用户名: 密码: 验证码:
600MW循环流化床锅炉炉膛气固流动和受热面传热的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环流化床锅炉作为一项高效、清洁的燃烧技术近年来不断朝着大型化和高参数化发展。本文以国家研发600MW超临界循环流化床锅炉为研究背景,结合国家十一五科技支撑计划项目和东方锅炉600MW超临界循环流化床锅炉研发科研合作项目,针对600MW超临界循环流化床锅炉研发中的炉膛气固流场和受热面传热特性开展实验室试验和数值模拟研究工作。
     本文根据流化床相似模化理论建立了东方锅炉600MW超临界循环流化床锅炉设计方案的冷态模化六分离器、裤衩腿炉膛结构的循环流化床冷态试验台。工作主要包括实验室六分离器裤衩腿循环流化床试验研究和六分离器裤衩腿循环流化床流动、传热数值模拟研究5个部分,其中试验研究包括①裤衩腿翻床特性试验研究、②炉顶凸起对气固流场影响试验研究和③六分离器循环物料分配特性试验研究;数值模拟建立了一种基于炉膛气固流动数值模拟流场的受热面传热系数计算方法,进行了④六分离器裤衩腿循环流化床试验台的流场和传热数值模拟研究,⑤600MW超临界循环流化床锅炉炉膛流场和传热数值模拟研究。
     试验结果验证了六分离器裤衩腿循环流化床裤衩腿翻床过程中颗粒迁移的气相输送机理;得到了裤衩腿自平衡状态与翻床状态变化理论临界点;提出了循环流化床裤衩腿炉膛的平衡控制策略。试验发现了裤衩腿炉膛“双环核”气固流动结构,裤衩腿上部“双环核”流动结构逐渐向传统颗粒环核流动结构转变。试验总结了六分离器回路循环物料分配不均匀特性,得到了两侧物料流率分配相似,一侧三分离器中居中循环回路物料量相对偏小6.3-9.0%的规律。
     在理论数值模拟方面,本文建立了一种基于炉膛气固流动数值模拟流场的受热面传热系数计算方法。利用Fluent软件的欧拉双流体模型进行炉膛气固流动数值模拟,采用了基于EMMS模型的气固曳力计算方法。在炉膛气固流动数值模拟流场的基础上,利用Fortran语言编程,采用循环流化床颗粒团更新传热模型进行炉膛内受热面传热系数计算。
     在对试验台流场、传热计算验证比较基础上,采用该方法对东方锅炉600MW超临界循环流化床锅炉炉膛的流场和传热特性参数进行了模拟计算。模拟结果显示炉膛内颗粒呈“双环核”流动分布,在水冷壁和中隔墙壁面均存在较大颗粒浓度的颗粒团贴壁下滑;炉内悬吊屏壁面颗粒速度基本为正,靠近烟窗的悬吊屏壁面颗粒浓度和速度均较大。通过模拟计算本文得到了600MW超临界循环流化床锅炉炉膛水冷壁、中隔墙和悬吊受热面的传热系数和热流密度三维分布。
     本文工作为研究开发600MW超临界循环流化床锅炉提供了理论和技术基础。
As a high effitient and clear coal combustion technology, circulating fluidiszed bed boiler has developed rapidly in recent years with towards the direction of larger capacity and higher steam parameters. The background of this paper is the development of600MW supercritical circulating fluidized bed boiler in China. Sponsored by the National Key Technologies R&D Program of China and the Cooperation Project of Dongfang Boiler Company, in this paper, experimental research and numerical simulation are carried out on the in-furnace gas-solid hy drodynamics and heat transfer characteristics in the600MW supercritical CFB boiler.
     A CFB cold model with a pant-leg structure and six cyclones is built according to the CFB scaling method. It is scaled down from the DBC600MW supercritical CFB boiler. Experimental study and numerical simulation are carried out in this paper which can be divided into five parts. Experimental study includes:①solids overturn features of the pant-leg furnace;②effect of extended top on the gas-solid flow structure:③solids circulation rate distribution among the six cyclones. A heat transfer coefficient calculation method is established based on the numerical simulation of gas-solid flow. Numerical simulation includes:④hydrodynamic and heat transfer characteristics in the CFB model with a pant-leg structure and six cyclones;⑤hydrodynamic and heat transfer characteristics in the600M W supercritical CFB boiler furnace.
     The experimental results verified the gas transportation mechanism for the lateral particle migration during the solid overturn process in the pant-leg CFB. Balance control strategy was discussed based on the analysis of theoretical critical status between the self-balancing and the solid overturn. The experimental results also showed that two core-annulus flow structures are formed independently in the two individual pant-leg zones and these two cores are merged into one core at up-section of the pant-leg. It is found that the distribution of solids circulation rate on the two side are similar. The solids circulation rate of the middle circulation loop is about6.3~9.0%lower than the other two loops on each side of the furnace.
     In terms of numerical simulation, A heat transfer coefficient calculation method is established based on the numerical simulation of gas-solid flow. With the Fluent commercial software, the gas-solid flow in the furnace is numerical simulated using two-fluid Model combined with the EMMS drag coefficient computational method. With the hydrodynamic results from the simulation, the heat transfer coefficient distributions of the in-furnace heating surfaces are calculated with the cluster renewal model which is base on the "core-annulus" gas-solid flow structure. The calculation method is achieved by a computer code in Fortran language.
     This method was verified in the simulation of hydrodynamic and heat transfer characteristics in the CFB cold model and the parameters of the model are optimized with the experimental results. Then this method was applied in the simulation of600MW supercritical CFB boiler. The numerical results showed that two core-annulus flow structures exist in the furnace. Clusters with downward particle velocities exist in the surfaces of both the enclosure walls and the partition walls. The particle velocities on the surfaces of wing walls are mainly positive. The wing walls near the furnace outlets have higher solid concentration and particle velocity.3-D distributions of heat transfer coefficient and heat flux on the in-fuenace heating surfaces of the600MW supercritical CFB boiler are obtained from the simulation.
     The research in this paper provides a theoretical and technical basis for the development of600MW supercritical CFB boiler.
引文
[1]英国石油公司BP Statistical review of world energy; 2011.
    [2]中国国家统计局.中国统计年鉴2010.北京:中国统计出版社,2010.
    [3]中国电力企业联合会.全国电力工业统计快报;2012.
