用户名: 密码: 验证码:
机体关键部位机械疲劳分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国汽车产量逐年增长并已居世界第一,发动机的可靠性是汽车技术水平的重要指标之一,对提高产品的竞争力有重要意义。目前在车用发动机技术领域,燃烧强化与结构轻量化是两大主流趋势,这对于发动机主承力结构的设计提出了挑战。
     本文以发动机机体为研究对象,采用疲劳仿真方法结合试验验证手段,重点针对机体疲劳关键部位研究了载荷和结构因素的影响,并结合分析案例实施了结构改进设计。
     论文的主要工作和结论如下:
     1.以495机体为例,采用S-N曲线法,进行某运行工况下的疲劳寿命仿真,获得了机体的疲劳关键部位,包括中隔板和上机体两个区域。
     2.以中隔板为重点考察部位,采用数值仿真方法对比分析了运行工况下与现有疲劳试验载荷加载方式下中隔板的疲劳寿命分布,说明了疲劳试验载荷加载方法的合理性;对比分析了集中载荷、分布载荷两种载荷形式对中隔板疲劳寿命的影响,结果表明,对于中隔板而言,两种载荷影响的差异可以忽略。
     3.在上述研究及参考国外机体疲劳试验设备的基础上,开发了机体疲劳试验系统,系统能够实现两种加载方式。
     4.进行了机体疲劳试验,并与机体疲劳仿真计算结果进行了对比,结果表明,在中隔板处,试验失效位置与仿真得到的疲劳薄弱位置基本一致。针对试验发现的主轴承螺栓孔断裂问题进行了螺纹联接结构疲劳仿真,获得了疲劳薄弱位置,且与试验结果一致。对比计算了螺纹联接局部结构改变对螺纹孔疲劳寿命的影响,结果表明螺纹啮合区末端对应的机体壁面加厚是提高疲劳寿命的有效方法,改进设计后的试验结果验证了分析结果。
China is a country with the highest automobile products in the world. The reliability of automobile is one of the most important performances to the level of technology. It has a significant impact on the product competitiveness. Strengthened combustion and lightweight structures are2main trends in vehicle engine technology. It puts forward the new challenge to the design for main loaded structures in engine.
     This thesis conducted the study on mechanical fatigue of cylinder block. The influence of loads and structures to fatigue lives in key parts of cylinder block is studied by simulation and fatigue test. The improving design of structure is conducted according to simulation and test results.
     Contents of this thesis can be briefly listed as:
     1. The fatigue life distribution of495diesel cylinder block under a working condition is simulated and obtains the key parts including bulkhead and upper part of cylinder block.
     2. The fatigue lives of bulkhead under fatigue test load and operation load are simulated, The results show that the existing fatigue test load is valid; The fatigue lives of cylinder block under the two means of applying loads in fatigue test are simulated and compared, the results show that in bulkhead area the influence by different applying load means can be ignored.
     3. The cylinder block fatigue test rig are developed on the basis of above study and reference of test rig in foreign country. Two different loads can be applied on the test rig.
     4. The cylinder block fatigue tests are conducted on the developed test rig. The test results are compared with the simulation results. The weak positions in bulkhead are almost the same with the positions that fracture occurred during tests. The fatigue lives of bolt hole area are simulated after fatigue crack occurred in this area. The fatigue weak position obtained by simulation is same as position where crack occurred in fatigue tests. Then the fatigue lives are simulated and compared after design change near thread engage area. The results showed that increasing thickness near the last engage thread is a valid method. It is verified by the tests results after improving design.
