用户名: 密码: 验证码:
粒子群算法改进及其在电力系统的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统是一个复杂大系统,在规模日益扩大与社会对电能供应的“安全、可靠、经济、优质、低碳”等多项质量指标不断提出更高要求的背景下,为确保电力系统运行控制目标的实现,需要面对各种复杂优化问题。其复杂性主要体现在目标与约束复杂、多极值、高维、多目标以及存在诸多不确定因素等,这些均给建模方法与算法创新带来重大挑战,如何构建合适的优化模型及创造实用高效算法是解决问题的关键。现代群智能优化算法具有对目标函数零要求、实施简单及并行搜索等优点,在复杂优化领域得到越来越多的应用而倍受青睐。本研究旨在:从群智能的本质特征出发,分析粒子群算法学习模式的构造及关键要素,力图认识PSO易于“早熟”的根本原因;提出创新的粒子群学习模式,并基于新模式设计高效PSO改进算法;应用随机分析理论与差分方法研究粒子群动态轨迹及其稳定域,进一步揭示PSO的工作机理,为算法的改进提供理论基础;将改进算法与电力系统具体问题相结合并求解,提出更有效的实用方案。
     群智能与仿生学原理、随机分析理论与差分方法、拟阵理论、优化理论与算法设计理论是研究上述问题的有力工具。本文采用理论研究与实证分析相结合的方法,主要研究内容及成果包括:
     1.应用群智能理论研究PSO易于“早熟”的主要原因,指出原有学习模式本质的“被动性”机制是其重要原因之一。提出一种新的带主动探索意识的学习模式,将新的学习模式与Logistic混沌遍历实现技术相结合,发展出一种新的改进粒子群算法(AEPSO),通过实验测试分析验证了算法的有效性。
     2.基于拟阵理论,提出一种适合于拟阵特性的一般组合优化问题的新型离散粒子群算法:基于拟阵理论,将PSO的进化策略引入到贪心算法(Greedy algorithm)的寻优搜索过程中,运用粒子群的群智能特性改善贪心算法的全局搜索性能,提出一种具有较强全局搜索能力的新型离散粒子群算法,简记为MDPSO。采用背包等组合优化问题对改进算法进行实验测试分析,验证了算法的可行性和有效性。
     3.基于文化在组织团体中的核心价值思想,利用“信念空间”中的文化信息构造个性化动态适应参数,培育种群的多样性。提出一种改进的多目标粒子群算法(CBCMPSO),采用多目标算法测评指标体系与测试函数对改进算法的品质和性能进行了实验测试分析,表明新算法的多项质量指标均较优。
     4.应用随机分析理论与差分方法推导出一种新的粒子群动态分析模型(γ GPSO模型);证明了算法依赖于参数设置的一、二阶稳定域边界表达式,绘制出稳定区域、谱半径的等高线图与均值轨迹图,为PSO的改进及参数设置提供理论基础与直观工具。
     5.给出改进算法在电力系统的应用实例,进一步验证了算法的可行性和有效性:1) AEPSO经济调度算法的设计与仿真测试;2) MDPSO需求侧资源优化算法的设计与仿真测试。
Electric power system is a complex system, increasing the size and social to the powersupply of "safe, reliable, affordable, high quality, low-carbon" and many other qualityindicators under the background of ever-higher demands, to ensure the implementation ofpower system operation control of the target, face a variety of complex optimization problems.Its complexity is mainly reflected in the objectives and constraints of complex, more extreme,high-dimensional, multi-objective, and there exist many uncertain factors, these aresignificant challenges on modeling and algorithm for innovation, how to build a suitableoptimization models and creating practical and efficient algorithm is the key to solving theproblem. Modern intelligent optimization algorithm with zero on the objective functionrequirements, implementing simple and advantages of parallel search, in the field of complexoptimization are a growing number of applications received significant attention. Thisresearch aimed at: from group intelligent of nature features starting, analysis particle swarmalgorithm learning mode of constructed and the key elements, tried to awareness PSO easy to" premature " of fundamental causes; made innovation of particle swarm learning mode, andbased on new mode design efficient PSO improved algorithm; application random analysistheory and difference method research particle swarm dynamic trajectory and stability domain,further reveals PSO of work mechanism, for algorithm of improved provides theoryFoundation; will improved algorithm and power system specific problem phase combinationand solution, More effective and practical programmes.
     Swarm intelligence and Bionics principle, stochastic analysis theory and finite differencemethods, matroid theory, optimization theory and algorithms design theory is a powerful toolto study this problem. This article uses a combination of theoretical study and empiricalanalysis method, the main research content and outcomes include:
     1. Swarm intelligence theory application research on the main reason of PSO is easy to"premature", pointed out that the original learning model nature of "passive" mechanism isone of the important reasons. Come up with a new sense of exploration with active learningmodel and Logistic chaos through new learning mode for combining technology, developed anew and improved Particle Swarm Optimization (AEPSO), and by experimental test analysisto verify the validity of the algorithm.
