic environment [J]. Pressure Vessel Technology,1979, (101):44-55
    [10]A.Hindy, M.Novak. Earthquake response of underground pipelines[J].Earthquake Engineering and Structural Dynamics,1979(17):451-476
    [11]O'RourkeM J, Hmadi K E. Analysis of continuous buried pipelines for seismic wave effects [J]. International Journal of Earthquake Engineering and Structure Dynamics,1988,16:917-929.
    [12]Liang JW. Dynamic response of pipelines laid through alluvial valley [J]. Transactions of Tianjin University,1995,1 (1):89-92
    [13]Dimitrios K, George D. Stress analysis of buried steel p ipelines at strike slip fault crossings [J]. Soil Dynamics and Earthquake Engineering,2007,27:200-211
    [14]Takada S. Tanabe K.Three-dimensional seismic response analysis of buried continuous or jointed pipelines[J].J of Pressure Vessel Technology,1987,109(l):35-42
    [15]Takada S. Horimouchi N, Tsubakimoto T, et al.Earthquake resistance evaluation of service junctions in a small-diameter steel pipelines[A]. Proc of 9th World Conf on Earthq Eng [C]. Oakland:EERI,1988, 85-90
    [16]Takada S. Higashi S, Shell model FEM analysis for jointed buried pipelines[A]. Proc of China-Japan Sympon Lifeline Earthq Eng[C].Beijing:Science Press,1990,145-152
    [17]Chiou,Yaw-Jeng and Chi,Shue-yeong,Numerical modeling for buckling of buried pipelines induced by compressive ground failure[J].Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch K'an,1996,19(3),321-332
    [18]顾安全.上埋式管道及洞室垂直士压力的研究[J].岩士工程学报,1981,3(1):3-15
    [19]折学森,顾安全.沟谷地形中埋设管道的土压力研究[J].西安公路学院学报,1989,7(4):33-39
    [20]徐志英,徐新宁.土的非线性对土—地下结构相互作用的影响[J].河海大学学报,1993,21(1):102-105
    [21]吕西林,陈跃庆等.结构—地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动,2000,20(4):20-29
    [22]李昕,周晶,陈健云.考虑土体非线性特性的直埋管道—土体系统的动力反映分析[J].计算力学学报,2001,18(2):167-172
    [23]王宝泉,杨敏,熊巨华.考虑管土共同作用的矩形地埋管道横截面内力计算[J].工业建筑,2004,34(7):33-35
    [24]于直民,张土乔,吴小刚.埋地管道管土相对刚度的分析[J].水利水电技术,2006,37(3):48-51
    [25]刘全林.地埋管道与土相互作用平面分析与计算方法[J].岩土力学,2007,28(1):83-87
    [26]金浏,李鸿晶,姚保华.埋地管线土体相互作用分析计算区域的选取[J].南京工业大学学报(自然科学版),2009,31(3):37-41
    [27]黄崇伟.沟埋式输油管道管土相互作用分析[J].公路工程,2011,36(2):164-168
    [28]Hindy A, Novak M. Pipeline response to random ground motion[J].Journal of Engineering Mechanics,1980,(106):339-360
    [29]Zerva A, Ang A H S, Wen Y K. Lifeline response to spatially variable ground motion[J]. Int J Earth Eng Struc Dyn,1988, (16):361-379