    [4]Meadows DH. Meadows DL, Randers J, Behrens WW. The Limits to Growth. New York:University Books, 1972.
    [5]岑可法,姚强,骆仲泱,高翔.燃烧理论和污染控制.北京:机械工业出版社,2004.
    [6]李建锋,郝继红.我国循环流化床锅炉机组数据统计与分析.电力技术.2009;(10):70-74.
    [7]蒋敏华,肖平.大型循环流化床锅炉技术.北京:中国电力出版社,2009.
    [8]岑可法,倪明江,骆仲泱,严建华,池涌,方梦祥,李绚天,程乐鸣.循环流化床锅炉的理论设计与运行.北京:中国电力出版社,1998.
    [9]冯俊凯,岳光溪.吕俊复.循环流化床燃烧锅炉.北京:中国电力出版社,2003.
    [10]孙献斌,黄中.大型循环流化床锅炉技术与工程应用.北京:中国电力出版社.2009.
    [11]骆仲泱,何宏舟,王勤辉,岑可法.循环流化床锅炉技术的现状及发展前景.动力工程.2004:24(6):761-767.
    [12]田晨.炉膛结构对循环流化床气固流动特性影响的研究[博士学位论文].杭州:浙江大学:2011.
    [13]程乐鸣,周星龙,郑成航,王勤辉,方梦祥,施正伦,骆仲泱,岑可法.大型循环流化床锅炉的发展.动力工程.2008;28(6):817-826.
    [14]DOE, JEA. The JEA large-scale CFB combustion demonstration project:The U.S. Department of Energy and JEA; 2003 March. Report No.:22.
    [15]Goidich SJ, Hyppanen T, Kauppinen K.. CFB boiler design and operation using the INTREXTM heat exchanger.6th International Conference on Circulation Fluidized Beds. Wurzburg:Germany,1999.
    [16]Goidich SJ, Wu S, Fan Z. Design aspects of the ultra-supercritical CFB boiler. International Pittsburgh Coal Conference. Pittsburgh, PA,2005.
    [17]Venalainen I.460 MWe supercritical CFB boiler design for Lagisza power plant. POWER-GEN Europe 2004. Barcelona,Spain,2004.
    [18]Goidich SJ, Fan Z, Sippu O, Bose AC. Integration of ultra-supercritical OTU and CFB boiler technologies. In:Winter F, ed.19th International Conference on Fluidized Bed Combustion. Vienna, Austria,2006.
    [19]刘昀,刘德昌.阿尔斯通循环流化床锅炉的大型化发展.电力设备.2006;7(12):18-21.
    [20]Butler JJ, Mohn NC, Semedard J-C, Skowyra R, Wilhelm B. CFB technology:can the original clean coal technology continue to compete? ALSTOM.
    [21]Semedard J, Skowyra R, Seeber J. Scale-up of CFB technology to the utility class:evolution of clean, efficient power generation. ALSTOM.2002.
    [22]汪波.法国循环流化床技术大型化最新发展.山东电力技术.2003;(4):79-82.
    [23]阿尔斯通电力.阿尔斯通超临界循环流化床电厂概念设计.东方锅炉.2005;(2):22-35.
    [24]党黎军,刘振琪,李志伟,姚惠珍,孙献斌,马丽锦,时正海,高洪培,肖平,李光华,蒋敏华.大型循环流化床锅炉的燃烧优化设计.电力设备.2006;7(6):41-43.
    [25]黄永军,卢啸风,刘汉周.大型循环流化床锅炉的结构布置与试验研究.动力工程.2006,;26(1):49-54.
    [26]亍龙,吕俊复,王智微,岳光溪.循环流化床燃烧技术的研究展望.热能动力工程.2004;]9(4):336-342.
    [27]岳光溪.循环流化床燃煤技术在中国的快速发展.中国能源科技专辑.2006:43-47.
    [28]赵国发.循环流化床锅炉运行调节与控制.工业锅炉.2006;(3):51-53.
    [29]周一工.循环流化床锅炉在中国的发展与问题.中国设备工程.2005;(8):14-15.
    [30]吕俊复,张建胜,岳光溪.循环流化床锅炉运行与检修.北京:中国水利水电出版社.2003.
    [31]何华庆.国产首台300MW循环流化床锅炉的调试和运行.锅炉制造.2007;(2):5-8.
    [32]魏志全300MW CFB锅炉故障处理.四川电力技术.2007;30(1):63-66.
    [33]尹刚,陈继辉,卢啸风,刘汉周.引进300MW循环流化床锅炉的技术特点分析.锅炉技术.2007;38(3):29-34.
    [34]Nie L. Wang P, Huo S, Yao B. The characters of DONGFANG 300MW CFBB. International Conference on Power Engineering. Hangzhou, China.2007.
    [35]聂立,王鹏,霍锁善,姚本荣.东方型300MW循环流化床锅炉开发设计.东方电气评论.2007:21(2):33-42.
    [36]孙献斌,于龙.时正海,张彦军,李志伟,姜孝国,王凤君,李振宇,林旭东,蒋敏华.国产210MWCFB锅炉的研制及330MW CFB锅炉的技术开发.电力设备.2007;8(2):1-3.
    [37]孙献斌,李志伟,时正海,党黎军.王智微,肖平.循环流化床锅炉紧凑式分流回灰换热器的试验研究.中国电力.2006;39(7):27-30.
    [38]付兴金,张立新.哈锅首台自主开发300MW CFB锅炉设计与运行.锅炉制造.2011:(2):3-5.
    [39]张立新,杜海涛.300MW等级新型循环流化床锅炉介绍.锅炉制造.2011;(1):25-27.
    [40]肖峰.上锅330MW循环流化床锅炉技术创新.锅炉技术.2010;41(6):24-31.
    [41]高新宇,李振宇.600MWe超临界循环流化床锅炉国产化可行性分析.锅炉制造.2007;(2):28-30.
    [42]李志伟,孙献斌,时正海.600MW超临界CFB锅炉的水动力计算.热力发电.2006:(12):7-10.
    [43]刘青,岳光溪,吕俊复,于龙,辛健,张彦军,张建胜,杨仲明.600MWe超临界循环流化床锅炉水冷壁温度.锅炉技术.2003;34(3):34-38.
    [44]吕俊复,于龙,张彦军.岳光溪,李振字,吴玉新.600 MW超临界循环流化床锅炉.动力工程.2007;27(4):497-502.