     2. Based on matroid theory, proposed a matroid property of General-suitable forcombinatorial optimization problems of a combined population of evolutionary learning mode:Modular evolutionary learning mode based on vector (m1,m2,m-m1-m2). In turn proposed an improved discrete Particle Swarm Optimization (MDPSO), using Backpack to experimentaltests improved algorithms in combinatorial optimization problems such as analysis, feasibilityand effectiveness of the verification algorithm.
     3. Based on the culture in the Organization's core values,"belief space" constructingpersonalized dynamic adaptation of cultural information in parameters, fostering speciesdiversity. Come up with an improved multi-objective Particle Swarm Optimization(CBCMPSO), using multi-objective evaluation index system and algorithm testing function toimprove the quality and performance of the algorithm of the test and analysis of experiments,indicating a new algorithm for multiple quality indicators are better.
     4. Derivation of out stochastic analysis theory and finite difference methods for dynamicanalysis model of a new particle swarm (γ-GPSO model) or proved algorithm depends on theparameter settings for one or two-stage stability region expression draws out of the stable area,contour map of the spectral radius and mean, a map providing a theoretical basis for improvedPSO and its parameter settings and intuitive tools. Derivation of out stochastic analysis theoryand finite difference methods for dynamic analysis model of a new particle swarm (γ-GPSOmodel) or proved algorithm depends on the parameter settings for one or two-stage stabilityregion expression draws out of the stable area, contour map of the spectral radius and mean, amap providing a theoretical basis for improved PSO and its parameter settings and intuitivetools.
     5. Gives examples of improved algorithm in power system applications, furthervalidation of the feasibility and effectiveness of the algorithm:1) design and simulation ofAEPSO economic dispatching algorithm testing;2) MDPSO design of demand-side resourceoptimization algorithm and simulation testing.
引文
[1] Chang C S, Tian L, Wen F S. A new approach to fault section estimation in power systems using antsystem[J]. Electric Power System Research,1999,49:63-70.
    [2] Song Y H, Chou C S, Stonham T J. Combined heat and power economic dispatch by improved antcolony search algorithm[J]. Electric Power System Research,1999,52(2):115-121.
    [3] Gaing Z L. Particle swarm optimization to solving the economic dispatch considering the generatorconstraints[J]. IEEE Transactions on Power Systems,2003,18(3):1187-1195.
    [4] Del Valle Y, Venayagamoorthy G K, Mohagheghi S, et al. Particle swarm optimization: Basic concepts,Variants and applications in power systems[J]. IEEE Transactions on Evolutionary Computation,2008,12(2):171-195.
    [5] Vlachogiannis J G, Lee K Y. A comparative study on particle swarm optimization for optimalsteady-state performance of power systems[J]. IEEE Transactions on Power Systems,2006,21(4):1718-1728.
    [6] Ting T O, Rao M V C, Loo C K. A novel approach for unit commitment problem via an effectivehybrid particle swarm optimization[J]. IEEE Transactions on Power Systems,2006,21(2):411-418.
    [7] Zielinski K, Weitkemper P, Laur R, et al. Optimization of power allocation for interference cancellationwith particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation,2009,13(1):128-150.
    [8] Pedrasa M, Spooner T D, MacGill I F. Scheduling of demand side resources using binary particleswarm optimization[J]. IEEE Transactions on Power Systems,2009,24(3):1173-1181.
    [9]何仰赞,温培银著.电力系统分析.华中科技大学出版社,2002.
    [10] Garey M R, Johnson D S. Computers and intractability: A guide to the theory of NP-completeness[M].W. H. Freeman,1979.
    [11]黄平主编.最优化理论与方法.清华大学出版社,北京,2009.
    [12] Hackwood S, Beni G. Self-organization of sensors for swarm intelligence[C]. IEEE Internationalconference on Robotics and Automation, Piscataway, NJ: IEEE Press,1992,1:819-829.
    [13] Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence: From natural to artificial systems[M].Oxford University Press, New York,1999.
    [14] Blum C, Merkle D. Swarm intelligence introduction and applications[M]. Springer-Verlag BerlinHeidelberg,2008.
    [15] Dorigo M, Maniezzo V. Ant colony optimization[M], MIT Press, Cambridge, MA,2004.
    [16] Kennedy J, Eberhart R, Shi Y. Swarm intelligence[M]. Morgan Kaufmann Publishers, San Francisco,CA,2004.
    [17] Reynolds C W. Flocks, herds and schools: A distributed behavioral mode[J]. Computer Graphics,1987,21(4):25-34.