    [30]Shiro Takada, Ling Jian-Wen, Li Teng-yan.Shell-model response of buried pipelines due to large fault movement [J]. Journal of structural engineering,1998(44a):1637-1646
    [31]师健,吕英民,蔡强康.埋地管道的平稳随机振动[J].石油大学学报,1999,(23):65-70
    [32]赵林,冯启民.埋地管道有限元建模方法研究[J].地震工程与工程振动,2001,(6):53-57
    [33]屈铁军,王前信.地下管线在空间随机分布的地震作用下的反应[J].工程力学,2003,20(3):120-124
    [34]黄强兵,彭建兵,杨天亮.埋地管道在地震波作用下的抗震性能分析[J].工程勘察,2004,(3):64-67
    [35]王绍杰,朱庆杰,刘英利等.管土相互作用下埋地管道的抗震性能研究[J].世界地震工程,2007,23(1):47-50
    [36]梁瑞,颜鹏飞,邵松伟等.埋地管道在地震波作用下的动力响应分析[J].兰州理工大学学报,2008,34(6):148-150
    [37]都的箭,邓正栋,张平等.土中爆炸地冲击作用下埋地管线动应力的数值模拟[J].爆破,2005,22(1):20-24
    [38]王飞,王连来,刘广初.爆炸荷载对天然气管道(空管)的破坏作用研究[J].爆破,2006,23(4):20-24
    [39]刘建民,陈文涛.爆炸荷载下埋地管道动力响应分析研究[J].工程爆破,2008,14(2):20-24
    [40]姚安林,赵师平,么惠全.地下爆炸对埋地输气管道冲击响应的数值分析[J].西南石油大学学报(自然科学版),2009,31(4):168-172
    [41]赵师平,曾祥国,姚安林等.第三方载荷作用下埋地输气管道动力响应的数值模拟[J].四川建筑科学研究,2009,35(1):134-139
    [42]荆宏远.落石冲击下浅埋管道动力学响应分析与模拟[D].中国地质大学,2007
    [43]王洪波,张学增,王鹏等.冲击荷载作用下埋地管道基于应变的力学分析[J].石油工程建设,2009,35(5):1-4
    [44]邢义锋,姚安林,曾祥国等.滚石作用下钢质管道动力响应分析及其应用[J].工业建筑,2009,39(增刊)
    [45]王岩,姚安林,李又绿等.崩塌落石对不同埋深输气管道的冲击影响[J].石油工程建设,2010,36(1):4-7
    [46]吴小刚,张土乔,杨玉龙.交通荷载下参变管—土系统的耦合响应分析[J].工业建筑,2004,34(8):36-38
    [47]吴小刚.交通荷载作用下软土地基中管道的受力分析模型研究[D].浙江大学,2004.4
    [48]李洵.交通荷载作用下埋地管道的力学性状分析[D].浙江大学,2004.1
    [49]王直民.交通荷载作用下埋地管道的力学形状研究[D].浙江大学,2006.9
    [50]张土乔.交通荷载作用下饱和土中管道的动力分析[J].浙江大学学报,2007,41(1):48-51
    [51]Lamb H.On the propagation of tremors over the surface of an elastic solid[J].Philosophical Transactions of the Royal Society,1904, A203:1-42
    [52]波林格G A.爆破振动分析[M].北京:科学出版社,1975
    [53]机器基础的振动分析与设计编写组.机器基础的振动分析与设计[M].北京:中国铁道出版社,1987
    [54]GBornitz. Uber die Ausbreitung der von Groszkolben-maschinen Bodenschwingungen in die Tiefe[J]. Springer, Berlin,1931
    [55]BATA M.Effect on Buildings of Vibrations Caused by Traffic[J].Building Science,1985,99 (1):1-12
    [56]Degrande Ca. A Special and Finite Element Method For Wave Propagation in Dry and Saturated Poroclastic Media:[Ph.d thesis].Beigium:K.U.Leuven,1992
    [57]Hayakawa K.Reduction Efects of Ballast Matsand EPS Blocks on Ground Vibration Caused by Trainandits Evaluation[J].Proe.Inter Noise'92.1992,2:33-40
    [58]Xia He.A Study of Vibration Effects of Underground Trains Upon Surrounding Environments. Advances in Structural Engineering[M].BeiJing Railway Publishing House,1995,116-122
    [59]Fujikake T.A. Prediction Method for the Propagation of Ground Vibration from Railway Trains[J]. Sound and Vibration,1986,111 (2):289-297