引文
[1]2010年中国汽车产量有望达1500万辆,中国网,www. china.com.cn
    [2]郑智,周勇,我国汽车工业发展问题分析,商场现代化,2006年1月(中旬刊),总第455期,p187-188
    [3]王霄锋,汽车可靠性工程基础,清华大学出版社,北京,2007年6月第一版
    [4]周龙保,内燃机学,机械工业出版社,北京,2003年一月第一版
    [5]李舜酩,机械疲劳与可靠性设计,科学出版社,北京,2006年9月第一版
    [6]漆平生,徐贵琴译,H.O.福克斯,R.I.斯蒂芬斯,工程中的金属疲劳,中国农业机械出版社,北京,1983年11月第一版
    [7]庄茁,蒋持平,工程断裂与损伤,机械工业出版社,北京,2004年5月第一版
    [8]Ming-Chuen Yip and Yi-Ming Jen. Biaxial fatigue crack initiation life prediction of solid cylindrical specimens with transverse circular holes. International journal of fatigue.1996, Vol 18, No.2, pp.111-117
    [9]S. Bentachfine and G. Pluvinage. Biaxial low cycle fatigue under non-proportional loading of a magnesium-lithium alloy. Engineering fracture mechanics,1996, Vol 54, No.4. pp. 513-522
    [10]Nie Hong, Luan Shaobo. Biaxial stress fatigue life prediction by the local strain method. International journal of fatigue.1997, Vol 19, No.6, pp.517-522
    [11]Andrea Spagnoli. A new high-cycle fatigue criterion applied to out-of-phase biaxial stress state. International journal of mechanical sciences,2001, Vol 43, pp.2581-2595
    [12]A. Varvani-Farahani, A.S. Mirani. Derivation of closure-free crack growth rate under biaxial fatigue loading conditions. Scripta Materialia.2003, Vol 48, pp.241-247
    [13]A.J. McEvily and M. Endo. Prediction of the influence of flaws on the fatigue strength under biaxial loading. International journal of fatigue.2006, Vol 28, pp.504-507
    [14]M.A. Wahab and M. Sakano. Corrosion and biaxial fatigue of welded structures. Journal of materials processing technology,2003,143-144, pp.410-415
    [15]Edgar Nobuo Mamiya and Jose Alexander Araujo. Fatigue limit under multiaxial loadings: on the definition of the equivalent shear stress. Mechanics research communications,2002, Vol 29, pp.141-151
    [16]Dejan Ninic. A stress-based multiaxial high-cycle fatigue damage criterion. International journal of fatigue,2006, Vol 28, pp.103-113
    [17]尚德广,王德俊.多轴疲劳强度,科学出版社,北京,2007年2月第一版
    [18]Editorial:selected papers from the 7th international conference on biaxial/multiaxial fatigue and fracture(ICBMFF), held in Berlin(Germany), on 28 June to 1 July 2004. International journal of fatigue,2006, Vol 28, pp.449-450
    [19]J. Okrajni, M. Plaza. Simulation of the fracture process of materials subjected to low-cycle fatigue of mechanical and thermal character. Journal of materials processing technology. 1995, Vol 53, issue 1-2, pp.311-318
    [20]Tohriyama, S. and Kumano. M. influence of material and mechanical properties on thermal fatigue life of aluminum castings. International journal of fatigue.1996, Vol 18, pp.345
    [21]Thermal fatigue of alumina:comparison with mechanical data and life time prediction. Ceramics international,1999, Vol 81,issue 18-19,pp.1865-1873
    [22]R. Zuchowski. Analysis of the thermal fatigue process. Journal of materials processing technology,2000, Vol 106. pp.167-172
    [23]T. Wakai, M. Horikiri, C. Poussard, B. Drubay. A comparison between Japanese and French A16 defect assessment procedures for thermal fatigue crack growth. Nuclear engineering and design.2004, Vol 235, issue 9, pp.937-944
    [24]Katsuhiko Sasaki, Tsuyoshi Takahashi, Low cycle thermal fatigue and microstructural change of AC2B-T6 aluminum alloy. International journal of fatigue.2004, Vol 28, pp. 203-210
    [25]J. Schijve, fatigue of structures and materials in the 20th century and the state of the art, international journal o fatigue,2003, Volume 25, issue 8, pp679-702
    [26]Sonsino, C. M. course of S-N curves especially in the high-cycle fatigue regime with regard to component design and safety. International Journal of Fatigue, December 2007, Volume 29, Issue 12, p2246-2258, fraunhofer-institute for structural durability and system reliability, Germany
    [27]林晓斌译,Peter J. Heyes基于有限元的疲劳设计分析系统MSC/FATIGUE中国机械工程,1998, Volume 9, Issue 11, P12-16.