    [18] Rucker R. Seek! four walls eight windows[M]. New York,1999.
    [19] DiCaro G, Dorigo M. AntNet: Distributed stigmergetic control for communications networks[J].Journal of Artificial Intelligence Research,1998,9:317-365.
    [20] Kennedy J, Eberhart R. Particle swarm optimization[C]. In Proceedings of the1995IEEE InternationalConference on Neural Networks, IEEE Press, Piscataway, NJ,1995,4:1942-1948.
    [21] Shi Y H, Eberhart R. A modified particle swarm optimizer[C]. Evolutionary Computation Proceedings,The1998IEEE International Conference on Computational Intelligence, Anchorage, AK, USA,1998:69-73.
    [22] Shi Y H, Eberhart R. Empirical study of particle swarm optimization[C]. Proceeding of Congress onEvolutionary Computation, Washington, DC,1999,3:1945-1950.
    [23] Shi Y H, Eberhart R. Fuzzy adaptive particle swarm optimization[C]. Proceedings of the Congress onEvolutionary Computation, Seoul, Korea,2001,1:101-106.
    [24] Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensionalcomplex space[J]. IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
    [25] Mendes R, Kennedy J, Neves J. The fully informed particle swarm: simpler, maybe better[J]. IEEETransactions on Evolutionary Computation,2004,8(3):204-210.
    [26] Clerc M. Particle Swarm Optimization[M]. ISTE Ltd, UK,2006.
    [27] Kennedy J. Bare bones particle swarms[C]. In Proceedings of the IEEE Swarm IntelligenceSymposium2003, Indianapolis, Indiana, USA,2003:80-87.
    [28] Xie X F, Zhang W J, Yang Z L. A dissipative particle swarm optimization[C]. Proceedings of theCongress on Evolutionary Computation, Honolulu, HI, USA,2002:1456-1461.
    [29] Janson S, Middendorf M. A hierarchical particle swarm optimizer and its adaptive variant[J]. IEEETransactions on Systems, Man, and Cybernetics, Part E,2005,35(6):1272-1282.
    [30] Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for globaloptimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation,2006,10(3):281-295.
    [31] van den Bergh F, Engelbrecht A P. A Cooperative approach to particle swarm optimization[J]. IEEETransactions on Evolutionary Computation,2004,8(3):225-239.
    [32] Brits R, Engelbrecht A P, van den Bergh F. A niching particle swarm optimizer[C]. Proceedings of theA sia-Pacific Conference on Simulated Evolution and Learning,2002:692-696.
    [33] Parrott D, Li X. Locating and traching multiple dynamic optima by a particle swarm model usingspeciation[J]. IEEE Transactions on Evolutionary Computation,2006,10(4):440-458.
    [34] Parsopoulos K E, Vrahatis M N. On the computation of all global minimizars through particle swarmoptimization[J]. IEEE Transactions on Evolutionary Computation,2004,8(3):211-224.
    [35] Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power andvoltage control considering voltage security assessment[J]. IEEE Transactions on Power systems,2001,15(4):1232-1239.
    [36] Wachowiak M, Smolikova R, Zheng Y, et al. An approach to multimodal biomedical imageregistration utilizing particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation,2004,8(3):289-301.
    [37] Sierra M R, Ooello Coello C A. Multi-objective particle swarm optimizers: A survey of the state-of-the-art[J]. International Journal of Computational Intelligence Research,2006,2(3):287-308.
    [38] Li X D, Branke J, Blackwell T. Particle swarm with speciation and adaptation in a dynamicenvironment. Proceedings of GECCO2006, Seattle, USA,2006:51-58.
    [39] Eberhart R C, Simpson P K, Dobbins R W. Computational Intelligence PC Tools[M]. Academic Press,Boston,1996.
    [40] Coath G, Al-Dabbagh M, Halgamuge S K. Particle swarm optimization for reactive power and voltagecontrol with grid-integrated wind farms[C]. Power Engineering Society General Meeting,2004. IEEE,2004,1:303–308.
    [41] Zhao B, Guo C, Cao Y J. A multiagent-based particle swarm optimization approach for optimalreactive power dispatch[J]. IEEE Transactions on Power Systems,2005,20(2):1070–1078.
    [42] Park J, Lee K, Shin J, et al. A particle swarm optimization for economic dispatch with nonsmooth costfunctions[J]. IEEE Transactions on Power systems,2005,20(1):34–42.
    [43] Robinson D G. Reliability analysis of bulk power systems using swarm intelligence[C]. Proceedingson Reliability and Maintainability Symposium, Annual,2005:96–102.
    [44] Kassabalidis I N, El-Sharkawi M A, Marks L S, et al. Dynamic security border identification usingenhanced particle swarm optimization[J]. IEEE Transactions on Power Systems,2002,22(6):723–729.