    [45]辛建,吕俊复,岳光溪,于龙.发展超临界循环流化床的讨论.热能动力工程.2002;17(101):439-442.
    [46]杨海瑞,吕俊复,张海,岳光溪,邢兴,张守玉,杨辉.超临界循环流化床锅炉的最新进展.锅炉技术.2005;36(5):1-5.
    [47]尹刚,卢啸风,刘汉周,陈继辉.超临界CFB锅炉的发展趋势与技术特点探讨.电站系统工程.2007;23(2):8-11.
    [48]刘静,王勤辉,骆仲泱,岑可法.600MWe超临界循环流化床锅炉的设计研究.动力工程.2003;23(1):2179-2185.
    [49]吕俊复.超临界循环流化床锅炉水冷壁热负荷及水动力研究[博士学位论文].北京:清华大学;2004.
    [50]吴玉新,吕俊复,张建胜,刘青,岳光溪,张彦军,于龙,杨仲明.800MWe超临界循环流化床锅炉概念设计.锅炉技术.2004;35(3):1-6.
    [51]吕清刚,宋国良,孙运凯,包绍麟,那永洁.王东宇,高鸣,高子瑜,邵国桢,肖峰,顾家胜.自主开发600MWe超临界循环流化床锅炉技术.第一届中国循环流化床燃烧理论与技术学术会议.海南海口,2007.
    [52]聂立,王鹏,彭雷,霍锁善,姚本荣.600MW超临界循环流化床锅炉的设计.动力工程.2008;28(5):701-706.
    [53]Johnstone RW, Thring MW. Pilot Plants, Models and Scale-up Methods in Chemical Engineering. New York: McGraw-Hill,1957.
    [54]van der Meer EH, Thorpe RB, Davidson JF. Dimensionless groups for practicable similarity of circulating fluidized beds. Chemical Engineering Science.1999; 54:5369-5376.
    [55]Glicksman LR. Scaling relationships for fuidised beds. Chemical Engineering Science.1984; 39:1373-1379.
    [56]Chang H. M. Louge. Fluid dynamic similarity of circulating fluidized beds. Powder Technology.1992; 70(259-270).
    [57]Glicksman LR, Hyre MR, Westphalen D. Simplified scaling relationships for fluidized beds. Powder Technology.1993; 77:177-199.
    [58]Horio M. Ishii H. Kobukai Y, Yamanishi N. A scaling law for circulating fluidized beds. Journal of Chemical Engineering of Japan.1989; 22:587-592.
    [59]Glicksman LR. Scaling relationships for fluidized beds. Chemical Engineering Science.1988; 43:1419-1421.
    [60]Horio M, Nonaka A, Sawa Y, Muchi I. A new similarity rule for fuidised bed scale-up. Aiche Journal.1986; 32:1466-1482.
    [61]Romero JB, Johanson LN. Factors afecting fuidised bed quality. Chemical Engineering Progress.1962; 58(36):28-32.
    [62]Broadhurst TE, Becker HA. The application of the theory of dimensions to fuidised beds. Int. Symp. Ste. Chimie Indust. Toulouse, France.1973.
    [63]Zhang MC. R.Y.K. Yang. On the scaling laws for bubbling gas-fluidized bed dynamics. Powder Technology. 1987:51:159-165.
    [64]Foscolo PU, Felice RD, Gibilaro LG, Pistone L, Piccolo. Scaling relationships for fuidisation:The generalised particle bed model. Chemical Engineering Science.1990; 45:1647-1651.
    [65]Van den Bleek CM, Schouten JC. Can deterministic chaos create order in a fluidized-bed scale-up. Chemical Engineering Science.1993:48:2367-2373.
    [66]Schouten JC. Vander Stappen MLM. Van Den Bleek CM. Scale-up of chaotic fuidised bed hydrodynamics. Chemical Engineering Science.1996:51:1991-2000.
    [67]Nicastro MT, Glicksman LR. Experimental verification of scaling relationships for fluidized bed. Chemical Engineering Science.1984; 39:1381-1391.
    [68]Almstedt AE, Zakkay V. An investigation of fluidized-bed scaling-capacitance probe measurements in a pressurized fluidized-bed combustorand acold model. Chemical Engineering Science.1990; 45:1071-1078.
    [69]Felice RD. Rapagna S, Foscolo PU. Dynamic similarity rules:Validity check for bubbling and slugging fuidised beds. Powder Technology.1992; 71:281-287.
    [70]Glicksman LR, Hyre MR, Farrell PA. Dynamic similarity in fluidization. Multiphase Flow.1994: 20:331-386.
    [71]Briongos JV, Guardiola J. Newmethodology for scaling hydrodynamic data from a 2D-fluidized bed. Chemical Engineering Science.2005:60:5151-5163.
    [72]Qi X, Zhu J, Huang W. Hydrodynamic similarity in circulating fluidized bed risers. Chemical Engineering Science.2008; 63:5613-5625.
    [73]Bricout V, Louge MY. A verifcation of Glicksman's reduced scaling under conditions analogous to pressurized circulating fuidization. Chemical Engineering Science.2004:59:2633-2638.
    [74]Foscolo PU, Germana A, Jand N, Rapagna S. Design and cold model testing of a biomass gasifier consisting of two interconnected fluidized beds. Powder Technology.2007; 173:179-188.
    [75]Stein M, Ding YL, Seville JPK. Experimental verifcation of the scaling relationships for bubbling gas-fuidised beds using the PEPT technique. Chemical Engineering Science.2002:57:3649-3658.
    [76]Chang H. Louge M. Hydrodynamic scale-up of circulating fluidized beds. 11th International Conference on Fluidized Bed Combustion. Montreal, Canada:ASME,1991.
    [77]Glicksman L, Carr E, Noymer P. Particle injection and mixing experiments in a one-quarter scale model bubbling fluidized bed. Powder Technology.2008; 180:284-288.
    [78]Sierra C, F.Bonniol, R.Occelli, L.Tadrist. Practical scaling considerations for dense gas fluidized beds interacting with the air-supply system. Chemical Engineering Science.2009:64:3717-3720.
    [79]Du W, Xu J, Ji Y, Wei W. Bao X. Scale-up relationships of spouted beds by solid stress analyses. Powder Technology.2009; 192:273-278.