    [60]吴世明.十介质中的波[M].北京:科学出版社,1997
    [61]杨光辉.列车引起的地面振动的传播和衰减规律的研究[D].北方交通大学,1999
    [62]茅玉泉.交通运输车辆引起的地面振动特性和衰减[J].建筑结构学报,1987,8(5):66-77
    [63]杨先键.打桩引起的环境振动与对策[C].城市改造中的岩土工程问题学术讨论会论文集,杭州,浙江大学出版社,1990
    [64]孙进忠,谭捍华,祁生文等.强夯振动的频域分析[J].岩土工程学报,2000,22(4):412-415
    [65]李昭.强夯振动衰减与场地介质性质相关性研究[D].中国地质大学[D],2002
    [66]黄菊花,何成宏,杨国泰.地基中振动波传播的有限元分析[J].振动与冲击,1999,18(1):38-43
    [67]杨娟.振动波在半无限域土体中传播的有限元模拟[D].北京交通大学,2009
    [68]潘南泉.冲击荷载作用下自由场地振动分析[D].北京交通大学,2010
    [69]陶连金,张波,王文沛.冲击作用下地层振动衰减规律的现场试验研究[J].地震工程与工程振动,2011,31(4):33-39
    [70]H.培契曼,W.艾曼著,李直仓,李文远译.人和机械引起的结构振动[M].北京:建筑科学编辑部,1990
    [71]高彦斌,费涵昌.打桩引起的地面振动的测试与分析[J].地下空间,2004,24(2):190-193
    [72]吴庆.建筑施工对周围环境的影响研究[D].北京交通大学,2009
    [73]程书昌,刘文东,何林.强夯施工振动对相邻钻孔灌注桩影响试验研究[J].工程勘查,2009(增2):270-273
    [74]马继兵,夏招广,蒲黔辉.桩基钢护筒施工振动对既有桥梁影响的测试与分析[J].公路工程,2008(4):185-188
    [75]尹坚,张良涛.地基强夯振动测试分析及防振动措施[J].铁道工程学报,2009,(4):17-20
    [76]邸亭乐.桥梁桩基础施工振动对周围环境的影响研究[D].北京交通大学.2008
    [77]郑健恺,李华,于志刚.强夯、打桩、爆破振动对建筑物影响的探讨[J].西北建筑与建材,2002,(85):21-25
    [78]倪永军,滕忻利,张雪峰等.强夯地振动统计分析与评价[J].北京交通大学学报,2008,32(4):78-82
    [79]曹艳梅.振动对建筑物的影响及其控制标准[J].工程力学,2002(增刊):388-392
    [80]GB6722-2003,爆破安全规程[S].北京:中国标准出版社,2004
    [81]魏晓林.爆破震动对邻近建筑物的危害影响[J].爆破,1998,15(1):48-54
    [82]叶海旺,房泽法,彭志刚.爆破地震对结构的影响[J].爆破,2000,17(1):86-91
    [83]阳生权,廖先葵,刘宝深.爆破地震安全判据的缺陷与改进[J].爆破与冲击.2001,21(3):223-227
    [84]吴德伦,叶晓明.工程爆破安全振动速度综合研究[J].岩石力学与工程学报.1997,16(3):266-273
    [85]张志毅,王中黔.交通土建工程爆破工程师手册[M].北京:人民交通出版社,2002
    [86]杨文渊.工程爆破常用数据手册[M].北京:人民交通出版社,2002
    [87]汪旭光,于亚伦.关于爆破震动安全判据的几个问题.工程爆破[J].地震工程与工程振动,2001, 7(2):88-92
    [88]范喜生,陆来,李丽.落锤撞击作用地表面振动问题的初步分析[J].振动与冲击,1996,15(3):22-26
    [89]加林,L.A.著,主君健译.弹性理论的接触间题[M].北京:科学出版社,1958:140-151
    [90]Timoshenko S.P., Goodier J.N. Theory of Elasticity (Third Edition) [M].McGraw-Hill Book Company, 1970:420-422
    [91]韩选江.大型围海造地吹填土地基处理技术原理及应用[M].北京:中国建筑工业出版社,2009,182-185
    [92]周天福.工程物探[M].北京:中国水利出版社,1997,104-114
    [93]王贤杰.动力地基与基础[M].北京,科学出版社,2001
    [94]陆明万,罗学富.弹性理论基础[M].北京:清华大学出版社,2001:96-99
    [95]戈革等.地震波动力学基础[M].北京:石油工业出版社,1980:178-179
    [96]徐建.建筑振动工程手册[M].北京:中国建筑工业出版社,2002:581-583
    [97]《工程地质手册》编委会.工程地质手册[M].北京:中国建筑工业出版社,2007:315-318
    [98]姚姚等.地震波场与地震勘探[M].北京:地质出版社,2006:253-270
    [99]黄仁东,戴兴国.松散矿岩中振动波传播特性的试验研究[J].矿冶工程,1998,18(3):10-13
    [100]中国振动工程学会土动力学专业委员会.土动力学工程应用实例与分析[M].北京:中国建筑工业出版社,1998:187-188
    [101]孔军.土力学与地基基础[M].北京:中国电力出版社,2005,42-43
    [102]R.D.Mindlin. Force at a point in the interior of a semi-infinite solid.Physics,1936,(7):195-202