    [45]梅念,石东源,李银红.基于改进粒子群算法的继电保护定值优化[J].电力系统自动化,2006,30(16):72-77.
    [46] Chia-Feng J. A hybrid of genetic algorithm and particle swarm optimization for recurrent networkdesign[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2004:34(2):997–1006.
    [47] Welch R, Venayagamoorthy G K. A Fuzzy-PSO based controller for a grid independent photovoltaicsystem[C]. Swarm Intelligence Symposium,2007. SIS2007, IEEE,2007:227-233.
    [48] Reynolds P D, Duren R W, Trumbo M L, et al. FPGA implementation of particle swarm optimizationfor inversion of large neural network[C]. Proceedings on Swarm Intelligence Symposium,2005, SIS2005, IEEE,2005:389–392.
    [49]胡家声,郭创新,曹一家.基于扩展粒子群优化算法的同步发电机参数辨识[J].电力系统自动化,2004,28(6):32-35.
    [50] Kannan S, Slochanal S, Padhy N. Application and comparison of metaheuristic techniques togeneration expansion planning problem[J]. IEEE Transactions on Power Systems,2005,20(1):466–475.
    [51] Sensarma P S, Rahmani M, Carvalho A. A comprehensive method for optimal expansion planningusing particle swarm optimization[C]. Power Engineering Society Winter Meeting,2002. IEEE,2002,2:1317–1322.
    [52] Mary S, Kannan S, Rengaraj R. Generation expansion planning in the competitive environment[C].International Conference on Power System Technology,2004. PowerCon,2004,2:1546–1549.
    [53] Naka S, Genji T, Yura T, et al. A hybrid particle swarm optimization for distribution stateestimation[J]. IEEE Transactions on Power Systems,2003,2:60–68.
    [54] Fukuyama Y. State estimation and optimal setting of voltage regulator in distribution systems[C].Power Engineering Society Winter Meeting,2001. IEEE,2001,2:930–935.
    [55] EL-Dib A A, Youssef H K M, EL-Metwally M M, et al. Load flow solution using hybrid particleswarm optimization[C]. International Conference on Electrical, Electronic and Computer Engineering,2004. ICEEC '04.2004:742–746.
    [56] Abido M A. Optimal power flow using particle swarm optimization[J]. International Journal ofElectrical Power&Energy Systems,2002,24(7):563–571.
    [57]俞俊霞,赵波.基于改进粒子群优化算法的最优潮流计算[J].电力系统及其自动化学报,2005,17(4):83-88.
    [58] Koay C, Srinivasan D. Particle swarm optimization-based approach for generator maintenancescheduling[C]. Proceedings of Swarm Intelligence Symposium,2003. SIS '03.2003,4:67–173.
    [59] Miranda M, Win-Oo N. New experiments with EPSO—Evolutionary particle swarm optimization[C].Proceedings of Swarm Intelligence Symposium,2006. IEEE,2006,5:162–169.
    [60]张振宇,葛少云,刘自发.粒子群优化算法及其在机组优化组合中应用[J].电力自动化设备,2006,26(5):28-31.
    [61] Huang C, Huang C J, Wang M. A particle swarm optimization to identifying the ARMAX model forshort-term load forecasting[J]. IEEE Transactions on Power Systems,2005,20(2):1126–1133.
    [62]蒋秀洁,熊信艮,吴耀武.基于改进PSO算法的短期发电计划研究[J].电力自动化设备,2005,25(3):34-37.
    [63] Bao G Q, Zhang D, Shi J H, et al. Optimal design for cogging torque reduction of transverse fluxpermanent motor using particle swarm optimization algorithm[C]. Power Electronics and Motion ControlConference,2004, IPEMC2004. The4th International,2004,1:260–263.
    [64] Kiran R, Jetti S R, Venayagamoorthy G K. Online training of a generalized neuron using particleswarm optimization[C]. International Joint Conference on Neural Networks,2006. IJCNN '06.2006,7:5088–5095.
    [65]金义雄,程浩忠,严健勇,等.计及阻塞管理及剩余容量的并行粒子群电网规划方法[J].电网技术,2005,29(13):18-23.
    [66]符杨,徐自力,曹家麟.混合粒子群优化算法在电网规划中的应用[J].电网技术,2008,32(15):31-35.
    [67]胡家声,郭创新,叶彬.离散粒子群优化算法在输电网络扩展规划中的应用[J].电力系统自动化,2004,28(20):31-36.
    [68] Kennedy J. The behaviour of particles[C]. EP '98Proceedings of the7th International Conference onEvolutionary Programming VII, Springer-Verlag London, UK,1998.
    [69] Ozcan E, Mohan C K. Analysis of a simple particle swarm optimization system[C]. IntelligentEngineering Systems Through Artificial Neural Networks,1998:253-258.