    [80]Wang Q. Zhang K. Brandani S. Jiang J. Scale-up strategy for the jetting fluidized bed using a CFD model based on two-fluid theory. Canadian Journal of Chemical Engineering.2009:87:204-210.
    [81]Bonniol F, Sierra C, Occelli R, Tadrist L. Similarity in dense gas-solid fluidized bed, influence of the distributor and the air-plenum. Powder Technology.2009; 189:14-24.
    [82]Grace JR. Taghipour F. Verification and validation of CFD models and dynamic similarity for fluidized beds. Powder Technology.2004; 139:99-110.
    [83]Glicksman LR. Scaling relationships for fluidized beds. Chemical Engenieering Science.1982; 39(9):1373-1379.
    [84]Anderson TB, Jackson R. A fluid mechanical description of fluidized beds. Industrial & Engineering Chemistry Fundamentals.1967:6:527-539.
    [85]Baeyans J, Geldart D. Predictive calculations of flow parameters in gas fluidized bed and fluidization behavior of various poeders. Int. Symp. on Fluidization and its Application; Toulouse, France; 1973. 263-273,681-690.
    [86]Foscolo PU, Gibilaro LG. A fully predictive criterionforthe transition between particulate and aggregate fluidization. Chemical Engenieering Science.1984; 39:1667-1675.
    [87]Batchelor GK. A new theory for the instability of a fluidized bed. Journal of Fluid Mechanics.1988: 31:657-668.
    [88]Rietema K. Piepers HW. The effect of interparticle force on the stability of gas-fluidized beds-Ⅰ. Experimental evidence. Chemical Engenieering Science.1990; 45:1627-1639.
    [89]Rietema K. The effect of interparticle force on the stability of gas-fluidized beds-Ⅱ. Theoretical derivation of bed elasticity on the basic of Van der W'aals force between powder particles. Chemical Engenieering Science.1993; 48:1687-1697.
    [90]Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique.1979; 29(1):47-65.
    [91]Hartge E-U, Ratschow L, Wischnewski R, Werther J. CFD-simulation of a circulating fluidized bed riser. Particuology.2009; 7:283-296.
    [92]蔡杰,凡凤仙,袁竹林.循环流化床气固两相流颗粒分布的数值模拟.中国电机工程学报.2007;27(20):71-75.
    [93]Ibsena CH, Hellandb E, Hjertagera BH. Solberga T, Tadristb L, Occellib R. Comparison of multifluid and discrete particle modelling in numerical predictions of gas particle flow in circulating fluidised beds. Powder Technology.2004; 149(1):29-41.
    [94]Jackson R. The mechanics of fluidized beds. I:The stability of the state of uniform fluidization. Transactions of the Institution of Chemical Engineers and the Chemical Engineer.1963; 41:13-21.
    [95]Murray JD. On the mathematics of fluidization. Part 2. Steady motion of fully developed bubbles. Journal of Fluid Mechanics.1965:22:57-80.
    [96]Anderson TB, Jackson R. A fluid mechanical description of fluidized beds. I & EC Fundamentals.1967; 6:527-539.
    [97]Pritchett JW. Blake TR. Garg SK. A numerical model of gas fluidized beds. AIChE Symp. Ser.1978; 74:134-148.
    [98]Lyczkowski RW, Bouillard JX, Berry GF, D.Gidaspow. Erosion calculations in a two-dimensional gas-fluidized bed. In:Mustonen JP. editor.9th Int. Conf. on Fluidized Bed Combustion:ASME; 1987. 697-706.
    [99]Chapman S, Cowing TG.非均匀气体的数学理论.北京:科学出版社,1990.
    [100]Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow. Aiche Journal. 1990:36:523-538.
    [101]Kuipers JAM, van Duin KJ, van Beckum FPH, van Swaaij WPM. Computer simulation of the hydrodynamics of a two-dimensional gas-fluidized bed. Computers Chem. Eng.1993:17:839-858.
    [102]Boemer A, Qi H, Renz U. Eulerian sumulation of bubble formation at a jet in a two-dimensional fluidized bed. International Journal of Multiphase Flow.1997; 23:927-944.
    [103]Jenkins JT, Mancini F. Kinetic theory for binary mixtures of smooth, nearly elastic spheres. Phys. Fluids. 1989;31:2050-2057.
    [104]刘阳,陆慧林,刘文铁,赵云华.循环流化床多组分颗粒气固两相流动模型和数值模拟.化工学报.2003;54(8):1065-1071.
    [105]Gao J, Chang J, Lu C. Xu C. Experimental and computational studies on flow behavior of gas-solid fluidized bed with disparately sized binary particles. Particuology.2008; 6(2):59-71.
    [106]Li J, Wen L, Ge W. Cui H, Ren J. Dissipative structure in concurrent-up gas-solid flow. Chemical Engineering Science.1998; 53(19):3367-3379.
    [107]Cloete S, Amini S, Johansen ST. A fine resolution parametric study on the numerical simulation of gas-solid flows in a periodic riser section. Powder Technology.2011:205(1-3):103-111.
    [108]Gidaspow D. Multiphase Flow and Fluidization:Continuum and Kinetic Theory Description:Academic Press 1994.
    [109]Tsuo YP, Gidaspow D. Computation of flow patterns in circulating fluidized beds. Aiche Journal.1990: 36(6):885-896.
    [110]Benyahia S, Arastoopour H, Knowlton TM, Massah H. Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the paniculate phase. Powder Technology.2000; 112(1-2):24-33.
    [111]Wen C-Y, Yu YH. Mechanics of fluidization. Chemical Engineering Progress Symposium Series.1966; 62:100-111.
    [112]Syamlal M. O'Brien TJ. Computer simulation of bubbles in a fluidized bed. AIChE Symposium Series.1989; 85:22-31.
    [113]李静海,欧阳洁,高士秋.颗粒流体复杂系统的多尺度模拟.北京:科学出版社.2005.
    [114]Cheng L, Zhang J, Luo Z, Cen K. Problems with circulating fluidised bed (CFB) boilers in China and their solutions. VGB Powertech.2011; 91(10):60-69.
    [115]Enault C, inventor Fluidized bed boiler furnace comprising two hearths separated by an inside leg area. United States.2006.
    [116]Reh L. Development potentials and research needs in circulating fluidized bed combustion. China Particuology.2003; 1(5):185-200.