    [28]高云凯,李翠,崔玲,高冬.燃料电池大客车车身疲劳寿命仿真.汽车工程.2010,Volume 32, issue 1, P7-12
    [29]梁朝虎,秦平彦,林伟明,付恒生.基于虚拟仿真的过山车轮架疲劳寿命分析.中国安全科学学报,2008, Volume 18, issue 7, P34-38
    [30]赵韩,钱德猛,魏映.汽车空气悬架弹簧支架的动力学仿真与有限元分析一体化疲劳寿命计算.中国机械工程,2005,Volume 16, issue 13, P1210-1213
    [31]王勇,杨洋.基于有限元分析和动力学仿真的曲轴疲劳寿命计算.航电技术,2009,Volume 29, issue 6, P28-31
    [32]张国庆,黄伯超,浦耿强等.基于动力学仿真和有限元分析的曲轴疲劳寿命计算.内燃机工程,2006, Volume 27, issue 1, P41-44
    [33]王成国,孟广伟,原亮明等.新型高速客车构架的疲劳寿命数值仿真分析.中国铁道科学,2001, Volume 22, issue 3, P91-95
    [34]黄健,卜继玲,傅茂海等.基于多体动力学和有限元法的转向架疲劳仿真.内燃机车,2009年第11期,P9-12
    [35]C.L. Petracconi, S.E. Ferreira, E.S. Palma. Fatigue life simulation of a rear tow hook assembly of a passenger car. Engineering Failure Analysis, March 2010, Volume 17, Issue 2, Pages 455-463
    [36]Z. H. Xia, W. A. Curtin, Life prediction of titanium MMCs under low-cycle fatigue, Acta Materialia,25 May 2001, Volume 49, Issue 9, Pages 1633-1646
    [37]杨庆生,杨卫.断裂过程的有限元模拟.计算力学学报,1997,Volume 14, issue 4, P407-412
    [38]贾建军,彭颖红,阮雪榆.一种有限元裂纹扩展仿真的网格技术.模具技术,2001,第5期,P4-6
    [39]贾超;张树壮.支持裂纹扩展的三维有限元网格生成算法.计算机工程与应用,2006年31期,P226-229
    [40]R.A.Smith and J.F.Cooper, A finite element model for the shape development of irregular planar cracks. International journal of pressure vessels and piping, Volume 36, issue 4,1989, P315-326
    [41]E.M.Remzi, W.S.Blackburn and T.K.Hellen, automatic growth of planar cracks in three dimensional geometries. Numerical methods in fracture mechanics, proceedings of 5th international conference on numerical methods in fracture mechanics,1989, P129-140
    [42]K.D. Thompson, S.D. Sheppard, Stress intensity factors in shafts subjected to torsion and axial loading, Engineering Fracture Mechanics, Volume 42, Issue 6, August 1992, P1019-1034
    [43]T.J.Nykanen, fatigue crack growth simulations based on free front, shaped development. Fatigue & Fracture of Engineering Materials & Structures, Volume 19, Issue 1, P99-109
    [44]K. Kishimoto, W. O. Soboyejo, R. A. Smith and J. F. Knott, A numerical investigation of the interaction and coalescence of two coplanar semi-elliptical fatigue cracks, International journal of fatigue, Volume 11, Issue 2, March 1989, Pages 91-96
    [45]W. O. Soboyejo, K. Kishimoto, R. A. Smith and J. F. Knott, a study of the interaction and coalescence of two coplanar fatigue cracks in bending. Fatigue & Fracture of Engineering Materials & Structures, Volume 12 Issue 3, Pages 167-174
    [46]X. B. Lin and R. A. Smith, an improved numerical technique for simulating the growth of planar fatigue cracks, Fatigue & Fracture of Engineering Materials & Structures, Volume 20, Issue 10,1997, P1363-1373
    [47]Lin X B, Smith R. A. fatigue growth prediction of internal surface cracks in pressure vessels, ASME journal of pressure vessel technology, Volume 120, issue 1,1998, P17-23