    [70] Trelea I C. The particle swarm optimization algorithm: convergence analysis and parameterselection[J]. Information processing letters, Elsevier,2003,85(6):317-325.
    [71] van den Bergh F. Analysis of Particle Swarm Optimizers[D]. PhD thesis, Department of ComputerScience, University of Pretoria, Pretoria, South Africa,2002.
    [72] van den Bergh F, Engelbrecht A P. A study of particle swarm optimization on particle trajectories[J].Information Sciences,2006,176:937-971.
    [73] Kadirkamanathan V, Selvarajah R, Fleming P. Stability analysis of the particle dynamics in particleswarm optimizer[J]. IEEE Transactions on Evolutionary Computation,2006,10(3):245-255.
    [74] Poli R. Mean and Variance of the Sampling Distribution of Particle Swarm Optimizers DuringStagnation[J]. IEEE Transactions on Evolutionary Computation,2009,13(4):712-721.
    [75] Moore J, Chapman R. Application of particle swarm to multi-objective optimization[R]. Departmentof Computer Science and Software Engineering, Auburn University,1999.
    [76] Li X D. A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization[C].Genetic and Evolutionary Computation—GECCO2003, Lecture Notes in Computer Science,2003,2723:37-48.
    [77] Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multi objective problems[C].Proceedings of the2002ACM Symposium on Applied Computing, Madrid,Spain, ACM Press,2002:603-607.
    [78] Fieldsend J E, Singh S. A multiobjective algorithm based upon particle swarm optimization, anefficient data structure and turbulence[C]. Proceedings of the2002UK Workshop on ComputationalIntelligence, Birmingham,UK,2002:37-44.
    [79] Goh C K,Tan K C, Liu D S, et al. A competitive and cooperative co-evolutionary approach tomulti-objective particle swarm optimization algorithm design[J]. European Journal of Operational Research,2010(202):42–54.
    [80] Juan J D, Jose G N, Antonio J N, et al. Multi-Objective Particle Swarm Optimizers: An ExperimentalComparison[C]. Ehrgott M, et al.(Eds.): EMO2009, LNCS5467:495-509.
    [81] Eberhart R, Shi Y H. Tracking and optimizing dynamic systems with particle swarm[C]. The2001Congress on Evolutionary Computation, IEEE Press,2001:94-100.
    [82] Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments[C]. Proceedingsof the International Conference on Artificial Intelligence (ICAI2000), Las Vegas, Nevada, USA,2000:429-434.
    [83] Hu X H, Eberhart R. Adaptive particle swarm optimization: detection and response to dynamicsystems[C]. Proceedings of the2002Congress on Evolutionary Computation, CEC '02.2002:1666-1670.
    [84] Blackwell T M, Branke J. Multi-swarm optimization in dynamic environments[C]. Applications ofEvolutionary Computing Lecture Notes in Computer Science,2004,3005:489-500.
    [85] Li X. Adaptively choosing neighbourhood bests using species in a particle swarm optimizer formultimodal function optimization[C]. In Deb K., editor, Proceedings of Genetic and EvolutionaryComputation Conference,2004(LNCS3102):105-116.
    [86] Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization[J]. IEEE Transactions onSystems, Man, and Cybernetics-Part B,2009,39(6):1362-1381.
    [87] Parsopoulos K E, Vrahatis M N. Particle swarm optimization method for constrained optimizationproblems[J]. Intelligent Technologies-Theory and Applications: New Trends in Intelligent Technologies,2002,76:214-220.
    [88] Pulido G T, Coello C C. A constraint-handling mechanism for particle swarm optimization[C].Proceedings of the2004IEEE Congress on Evolutionary Computation, Portland, Oregon, IEEE Press,2004,(20-23):1396-1403.
    [89] Kennedy J. Small Worlds and Mega-Minds: Effects of Neighborhood Topology on Particle SwarmPerformance[C]. Proceedings of IEEE Congress on Evolutionary Computation (CEC1999),1999:1931-1938.
    [90] Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm [C]. Proceedingsof The World Multi-conference on Systemic, Cybernetics and Informatics, IEEE Press,1997:4104-4109.
    [91] Kenny J, Spears W M. Matching algorithm to problems: an experimental test of the particle swarm andsome genetic algorithm on the multimodal problem generator[C]. Proceedings of International Conferenceon Evolutionary Computation, Piscataway, N J: IEEE Press,1998:78-83.
    [92Eiben A, Aarts E, Van Hee K, et al. A unified approach on heuristic search[J]. Annals of OperationsResearch,1995,55:81-99.
    [93] Eiben A,Smith J E. Introduction to Evolutionary Computing[M]. Heidelberg: Springer,2003.
    [94] Hertz A, Kobler D. A framework for the description of evolutionary algorithms[J]. European Journalof Operational Research,2000,126:1-12.