    [117]孙剑.大型循环流化床锅炉燃烧系统特性与建模研究[博士学位论文].北京:华北电力大学:2010.
    [118]王家万.300MW CFB锅炉翻床的处理.能源工程.2007:(5):68-72.
    [119]王引成.300MW双炉室循环流化床锅炉偏床问题研究.电力学报.2010;25(2):121-130.
    [120]蒋茂庆,高洪培,邝伟,唐俊,黎兵.300MW循环流化床锅炉床料翻床原因分析及运行对策.热力发电.2007;36(6):127-129.
    [121]吴玉平,周嗣林,蒋茂庆.300MW循环流化床锅炉翻床现象及处理方法.热力发电.2007;(8):55-57.
    [122]刘剑,董志乾,朱劲松.300MW循环流化床锅炉两床失稳及翻床的特性分析.热力发电.2007;(4):53-54,73.
    [123]袁登友,董志乾,刘磊.300MW循环流化床锅炉物料循环特性分析.东北电力技术.2007;(3):27-29.
    [124]张缦,别如山.1025t/h等级循环流化床锅炉一次风机参数的确定.中国电力.2009;42(3):44-47.
    [125]刘建华,袁听,王永益.1060t/h循环流化床锅炉翻床问题分析研究.山西电力.2011;(3):47-49.
    [126]何华庆.国产首台300MW循环流化床锅炉的调试和运行.锅炉制造.2007;(2):5-7,27.
    [127]陈驰东.双支腿结构CFB锅炉长期低负荷运行的危险点分析及对策.浙江电力.2011;(5):39-41.57.
    [128]赵凯,李前宇.米子德.双支腿循环流化床锅炉的燃烧调整.华北电力技术.2007;(7):22-25,39.
    [129]李前宇,赵凯,米子德.双支腿循环流化床锅炉“翻床”问题研究.华北电力技术.2007;(7):43-45,51.
    [130]李福安.宋兆星.双支腿循环流化床锅炉主保护功能设计.华北电力技术.2007;(7):1%21,28.
    [131]Li J, Wang W. Yang H, Lv J. Yue G. Bed inventory overturn in a circulating fluid bed riser with pant-leg structure. Energy & Fuels.2009; 23:2565-2569.
    [132]李金晶,胡南,姚宣,杨石,吕俊复.裤衩腿型循环流化床炉膛的翻床实验.中国矿业大学学报.2011:40(1):54-59.
    [133]李金晶,吕俊复.刘树清,岳光溪,李政.300MW循环流化床的仿真建模.清华大学学报(自然科学版).2009;49(11):1813-1817.
    [134]李金晶,李燕,刘树清,岳光溪.李政.裤衩腿结构循环流化床锅炉床料不平衡现象的数值模拟.动力工程.2008;28(1):28-32.
    [135]Li J. Zhang H, Yang H, Liu Q, Yue G. The mechanism of lateral solid transfer in a CFB riser with pant-Leg structure. Energy & Fuels.2010; 24:2628-2633.
    [136]杨志伟,王哲,李政,孙纪宁,倪维斗.裤衩型循环流化床动态数学模型研究.动力工程学报.2010;30(11):820-826.
    [137]孙纪宁,王哲,杨志伟,李政.裤衩腿循环流化床流动特性及翻床机理的研究.动力工程学报.2010;30(5):336-341.
    [138]Zhou X, Cheng L, Zhang J, Wang Q, Luo Z, Cen K. Dynamic characteristics of solids overturn in a pant-leg CFB riser. UK-China Particle Technology Forum 111. Birmingham, UK,2011.
    [139]郑成航,程乐鸣,骆仲泱,王勤辉,施正伦,岑可法.裤衩型300MW循环流化床锅炉炉膛二次风流场数值研究.浙江大学学报(工学版).2010;44(4):743-749.
    [140]Cheng L. Zhou X, Wang C, Wang Q, Luo Z, Cen K, Nie L, Wu C, Zhou Q. Gas-solids hydrodynamics in a CFB with 6 cyclones and a pant-leg. The 10th International Conference on Circulating Fluidized Beds and Fluidization Technology. Oregon, USA,2011.
    [141]程乐鸣.600MW超临界CFB锅炉主循环回路冷态模化试验及数值计算研究.杭州:浙江大学;2010.
    [142]Rhodes MJ, Sollaart M, Wang XS. Flow structure in a fast fluid bed. Powder Technology.1998; 99:194-200.
    [143]Bai DR., Shibuya E, Masuda Y, Nakagawa N, Kato. K. Flow structure in a fast fluidized bed. Chemical Engenieering Science.1996; 51:957-966.
    [144]Johnsson F, Svensson A, Leckner B. Fluidization regimes in circulating fluidized bed boilers. Fluidization Ⅶ; New York:Engineering Foundation; 1992.471-478.
    [145]Werther J. Fluid mechanics of large-scale CFB units. Circulating Fluidized Bed Technology Ⅳ; New York: AIChe:1994.1-4.
    [146]Schlichthaerle P, Werther J. Axial pressure profiles and solids concentration distribution in the CFB bottom zone. Chemical Engenieering Science.1999:54(22):5485-5493.
    [147]Malcus S. Chaplin G, Pugsley. T. The hydrodynamics of the high density bottom zone in a CFB riser analyzed by means of electrical capacitance tomography (ECT). Chemical Engenieering Science.2000; 55:4129-4138.
    [148]骆仲泱,倪明江,岑可法.循环流化床流体动力特性的试验研究.浙江大学学报.1987;21(6):84-92.
    [149]胡南,王巍,姚宣,杨海瑞,吕俊复.38 m/54m高循环流化床床内流体动力特性研究.中国电机工程学报.2009;29(26):7-12.
    [150]Das M, Bandyopadhyay A, Meikap BC, Saha RK. Axial voidage profiles and identification of flow regimes in the riser of a circulating fluidized bed. Chemical Engineering Journal.2008; 145:249-258.
    [151]Li Y, Kwauk M. The Dynamics of Fast Fluidization. New York:Plenum Press,1980.
    [152]Wei F, Lin HF, Cheng Y. Profiles of particle velocity and solids fraction in a high density riser. Powder Technology.1998; 100:183-189.
    [153]Zhang W, Tung Y, Johnsson JE. Radial velocity profiles in fast fluidized beds of different diameters. Chemical Engineering Science.1991; 46:3045-3052.