    [103]黄清猷.地下管道计算[M].武汉:湖北科学技术出版社,1987
    [104]刘全林.地埋管道与土相互作用分析及其计算方法的研究[D].上海,同济大学,2002
    [105](加拿大)塞尔瓦杜雷(Selvadural, A.P.S.)著,范文田等译.土与基础相互作用的弹性分析[M].北京:中国铁道出版社,1984
    [106]郑建军,迟长生,樊承谋.无拉力Winkler地基梁静力分析的线型互补法[J].应用力学学报,1996,13(1):112-114
    [107]黄义,何芳社.弹性地基上的梁、板、壳[M].北京:科学出版社,2005
    [108]Itzhak Shmulevich, Naftali Galili,and Amnon Foux. Soil stress distribution around buried pipes[J]. J.of Transportation Engineering,1986,112(5):481-494
    [109]刘全林,杨敏.打桩施工对地埋管道影响分析[J].工程力学,2000,(增刊):743-747
    [110]王直民,张土乔,吴小刚.埋地管道管土相对刚度分析[J].水利水电技术,2006,37(3):48-51
    [111]钱伟长.弹性力学[M].北京:科学出版社,1978
    [112]徐芝伦.弹性力学(第三版)[M].北京:高等教育出版社,1990
    [113]黄清猷.填埋式地下圆形结构物周边土压力分布的有限元解[J].土木工程学报,1982,15(3): 52-56
    [114]The American Society of Civil Engineers (ASCE). Guidelines for the design of buried steel pipe[S]. USA,2005
    [115]胡中雄.土力学与环境土力学[M].上海:同济大学出版社,1997:425-458
    [116]Zhang Tuqiao,Shao Weiyun. Numerieal Analysis of Buried Pipe Characteristics[J].Journal of ZhejiangUniversity(Seience).2000.1 (2):144-147
    [117]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2005:78-81
    [118]朱伯芳.有限元法原理与应用[M].北京:中国水利出版社,1998:333-340
    [119]郭小明.弹塑性接触问题的研究及其应用[D].南京:东南大学,2002
    [120]Ted Belytschko, Wing Kam Liu, Brian Moran著,庄茁泽.连续体和结构的非线性有限元[M].北京:清华大学出版社,2002:496-505
    [12]]王勖成.有限单元法[M].北京:清华大学出版社,2003:667-693
    [122]彼得艾伯哈特,胡斌.现代接触动力学[M].南京:东南大学出版社,2003
    [123]Pietrzak G, Cumier A. Large deformation frictional contact mechanics:continuum formulmion and augmented lagrangian treatment. Comput Meth Appl Mech Enghg.1999,177:351-381
    [124]Guo Xiaoming, Zhang Roulei, She Yinghe. On the mathematical modeling for elastoplastic contact problem and its solution by quadratic programming. Int.J.Solids and Structures,2001,38(45): 8133-8150
    [125]KL Johnson. Contact Mechanics[M]. Cambridge University Press,1985
    [126]卓家寿.弹塑性力学中的广义变分原理[M].北京:中国水利水电出版社,2002
    [127]张炎,孔祥安,陈平等.接触力学中的变分原理[J].西南石油学院学报,1998,20(1):99-103
    [128]Guo Xianming,She Yinghe. The variational inequality formulation for the deformation theory in plasticity and its non-iterative solution[J]. Applied Mathematics and Mechanics,1993,14 (12): 1163-1172
    [129]Stadter JT, Weiss RO. Analysis of contact through finite element gaps[J]. Computers and Structures, 1979,10(6):867-873
    [130]曲圣年.组合结构有限元分析的罚单元法[J].固体力学学报,1982,(4):555-559
    [131]李裕春,时党勇ANSYS10.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2006