    [95]段海滨等编著仿生智能计算.北京:科学出版社,2011.
    [96]邢文训,谢金星编著.现代优化计算方法.北京:清华大学出版社,2007.
    [97]玄光南,程润伟著,于歆杰,周根贵译.遗传算法与工程优化.北京:清华大学出版社,2006
    [98] Yao X, Liu Y, Lin G M. Evolutionary programming made faster. IEEE Transaction on EvolutionaryComputation,1999,3(2):81-102.
    [99]黄平,张尧,曾红.改进粒子群优化算法求解电力经济调度[J].华中科技大学学报,2010,38(1):121-124.
    [100]徐宗本编著.计算智能—模拟进化计算.北京:高等教育出版社,2006.
    [101] Salman A, Ahmad I, Al-Madani S. Particle swarm optimization for task assignment problem [J].Microprocessors and Microsystems,2002,26(8):363-371.
    [102] Hu X H, Eberhart R, Shi Y H. Swarm intelligence for permutation optimization: a case study ofn-queens problem[C]. IEEE Swarm Intelligence Symposium, Indianapolis,2003:243-246.
    [103] Eberhart R, Shi Y H. Guest Editorial Special Issue on Particle Swarm Optimization[J]. IEEETransactions on Evolution,2004,8(3):201-203.
    [104] Joseph E, Bonin, James G, et al. Matroid theory[M]. American mathematical Society,1995.
    [105]赖虹建编著.拟阵论[M].北京:高等教育出版社,2002.
    [106]Kennedy J, Eberhart R. A discrete binary version of the particle swarm algorithm[C].Proceedings of The World conference on Systemic, Cybernetics and Informatics, IEEE Press,1997:4104-4109.
    [107] Pang W, Wang K P, Zhou C G, et al. Fuzzy discrete particle swarm optimization for solving travelingsalesman problem [C]. In Proc.4th Int. Conf. Comput. Information Technol.(CIT),2004:796–800.
    [108] Clerc M. Discrete particle swarm optimization in New Optimization Techniques in Engineering[M].New York: Springer-Verlag,2004.
    [109]张长胜,孙吉贵,欧阳丹彤.一种自适应离散粒子群算法及其应用研究[J].电子学报,2009,37(2):299-304.
    [110] Nanbo Jin, Yahya Rahmat-Samii. Hybrid Real-Binary Particle Swarm Optimization (HPSO) inEngineering Electromagnetics[J]. IEEE Transactions on Antennas and Propagation,2010,58(12):278-300.
    [111] Yare Y, Venayagamoorthy G.K, Aliyu U O. Optimal generator maintenance Scheduling using amodified discrete PSO[J]. IET Gener.Transm. Distrib.,2008,2(6):834-846.
    [112] Shi X H, Liang Y C, Lee H P, et al. Particle swarm optimization-based algorithms for TSP andgeneralized TSP [J]. Inform. Process Lett.,2007,103(5):169–176.
    [113] Salam N, John G, Graham S, et al. Hybrid Particle Swarm Branch-and-Bound (HPB) Optimizer forMixed Discrete Nonlinear Programming[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part A:Systems and Humans,2008,38(6):1411-1424.
    [114] Wei-Neng Chen, Jun Zhang, Henry S H, et al. A Novel Set-Based Particle Swarm OptimizationMethod for Discrete Optimization Problems[J]. IEEE Transactions on Evolutionary Computation,2010,14(2):278-300.
    [115]黄平,张尧,于金杨.基于CNBPSO算法的需求侧资源计划[J].华南理工大学学报,2010,38(10):130-133,152.
    [116]刘建芹,贺毅朝,顾茜茜.基于离散微粒群算法求解背包问题研究[J].计算机工程与设计,2007,28(13):3189-3191.
    [117]张晓琴,黄玉清.基于禁忌搜索的启发式求解背包问题算法[J].电子科技大学学报,2005,34(3):359-362.
    [118] Stadler W. A survey of multicriteria optimization or the vector maximization problem[J]. Journal ofOptimization Theory and Application,1979,68:1-52.
    [119] Steuer R E. Multiple criteria optimization: Theory, Computation, and Application[M]. Wiley, NewYork,1986.
    [120] Gade P R. Multi-objective optimization: techniques and applications in chemical engineering. WorldScientific Publishing Company, Singapore,2009.
    [121]徐玖平,李军编著.多目标决策的理论与方法.清华大学出版社,北京,2005.
    [122] Zadeh L. Optimality and non-scalar-valued performance criteria[J]. IEEE Transactions on AutomaticControl,1963,8(4):59-60.
    [123]Abido M A. Two level of nondominated solutions approach to multi-objective particleoptimization[C]. Proceeding of The Genetic and Evolutionary Computation Conference, GECCO2007.New York: ACM press,2007:726-733.