    [154]Nakamura K, Capes OE. Vertical pneumatic conveying:A theoretical study of uniform and annular particle flow models. Canadian Journal of Chemical Engineering.1973; 51:39-46.
    [155]Kim S, Kirbas G, Bi H, Lim CJ, Grace JR. Flow behavior and regime transition in a high-density circulating fluidized bed riser. Chemical Engineering Science.2004:59:3955-3963.
    [156]钱诗智,陆继东,黄素华.循环流化床壁面的几何结构对床层气固流动特性的影响.化工学报.1996;47(6):706-711.
    [157]黄素华,陆继东,钱诗智.矩形平壁循环流化床冷态流动特性研究.热能动力工程.1995;10(3):144-148.
    [158]Zhou J, Grace JR, Qin S, Brereton CMH, Lim CJ. Zhu JX. Voidage profiles in a circulating fluidized bed of square cross-section. Chemical Engenieering Science.1994; 49(9):3217-3223.
    [159]Zhou J, Grace JR, Lim CJ, Brereton CMH. Particle velocity profiles in a circulating fluidized bed riser of square cross-section. Chemical Engenieering Science.1995; 50(2):237-244.
    [160]马志刚,方梦祥,骆仲泱,王勤辉,岑可法.矩形截面流化床内颗粒运动可视化试验研究.中国电机工程学报.2007;27(14):24-30.
    [161]Meer EHvd, Thorpe RB, Davidson JF. Flow patterns in the square cross-section riser of a circulating fuidised bed and the elect of riser exit design. Chemical Engineering Science.2000;55:1079-1099.
    [162]Hartge E-U, Budinger S, Werther J. Spatial effects in the combustion chamber of the 235MWe CFB boiler Turow No.3. In:cen K. ed.8th International Conference on Circulating Fluidized Beds. Hangzhou,China, 2005:675-682.
    [163]Schnitzlein MG, Weinstein H. Flow characterization in high velocity fluidization using pressure fluctuation. Chemical Engineering Science.1988; 43(2605-2614).
    [164]Brereton CMH, Grace JR. End effects in circulating fluidized bed hydrodynamics. Circulating fluidized bed technology Ⅳ; New York:AICHE; 1994.70-76.
    [165]Yan A, Parssinen JH, Zhu J-X. Flow properties in the entrance and exitregions of ahigh-fluxcirculatingfiuidizedbedriser. Powder Technology.2003; 131(2-3):256-263.
    [166]吴学智,王雪瑶,姜凡,徐祥,肖云汉.T型突变出口提升管气固流动的数值模拟研究.工程热物理学报.2009:30(8):1327-1330.
    [167]Wu XZ, Jiang F, Xu X, Xiao YH. CFD simulation of smooth and T-abrupt exits in circulating fluidized bed risers. Particuology.2010; 8:343-350.
    [168]Lackermeier U, Werther J. Flow phenomena in the exit zone of a circulating fluidized bed. Chemical Engineering and Processing.2002; 41:771-783.
    [169]金燕,郑洽余.出口几何结构对循环流化床锅炉性能影响的试验研究.工程热物理学报.1999;20(1):129-132.
    [170]Meer EHVd, Thorpe RB, Davidson JF. The effects of exit design on the flow pattern in a square cross-section riser of a circulating fluidized bed. In:Werther J, editor.6th International Conference on Circulating Fluidized Beds; DECHEMA, Germany;1999.755-760.
    [171]Gupta SK, Berruti F. Evaluation of the gas-solid suspension density in CFB risers with exit effects. Powder Technology.2000; 108:21-31.
    [172]Gnanapragasam NV, Reddy BV. Modeling of axial bed-to-wall heat transfer in a CFB combustor with abrupt riser exit geometry. International Journal of Heat and Mass Transfer.2008; 51:6102-6109.
    [173]Gupta AVSSKS, Reddy BV. Bed-to-wall heat transfer modelling in the top region of a CFB riser column with abrupt riser exit geometries. International Journal of Heat and Mass Transfer.2005;48:4307-4315.
    [174]周垦龙,程乐鸣,张俊春,王勤辉.骆仲泱,岑可法.六回路循环流化床颗粒浓度及循环流率实验研究中国电机工程学报.2012;待发表
    [175]周星龙,程乐鸣,王勤辉,聂立,方梦祥,骆仲泱.炉顶凸起对6分离器CFB气固流动的影响.工程热物理学报.2012,33(3):513-516
    [176]Utt J, Hotta A. Goidich S. Utility CFB goes Supercritical-Foster Wheeler's Lagisza 460 MWe operating experience and 600-800 MWe Designs. Coal-Gen 2009. Charlotte, USA.2009
    [177]孙献斌.循环流化床锅炉放大特性与紧凑化设计.热力发电.2009;38(3):1-4.9
    [178]Fan L. Grace JR., Epstein N. Investigation of nonuniformity in a liquid-solid fluidized bed with identical parallel channels. Aiche Journal.2009; 56(1):92-101
    [179]Masnadi MS, Elyasi S, Grace JR. Bi X. Gas-solid flow distribution through identical vertical passages: Modeling and stability analysis. Aiche Journal.2010:56(8):2039-2051.
    [180]Zhang L. Du W, Bi HT, Wilkinson DP, Stumper J. Wang H. Gas-liquid two-phase flow distributions in parallel channels for fuel cells. Journal of Power Sources.2009; 189(2):1023-1031.
    [181]Grace JR. Cui H, Elnashaie SS. Non-uniform distribution of two-phase flows through parallel identical paths. The Canadian Journal of Chemical Engineering.2007; 85(5):662-668.
    [182]Grace JR. Maldistribution of flow through parallel cyclones in circulating fluidized beds. The 9* International Conference on Fluidized Bed Combustion; Hamburg, Germany; 2008.
    [183]Stern A, Caplan K. Bush P. Parallel operation of cyclones in cyclone dust collectors. API Dust-Collector Subcommittee.1955:41-43.
    [184]Smellie J. Notes on dust suppression and collection. Iron and Coal Trades Review.1942; 144(3860):227-395.
    [185]Koffman JL. The cleaning of engine air (part 2). Gas Oil Power.1953:89-94.
    [186]Kim T-W, Choi J-H, Shun DW, Kim S-S, Kim SD. Grace JR. Wear of water walls in a commercial circulating fluidized bed combustor with two gas exits. Powder Technology.2007; 178(3):143-150.