    [48]Lin X B, Smith R A. direct simulation of fatigue crack growth for arbitrary shaped defects in pressure vessels. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, Volume 213, Number 2,1999, P175-189
    [49]C.A Tang and P.K Kaiser, Numerical Simulation of Cumulative Damage and Seismic Energy Release During Brittle Rock Failure—Part Ⅰ:Fundamentals, International Journal of Rock Mechanics and Mining Sciences, Volume 35, Issue 2,12 March 1998, Pages 113-121
    [50]陈永强,郑小平,姚振汉.三维非均匀脆性材料破坏过程的数值模拟,力学学报,2002,Volume 34, issue 3, P351-361
    [51]杨慧宇,葛雪峰,吴志超等,高祖德.某型飞机机身等直段充压疲劳试验.机械强度.2004,26(z1),P161-162
    [52]耿荣生.全尺寸飞机疲劳试验过程中的无损检测及声发射监测技术研究.南昌航空航天大学学报(自然科学版).2007,volume 21, issue 3, P1-7
    [53]徐长君,刘道庆,周宝权,座舱盖疲劳试验温度控制技术研究,飞机设计,2010,Volume 30, issue 1, P51-54
    [54]刘仁宇,何宇廷,崔荣洪等,某型飞机连接件疲劳试验连接螺栓头失效分析,航空精密制造技术,2008,Volume 44, issue 5, P28-31
    [55]Lamas J, Edwards M. P-3C Service Life Assessment Program-Full Scale Fatigue Test. Presented at the 22nd Symposium of International Committee on Aeronautical Fatigue, Lucerne, Switzerland; May 2003
    [56]Bharat Shah. P-3C Service Life Management. In:Proceedings of 2004 USAF ASIP conference, Memphis, TN; November 30-December2,2004
    [57]朱明亮,轩福贞,安春香,疲劳近门槛值区裂纹扩展模式变化的试验研究,压力容器,2009,26(8),P7-10
    [58]贾法勇,霍立兴,张玉凤,荆洪阳,两种工程结构用钢疲劳裂纹扩展速率的试验研究, 中国机械工程,2003,Volume 14, issue 11, P988-990
    [59]Andreas Burgela, Takao Kobayashia, Donald A. Shockey. Laboratory test for measuring resistance to rapid crack propagation, European Structural Integrity Society,2003, Volume 32, Pages 175-185
    [60]贾丽娜,杨育林,张辉.超硬涂层轴承的滚动接触疲劳试验研究.轴承.2010年02期36-38,41
    [61]胡玉梅,陶丽芳,邓兆祥等,车身台架疲劳强度试验方案研究,汽车工程,Volume 28, issue 3,2006, P300-303,228
    [62]冯遵委,唐永明,孙海东,动车转向架焊接结构疲劳的静强度和疲劳强度试验,2009,Volume 46, issue 4, P19-21
    [63]吴跃成,周晓军,朱焕淼,车辆驱动桥随机疲劳可靠性室内快速试验,汽车工程,Volume 26, issue 1,2004, P98-101
    [64]卢曦,郑松林,轿车主减速器齿轮疲劳寿命的试验研究,机械强度,Volume 30, issue 4,2008, P664-667
    [65]王宏伟,骆红云,钟群鹏,汽车前轴的疲劳试验及其疲劳寿命的预测,金属热处理,2007第32卷(增刊),P56-58
    [66]杨友,吴化,杨立松,汽车前轴锻后空冷弯曲疲劳试验,汽车工艺与材料,2004,第7期,P89-90,104
    [67]闫胜昝,童水光,张响等,汽车车轮弯曲疲劳试验分析研究,机械强度,2008,Volume 30, issue4, P687-691
    [68]曹有善,朱金华,疲劳试验在喷油嘴设计改进中的应用,内燃机,2007年第1期,P34-36
    [69]朱涛,宋健,李亮,复现试验场工况的转向拉杆室内加速疲劳试验,公路交通科技,Volume 27, issue 2,2010, P129-132,137
    [70]巨建民,柴油机曲轴整体三维强度分析,车用发动机,1996(5),P32-35
    [71]丁彦闯,柴油机曲轴整体三维应力精细分析,内燃机工程,1999(4),P32-36,42
    [72]Jouji Kimura, Experiments and analysis of crankshaft three-dimensional vibrations and bending stresses in a V-type ten-cylinder engine:influence of crankshaft gyroscopic motion, SAE Paper 971995
    [73]Prakash V, An FEM based approach to crankshaft dynamics and life estimation, SAE Paper 980565
    [74]石聿俊,发动机曲轴弯曲疲劳强度的可靠性分析,汽车技术,1996(1),P16-20
    [75]刘朋宏等,柴油机曲轴的随机应力分析,上海交通大学学报,1999,33(7)P877-879