    [124] Mostaghim S, Teich J. Strategies for finding good local guides in multi-objective particle swarmoptimization (MOPSO)[C]. In Proceedings of the IEEE Swarm Intelligence Symposium, SIS2003:26–33.
    [125] Toscano G., Coello C. Using Clustering Techniques to Improve the Performance of a Multi-objectiveParticle Swarm Optimizer[C]. In Deb K., et al.(eds.) Springer, Heidelberg,2004(LNCS),3102:225–237.
    [126] Sierra M R, Coello Coello C A. Improving PSO-based multi-objective optimization using crowding,mutation and dominance[C]. In: Coello Coello C A, Herna`ndez Aguirre A, Zitzler E.(eds.): EMO,Springer, Heidelberg,2005(LNCS),3410:505–519.
    [127] Alvarez-Beni`tez J E, Everson R M, Fieldsend J E. A MOPSO algorithm based exclusively on Paretodominance concepts[C]. In: Coello Coello, C.A., Hern`andez Aguirre, A., Zitzler, E.(eds.) EMO2005,Springer, Heidelberg,(2005(LNCS),3410:459–473.
    [128] Santana R A, Pontes M R, Bastos-Filho C J A. A Multiple Objective Particle Swarm OptimizationApproach using Crowding Distance and Roulette Wheel[C]. Ninth International Conference on IntelligentSystems Design and Applications,2009:237-242.
    [129]Tripathi P K, Sanghamitra B, Pal S K. Adaptive Multi-objective Particle Swarm OptimizationAlgorithm[C].2007IEEE Congress on Evolutionary Computation (CEC2007):2281-2288.
    [130] Liu D, Tan K C, Goh C K, et al. A multi-objective memetic algorithm based on particle swarmoptimization[J]. IEEE Trans. Syst., Man, Cybern. B, Cybern.,2007,37(1):42–50.
    [131] Deb K, Thiele L, Laumanns M, et al. Scalable multi-objective optimization test problems[C].Proceeding of the IEEE Congress on Evolutionary Computation, CEC2002:825-830.
    [132] Deb K, Jain S. Running performance metrics for evolutionary multi-objective optimization.Technical Report[R]. No.2002004, Kanpur: Indian Institute of Technology Kanpur,2002.
    [133] Zitzler E, Deb K, Thiele L. Comparison of multi-objective evolutionary algorithms: empiricalresults[J]. Evolutionary Computation,2000,8(2):173-195.
    [134] Whitley D, Rana S, Dzubera J, et al. Evaluating evolutionary algorithms[J]. Artificial Intelligence,1996,85:245-276.
    [135] Huband S, Hingston P, Barone L, et al. A review of multi-objective test problems and a scalable testproblem toolkit[J]. IEEE Transactions on Evolutionary Computation,2006,10(5):477-506.
    [136] Moayed D, Gary G Y. Cultural-Based Multi-objective Particle Swarm Optimization[J]. IEEETransactions on Systems, Man and Cybernetics-Part B: Cybernetics,2011,41(2):553-567.
    [137]黄平,于金杨,元泳泉.一种改进的小生境多目标粒子群算法[J].计算机工程,2011,37(18):1-3.
    [138] Ozcan E, Mohan C K. Particle swarm optimization: surfing the waves[C].In Proc.1999Congr. Evol.Comput., Piscataway, NJ: IEEE Service Center,1999:1939–1944.
    [139] Brandstatter B, Baumgartner U. Particle swarm optimization-mass spring system analogon[J]. IEEETrans. Magnetics,2002,38(2):997–1000.
    [140]马金龙等编著.信号与系统.科学出版社,北京,2010.
    [141] Iwasaki N, Yasuda K. Adaptive particle swarm optimization using velocity feedback[J]. Int. J.Innovative Comput., Inform. and Control,2005,1(3):369–380.
    [142] Campana E F, Fasano G, Pinto A. Dynamic system analysis and initial particles position in particleswarm optimization[C]. In Proc. IEEE Swarm Intell. Symp., Indianapolis, IN,2006.
    [143] Fernández J L, Martínez E, García Gonzalo. The PSO family: deduction, stochastic analysis andcomparison[j]. Swarm Intell,2009,3:245–273.
    [144] Jiang M, Luo Y P, Yang S Y. Stochastic convergence analysis and parameter selection of thestandard particle swarm optimization algorithm[J]. Information Processing Letters,2007,102:8–16.
    [145] Blackwell T M. Dynamic Search with Charged Swarms[C]. In: Proceedings of genetic andevolutionary computation conference,2002:19–26.