    [187]Kim T-W, Choi J-H, Shun DW, Kim S-S, Kim SD. Wastage of water wall tubes in a circulating fluidized bed combustor with two gas exits. Journal of Chemical Engineering of Japan.2008; 41(8):809-816.
    [188]Guo Q, Zheng XS, Zhou Q, Nie L, Liu TS, Hu XK, Lu JF. Operation experience and performance of the first 300MWe CFB boiler developed by DBC in China. The 20th International Conference on Fluidized Bed Combustion; Xian, China; 2009.237-242.
    [189]Masnadi MS, Grace JR, Elyasi S, Bi X. Distribution of multi-phase gas-solid flow across identical parallel cyclones:modeling and experimental study. Separation and Purification Technology.2010; 72(1):48-55.
    [190]Yue GX, Yang HR. Nie L, Wang YZ, Zhang H. Hydrodynamics of 300MWe and 600MWe CFB boilers with asymmetric cyclone layout. In:Werther J, Nowak W, Wirth KE, Hartge EU, editors. Circulating Fluidized Bed Technology IX; Hamburg, Germany:TuTech Innovation:2008.153-158.
    [191]廖磊.六个旋风分离器并联布置循环流化床的实验研究和数值模拟[硕士学位论文].北京:中国科学院工程热物理研究所;2011.
    [192]Zhou XL. Cheng LM, Wang C, Wang QH, Fang MX, Wu CG, Zhou Q, Nie L. Experimental investigations on multiple cyclones in a circulating fluidized bed. The 8th International Symposium on Gas Cleaning at High Temperatures. Taiyuan, China,2010.
    [193]程乐鸣,周星龙,王勤辉,方梦祥,骆仲泱,吴朝刚,周棋,聂立.循环流化床六分离器气固均匀性试验研究.全国循环流化床协作网第九届年会.贵阳,中国,2010.
    [194]Broodryk NJ, Shingles T. Aspects of cyclone operation in industrial chemical reactors. Fluidization Ⅷ Conference; France:1995.1083.
    [195]Flour I, Boucker M. Numerical simulation of the gas-solid flow in the furnace of a CFB cold rig with ESTETASTRID code. In:Grace JR, Zhu J, de Lasa H, eds. Circulating Fluidized Bed Technology Ⅶ. Ottawa. Canada:CSChE,2002.
    [196]Zhang N, Lu B, Wang W. Li J.3D CFD simulation of hydrodynamics of a 150MWe circulating fluidized bed boiler. Chemical Engineering Journal.2010; 162:821-828.
    [197]刘志成,孙运凯,那永浩.吕清刚,包绍麟.邵国桢.顾家胜,肖锋,王冬福.600MW超临界CFB锅炉旋风分离嚣布置的数值模拟.工程热物理学报.2009;30(11):1949-1952.
    [198]三超,程乐鸣,周星龙.郑成航,王勤辉,骆仲泱,周棋,聂立.600MW超临界循环流化床锅炉炉膛气固流场的数值模拟.中国电机工程学报.2011:31(14):1-7.
    [199]Chen JC, Cimini RJ, Dou SS. A theoretical model for simultaneous convective and radiative heat transfer in circulating fluidized bed. In:Basu P, Large JF, editors. Circulating Fluidized Bed Technology Ⅱ; Oxford: Pergamon Press; 1988.255-262.
    [200]Leckner B. Heat transfer in circulating fluidized bed boilers. In:Basu P, Horio M, Hasatani M, editors. Circulating Fluidized Bed Technology III:Oxford:Pergamon Press; 1991.27-38.
    [201]Sekthira A, Lee YY, Genetti WE. Heat transfer in a circulating fluidized bed.25th National Heat Transfer Conference; Houston, Texas; 1988.24-27.
    [202]Nowak W, Arai N. Hasatani M, Bis Z, Busoul M. Stochastic model of heat transfer in circulating fluidized bed.4th SCEJ Symposium on Circulating Fluidized Bed; Tokyo;1991.19-26.
    [203]Basu P, Nag PK. An investigation into heat transfer in circulating fluidized bed. International Journal of Heat and Mass Transfer.1987; 30:2399-2409.
    [204]Glicksman L. Circulating ftuidized bed heat transfer. In:Basu P, Large JF. editors. Circulating Fluidized Bed Technology Ⅱ; Oxford:Pergamon Press; 1988.13-29.
    [205]Wu RL. Grace JR. Lim CJ. A model for heat transfer in circulating fluidized beds. Chemical Engenieering Science.1990; 45:3389-3398.
    [206]Subbarao D, Basu P. A model for heat transfer in circulating fluidized beds. International Journal of Heat and Mass Transfer.1986; 29:487-489.
    [207]Wu RL, Grace JR, Lim CJ, Brereton CMH. Suspension-to-surface heat transfer in a circulating fluidized bed combustor.Aiche Journal.1989:35:1685-1691.
    [208]Basu P. Heat transfer in high temperature fast fluidized beds. Chemical Engineering Science.1990; 45(10):3123-3136.
    [209]Lints MC, Glicksman LR. Parameters governing particle-to-wall heat transfer in a circulating fluidized bed. In:Avidan A, editor. Circulating Fluidized Bed Technology IV; New York:AIChE:1994.297-304.
    [210]程乐鸣.循环流化床与压力循环流化床传热研究[博士学位论文].杭州:浙江大学:1996.
    [211]Vijay GN, Reddy BV. Effect of dilute and dense phase operating conditions on bed-to-wall heat transfer mechanism in a circulating fluidized bed combustor. International Journal of Heat and Mass Transfer.2005; 48:3276-3283.
    [212]Dutta A. Basu P. An experimental investigation into the heat transfer on wing walls in a circulating fluidized bed boiler. International Journal of Heat and Mass Transfer.2002; 45:4479-4491.
    [213]Zhang R, Dutta A. Basu P. Heat transfer to the ceiling of the riser of a circulating fluidized bed. Chemical Engineering Science.2006; 61:5907-5911.
    [214]Luan W, Lim CJ, Brereton CMH, Bowen BD, Grace JR. Experimental and theoretical study of total and radiative heat transfer in circulating#uidized beds. Chemical Engineering Science.1999; 54:3749-3764.