    [76]徐延海,三维有限元计算曲轴应力强度因子,[D]成都,西南交通大学,1999
    [77]雷宣扬,宋希庚,薛冬新,内燃机曲轴振动特性的三维模拟——基于二次Timoshenko梁单元,内燃机工程,2002,6(23),P42-46
    [78]雷宣扬,宋希庚,薛冬新,含裂纹曲轴的振动特性分析,农业机械学报,2003,34(6),P179-181
    [79]王晓萍,曲轴弯曲疲劳试验的智能测控系统,内燃机工程,1993(3),P43-48
    [80]徐家炽,DC-1电动谐振式曲轴疲劳试验装置,内燃机工程,1991(2),P6-16
    [81]俞小莉,周迅,智能型曲轴弯曲疲劳试验系统,兵工学报,2004,25(3),P368-371
    [82]周迅,俞小莉,谐振式曲轴弯曲疲劳试验恒载荷控制方法研究,农业机械学报,P168-171,181
    [83]周迅,俞小莉,谐振式曲轴疲劳试验中的失效判定,内燃机工程,Volume 28, issue 5,2007, P45-47
    [84]周迅,俞小莉,曲轴疲劳裂纹扩展速率测量的扫频法,浙江大学学报(工学版),Volume 41, issue 11,2007, P1886-1892
    [85]周迅,俞小莉,曲轴疲劳裂纹扩展规律测试及形成机理分析,机械工程学报,2008,Volume 44, issue 1, P238-242
    [86]周迅,俞小莉,曲轴疲劳试验及其数据统计分析方法的研究,内燃机工程,V28, issue 2,2007, P51-55
    [87]Emil Oanta, Dinu Taraza, Experimental Investigation of the Strains and Stresses in the Cylinder Block of a Marine Diesel Engine, SAE 2000-01-0520
    [88]薛良君,楼狄明,张松杨,16V280ZJB型柴油机机体应力测试与分析,内燃机车,2004年9月(第9期,总第367期),P8-10
    [89]曹磊,赵雨东,左孔天,胡德贵,发动机缸体主轴承座及主轴承盖的动态应力和温度测量,内燃机工程,Vo128(1),2007年2月,p35-38
    [90]杨万里,许敏,邓晓龙,刘国庆,发动机主轴承座结构强度分析研究,内燃机工程,2007年2月,Vo128(1),p31-34
    [91]高文志,汪恩波,郝志勇,天津大学机械工程学院,ZH1110型柴油机机体结构的动态特性,农业机械学报,Vo135(5),2004年9月,p55-57,50
    [92]李玉柱,发动机机体疲劳试验与应力测量,泰州职业技术学院学报,Vol(4),No.3,june 2004, P63-65
    [93]张帆,柴油机机体材料疲劳性能分析,无锡商业职业技术学院学报,2004年9月,Vo1.4(3)p13-14
    [94]陈学罡,李慧远,田雨苗,发动机气缸体疲劳试验研究,汽车工艺与材料,2006年第3期,p6-9
    [95]Rahman M.M., Ariffin A.K. effects of surface finish and treatment on the fatigue behaviour of vibrating cylinder block using frequency response approach, Journal of Zhejiang University SCIENCE A,2006 7(3):352-36
    [96]姚利民,张小杰,廖日东,柴油机机体横隔板断裂失效分析[J].计算机仿真,2007,24(6):291-295
    [97]胡增强,郭昌寰,陈湘才,固体力学基础,东南大学出版社,南京,1990
    [98]Yung-Li Lee, Jwo Pan, Richard Hathaway, Mark Barkey, fatigue testing and analysis(theory and practice), Elsevier,2005
    [99]平修二主编,郭廷玮,李安定译,张质贤校,热应力与热疲劳,国防工业出版社,北京,1984年11月第一版
    [100]郭俊,轮轨滚动接触疲劳损伤机理研究,[西南交通大学博士学位论文],成都,西南交通大学,2006年12月
    [101]刘祥,铸造合金力学及物理性能,机械工业出版社,1982年11月北京第一版
    [102]刘静安,谢水生,铝合金材料的应用与技术开发,冶金工业出版社,北京,2004年1月第一版
    [103]杨连生主编,内燃机设计,中国农业机械出版社,北京1984
    [104]周传月,郑红霞,罗慧强等,MSC.Fatigue疲劳分析应用与实例,科学出版社,北京,2005年3月第一版
    [105]沈兴全主编,液压传动与控制,国防工业出版社,北京,2009年第二版
    [106]于海生,计算机控制技术,机械工业出版社,北京,2007年6月第一版
    [107]赵华,螺纹管接头的弹塑性应力分析.机械工程学报,1997,33(1)pp27-28
    [108]于平,燃料电池复合材料结构螺纹孔联接的应力分析.电源技术,2007,31(2),p160-163
    [109]杜洪奎,袁昌明,螺栓疲劳寿命预测,机械设计,2008,25(2),pp10-12
    [110]R.Kumar, fatigue life estimation for internal threads in class 1 components, Nuclear engineering and design,2000, Volume 197, Issues 1-2, Pages 205-211
    [111]G.H. Majzoobi, G.H. Farrahi, N. Habibi, experimental evaluation of the effect of thread pitch on fatigue life of bolts, International journal of ftigue 27(2005), pp 189-196
    [112]赵少汴,王忠保,抗疲劳设计——方法与数据,机械工业出版社,北京,1997年3月第一版

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700