    [146] Blackwell T M. Particle swarms and population diversity[J]. Soft Comput,2005(9):793–802
    [147] Huang Ping, Zhang Yao, Li P C,et al. Transmission Network Planning Based on Multi-objectiveEvolutionary Algorithm of Transportation Theory[C]. Advances in Neural Networks–ISNN2009LectureNotes in Computer Science,2009,5552(2):601-610.
    [148]余炳辉,王金文,全先璋,等.求解水火电力系统短期发电计划的粒子群优化算法研究[J].水电能源科学,2005,23(6):84-87.
    [149]马飞,陈雪波,李小华.改进的粒子群算法在电力系统AGC中应用[J].控制工程,2005,12(S1):52-55.
    [150] El-Gallad A, El-Hawary M. Particle Swarm Optimizer for Constrained Economic Dispatch WithProhibited Operating Zones[C]. In:Canadian Conference on Electrical and Computer Engineering,Manitoba(Canada):2002:78-81.
    [151]刘自发,葛少云,余贻鑫.基于混沌粒子群优化方法的电力系统无功最优潮流[J].电力系统自动化,2005,29(7):53-57.
    [152]ABIDO M A. Optimal Design of Power System Stabilizers Using Particle SwarmOptimization[J].IEEE Trans on Energy Conversion,2002,17(3):406-413.
    [153]薛禹胜,罗运虎,李碧君等.关于可中断负荷参与系统备用的述评[J].电力系统自动化,2007,31(10):1-6.
    [154]张少华,刘刚,李渝曾.考虑提前通知的可中断负荷管理模型[J].电力系统及其自动化学报,2008,20(4):63-66.
    [155] Kirschen D S. Demand-side view of electricity markets [J]. IEEE Trans on Power Systems,2003,18(2):520-527.
    [156] Boisvert R N, Cappers P A, Neenan B. The benefits of customer participation in wholesale electricitymarkets [J]. The Electricity Journal,2002,15(3):41-51.
    [157]李海英,李渝曾,张少华.可中断负荷参与输电阻塞管理的模型与算法[J].电力系统自动化,2006,30(10):18-21.
    [158]周春明,江辉,何禹清等.可中断负荷参与阻塞管理的多目标模糊优化[J].电网技术,2008,30(9):27-32.
    [159] Jazayeri P, Schellenberg A, Rosehart W D, et al. A Survey of Load Control Programs for Price andSystem Stability[J]. IEEE Transactions on Power Systems,2005,20(3):1504-1509.
    [160] Majumdar S,.Chattopadhyay D, Jyoti Parikh. Interruptible Load Management Using Optimal PowerFlow Analysis [J]. IEEE Transactions on Power Systems,1996,11(2):715-720.
    [161] Bai J, Gooi H B, Xia L M, et al. A Probabilistic Reserve Market Incorporating Interruptible Load [J].IEEE Transactions on Power Systems,2006,21(3):1079-1087.
    [162] Huang K Y. Demand subscription services—An iterative dynamic programming for the substationsuffering from capacity shortage[J]. IEEE Transactions on Power Systems,2003,18(2):947–953.
    [163] Huang K Y, Chin H C, Huang Y C. A Model Reference Adaptive Control Strategy for InterruptibleLoad Management [J]. IEEE Transactions on Power Systems,2004,19(1):683-689.
    [164]沈林成,霍霄华,牛轶峰.离散粒子群优化算法研究现状综述[J].系统工程与电子技术,2008,30(10):1986-1994.
    [165]程浩忠主编.电力系统规划.中国电力出版社,北京,2008.
    [166]陈建华,李先允,邓东华等.粒子群优化算法在电力系统中的应用综述[J].继电器,2007,35(23):77-84.
    [167]张伯明,陈寿孙,严正著.高等电力网络分析.清华大学出版社,北京,2007.
    [168] Lawler G F著,张景肖译.随机过程导论.机械工业出版社,北京,2009.
    [169]王晓东编著.计算机算法设计与分析.电子工业出版社,北京,2007.
    [170]廖山涛著.微分动力系统的定性理论.科学出版社,北京,2010(1992).
    [171] Huang Ping, Zhang Yao, and Liu Yongqiang. The O(ε)-correction to boundary of stability region formulti-time scal power systems[C]. Third International Conference on Intelligent Computing, LNCS4681,2007(8):608-615.
    [172]黄平,张尧,刘永强等.多时间尺度电力系统稳定域边界校正法[J].华中科技大学学报,2009,37(1):130-132.
    [173] Huang Ping, Zhang Yao, Li Pengcheng, et al. Transmission Network Planning Based onMulti-objective Evolutionary Algorithm of Transportation Theory[C]. Advances in Neural Networks–ISNN2009Lecture Notes in Computer Science,2009,5552(2):601-610.
    [174]黄平,张尧.一种广义PSO模型的推导及收敛性分析[J].已投稿.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700