    [215]程乐鸣.大型循环流化床锅炉的传热研究.动力工程.2000;20(2):587-592.
    [216]Wu R, Lim CJ, Chauki J, Grace JR. Heat transfer from a circulating fluidized bed to membrane water wall cooling surfaces. Aiche Journal.1987; 33:1888-1893.
    [217]李军,李荫堂.循环流化床传热研究的进展.动力工程.1998;17(4):53-58.
    [218]Mahalingam M, Kolar AK. Emulsion layer model for wall heat transfer in a circulating fluidized bed. Aiche Journal.1991; 37:1139-1150.
    [219]Basu P, Fraser S. Circulating Fluidized Bed Boiler-Design and Operation. Stoneham.1991.
    [220]Andersson BA, Leckner B. Bed-to-wall heat transfer in circulating fiuidized bed boilers.2nd Minsk International Heat and Mass Transfer Forum. Minsk, USSR,1992.
    [221]普华煤燃烧技术开发中心.循环流化床锅炉燃烧设备性能设计方法.2007.
    [222]凌晓聪.吕俊复,刘青.王听,张建胜,岳光溪,沈解忠,苏小平,林旭东,马明华,姜孝国.循环流化床锅炉屏式受热面换热系数的测量与分析.热力发电.2004;(1):23-28.
    [223]卢友艳.循环流化床锅炉屏式过热器设计问题探讨.锅炉技术.2004;35(5):29-32.
    [224]Cheng L, Zhou X, Huang C, Wang Q, Fang M. Nie L, Luo Z. Ni M, Cen K. Heat transfer of suspended surface in a CFB with 6 cyclones and a pant-leg. The 21s'International Conference on Fluidized Bed Combustion.'Naples, Italy,2012.
    [225]黄晨.大型循环床锅炉炉内受热面传热特性研究[硕士学位论文].杭州:浙江大学:2012.
    [226]程乐鸣.周星龙.夏云飞,王勤辉,方梦祥,周棋,聂立.600MW循环流化床悬吊屏气固流动与传热特性.全国循环流化床协作网第十届年会.成都,中国.2011.
    [227]Rhodes MJ. Laussman P. A study of the pressure balance around the loop of a circulating fluidized bed. Canadian Journal of Chemical Engineering.1992; 70:625-630.
    [228]岑可法.倪明江,严建华,骆仲泱,李晓东.方梦祥,李绚天,池涌,高翔,蒋旭光,程乐鸣.气固分离理论及技术.杭州:浙江大学出版社,1999.
    [229]Cheng LM. Basu P, Cen KF. Solids circulation rate prediction in a pressurized loop-seal. Trans IChemE. 1998; 76:761-763.
    [230]Zhang R. Study on pressure drop of fast fluidized bed. In:Kwauk M, Kunii D, editors. Fluidization'85 Science and Technology:Beijing, China:Science Press; 1985.148-157.
    [231]姚宣,杨石,晁俊楠,张瑞卿,杨海瑞,吕俊复.循环流率对循环流化床回路压降影响的实验研究.中国电机工程学报.2010;30(20):1-6.
    [232]Cho YJ, Namkung W, Kim SD, Park SW. Effect of secondary air injection on axial solid holdup distribution in a circulating fluidized-bed. Journal of Chemical Engineering of Japan.1994; 27(2):158-164.
    [233]Koksal M, Hamdullahpur F. Gas mixing in circulating fluidized beds with secondary air injection. Chemical Engineering Research and Design.2004; 82(8):979-992.
    [234]Khan AR, Richardson JF. The resistance to motion of a solid sphere in a fluid. Chemical Engineering Communications.1987; 62(1):135-150.
    [235]Guo QJ, Werther J. Flow behaviors in a circulating fluidized bed with various bubble cap distributors. Industrial & Engineering Chemistry Research.2004; 43:1756-1764.
    [236]Zhang WN. Johnsson F. Leckner B. Fluid-dynamic boundary-layers in CFB boilers. Chemical Engineering Science.1995; 50:201-210.
    [237]Kim SW, Kirbas G, Bi HT, Lim CJ, Grace JR. Flow structure and thickness of annular downflow layer in a circulating fluidized bed riser. Powder Technology.2004; 142:48-58.
    [238]Ersoy LE, Golriz MR, Koksal M, Hamdullahpur F. Circulating fluidized bed hydrodynamics with air staging: an experimental study. Powder Technology.2004; 145(1):25-33.
    [239]Harris AT, Davidson JF, Thorpe RB. Influence of exit geometry in circulating fluidized-bed risers. Aiche Journal.2003; 49:52-64.
    [240]Chen JY, Shi MX. A universal model to calculate cyclone pressure drop. Powder Technology.2007; 171(3):184-191.
    [241]Yang S, Yang H, Zhang H, Li S, Yue G. A transient method to study the pressure drop characteristics of the cyclone in a CFB system. Powder Technology.2009; 192:105-109.
    [242]Rhodes MJ. Principles of powder technology. New York:John Wiley & Sons,1990.
    [243]顾锋.吕清刚.循环流化床物料循环冷态试验研究.锅炉技术.2003;34(3):39-45.
    [244]Basu P, Cheng LM. An analysis of loop seal operations in a circulating fluidized bed. Chemical Engineering Research and Design.2000; 78(7):991-998.
    [245]Wirth K.E, Seiter M. Solids concentration and solids velocity in the wall region of circulating fluidized beds. In:Anthony EJ, editor. Proceedings of the 1991 International Conference on Fluidized Bed Combustion: Montreal; 1991.311-316.
    [246]黄晨,程乐鸣,周星龙,吴朝刚,周棋,方梦详.骆仲泱.大型循环流化床炉内悬吊受热面传热特性研究.浙江大学学报(工学版).2012;录用待发表.
    [247]Wu RL, Lim CJ, Grace JR, Brereton CMH. Instantaneous local heat transfer and hydrodynamics in a circulating fluidized bed. International Journal of Heat and Mass Transfer.1990; 34:2019-2027.
    [248]Stamatelopoulos GN, Seeber J, S.Skowyra R. Advancement in CFB technology:a combination of excellent environmental performance and high efficiency. In:Jia L, editor.18th International Conference on Fluidized Bed Combustion; Toronto, Ontario Canada; 2005.
    [249]《工业锅炉设计计算标准方法》编委会.工业锅炉设计计算标准方法.北京:中国标准出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700