    [132]赵海欧LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003
    [133]白金泽LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005
    [134]Yanhua She, Huayou Su and Zhengxue Xiao. Research on Punched Pile Construction-induced Dynamic Response of Bridge Pile Foundation[A].International Conference on Civil Engineering, Architecture and Building Materials, HaiKou,2011,2581-2585
    [135]SY-T0450-2004,输油(气)钢质管道抗震设计规范[S].北京:石油工业出版社,2004
    [136]GB 18306-2001,中国地震动参数区划图[S].北京:中国标准出版社,2004
    [137]杨志铭,苏耀军.在役天然气管道沉降控制值的分析探讨[J].中国市政工程,2006,(4):66-71
    [138]赵向东,王育平,陈波等.微地震研究及在深部采动围岩监测中的应用[J].合肥工业大学学报,2003,26(3):363-367
    [139]Block L V, Cheng C H, Fehler M C, et al. Seismic Imaging Using Micro-earthquakes Induced by Hydraulic Fracturing[J]. Geophysics,1994,59(1):102-112
    [140]Milev A M, Spottisswoode S M. Effect of the Rock Properties on Mining-induced Seismicity Around the Ventersdorp Contact Reef, Witwatersr-and Basin, South Africa[J]. Pure Appl. Geophys., 2002,(159):165-177
    [141]M.Cai, P.K.Kaiser. Assessment of Excavation Damaged Zone Using Micromechanics model[J]. Tunneling and Underground Space Technology,2005,20(4):301-310
    [142]Luo X., Ross J., Hatherly P., Shen B., Fama M.D. Microseismic Monitoring of Highwall Mining Stability at Moura Mine [J].Exploration Geophysics,2001, (32):75-79
    [143]董世泰,高红霞.微地震监测技术及其油田开发中的应用[J].石油仪器,2004,18(5):5-8
    [144]姜福兴,杨淑华,XUN LUO微地震监测揭示的采场围岩空间破裂形态[J].煤炭学报2003,28(4):357-360
    [145]逢焕东,姜福兴,张兴民.微地震监测技术在矿井灾害防治中的应用[J].金属矿山,2004,(12):58-61
    [146]骆循,沙椿,罗淳,苏华友等.锦屏一级水电站左岸硐室围岩体稳定性微地震监测试验[A].中国地球物理学会第二十三届年会论,青岛,2007:267-267
    [147]Geiger L. Probability method for the determination of earth-quake epicenters from arrival time only [J]. Bull.St.Louis.Univ,1912,8:60-71
    [148]JB16-88,机械环境保护设计规定(试行)[S].北京:机械工业出版社,2001
    [149]GB/T 17742-2008,中国地震烈度表[s].北京:中国标准出版社,2001
    [150]《桩基工程手册》编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1995
    [151]叶元寿,蔡明亮.非爆破施工震动安全判据引用探讨[J].工业安全与环保,2006,32(10):46-47
    [152]方东升.施工振动对房屋结构安全影响分析与鉴定[J].铁道科学与工程学报,2007,4(4):65-70
    [153]GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010
    [154]何少林,李佐唐.强夯法施工振动效应分析[J]地震地磁观测与研究,2004,25(4):67-72
    [155]褚宏宪,史慧杰.强夯施工振动影响评价[J].岩土工程界,2004,7(11):78-80
    [156]尚军雷,徐风,王韶光.施工振动对邻近建筑的危害[J].工业建筑,2006,36(增刊):981-982
    [157]许锡昌,徐海滨,陈善雄.桩基施工振动对环境影响的研究与对策[J].岩土力学,2003,24(6):957-960

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700