用户名: 密码: 验证码:
ICE1-like转录因子的克隆及其转化水稻的抗冷效果评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对寒地水稻冷害频发的特点及转录因子在植物对低温的反应中起着重要的调控作用,本研究:(1)从三种抗寒植物中分离了bHLH转录因子家族中与冷胁迫相关的三个ICE1-like基因,并进行了序列分析和功能预测。(2)分析了ICE1-like基因的组织及相应胁迫表达模式,对基因进行了原核表达,并利用酵母单杂交对其转录激活域进行了验证。(3)构建植物表达载体对水稻进行遗传转化,利用超表达ICE1-like基因的转基因水稻株系对所克隆基因进行了功能验证,对其在转基因水稻中的抗冷效果进行评价及冷反应通路的调控模式进行分析,以期获得在水稻冷害改良方面具有应用潜力的候选基因,为培育抗冷害水稻品种奠定理论基础。主要研究结果如下:
     (1)利用SON-PCR和RT-PCR技术从生菜中分离到一个ICE1-like基因,命名为LsICE1(获得基因登录号为HQ848932),其cDNA片段长1622bp,含有一个1497bp完整的开放阅读框,编码498个氨基酸;利用SON-PCR和RT-PCR技术从大白菜中分离到一个ICE1-like基因,命名为BcICE1(获得基因登录号为HQ902162),其cDNA片段长1591bp,含有一个1494bp完整的开放阅读框,编码498个氨基酸;利用电子克隆和RT-PCR技术从萝卜中分离到一个ICE1-like基因,命名为RsICE1(获得基因登录号为HQ891287),其cDNA片段长1375bp,含有一个1266bp完整的开放阅读框,编码421个氨基酸。LsICE1、BcICE1、RsICE1蛋白与拟南芥ICE1蛋白一级结构和二级结构极其相似,与其它植物ICE1-like家族蛋白的C末端区域一致性很高,并且具有高度保守的bHLH结构域、SUMO结合位点和核定位信号区。其中,LsICE1蛋白与葡萄的ICE1-like蛋白处于同一进化分枝;BcICE1蛋白与山嵛菜及盐芥菜的ICE1-like蛋白处于同一进化分枝;RsICE1蛋白与山嵛菜等十字花科的ICE1-like蛋白处于同一进化分枝。
     (2)组织表达分析表明,LsICE1、BcICE1、RsICE1基因在生菜、大白菜和萝卜的根、茎、叶中均有表达。其中,LsICE1基因在生菜幼苗叶的表达量最强,BcICE1基因在大白菜幼苗茎的表达量最强,而RsICE1基因在萝卜幼苗根的表达量最强。诱导表达分析表明,在低温(4℃)和高盐(200mM NaCl)胁迫处理的幼苗中,LsICE1、BcICE1、RsICE1基因表达量呈现是先上调后下降趋势,说明低温和高盐处理都能影响基因的表达。100μMABA胁迫处理能上调LsICE1、BcICE1基因表达量,但对RsICE1基因表达量影响较小。此外,7%PEG6000干旱脱水处理对LsICE1、BcICE1、RsICE1基因的表达量影响不大,说明三个基因对脱水胁迫不敏感。
     (3)构建了LsICE1、 BcICE1、 RsICE1基因原核表达载体pET32a-LsICE1、pET32a-BcICE1、pET32a-RsICE1,转化大肠杆菌BL21(DE3),筛选重组菌株,经IPTG诱导后,SDS-PAGE检测到大小与预测一致的特异蛋白产物。构建携带LsICE1、BcICE1、RsICE1基因转录激活载体进行酵母单杂交,酵母转化菌株可以在SD/-Trp平板上生长,并能被X-Gal染成蓝色,表明LsICE1、BcICE1、RsICE1基因可以激活酵母下游的报告基因表达,具有转录激活功能。
     (4)构建了LsICE1、BcICE1、RsICE1基因超表达载体,通过农杆菌介导法,将LsICE1、BcICE1、RsICE1基因导入单子叶模式植物水稻中,使LsICE1、BcICE1、RsICE1基因在水稻中超量表达。通过PCR、PCR-Southern和RT-PCR检测,共获得47株外源基因超表达的转基因水稻植株。其中,14株转LsICE1基因水稻植株,16株转BcICE1基因水稻植株,17株转RsICE1基因水稻植株。T_0代转基因水稻的生长速度比非转基因水稻慢,生育期延迟,转基因植株的株高、穗长、穗粒数、千粒重和结实率与非转基因植株有较大差异。
     (5) χ2测验结果表明,33个T_0代转基因植株自交种子(T_1代)均发生了潮霉素抗性分离。其中,13个植株种子的潮霉素抗感分离比均不符合3:1,目的基因可能是以非单拷贝单位点形式整合,20个植株种子潮霉素抗感分离比符合3:1,目的基因可能是以单拷贝单位点形式整合。
     (6)低温恢复生长法测定转基因株系在冷胁迫下的存活率,有11个株系较未转基因对照表现出明显的抗寒性(P<0.01)。11个转基因水稻株系存活率大小依次为:T_1L11>T_1L7>T_1L26>T_1L2>T_1L37>T_1L21>T_1L32>T_1L27> T_1L15>T_1L30>T_1L19。其中,转LsICE1基因抗寒水稻株系存活率>转BcICE1基因抗寒水稻株系存活率>转RsICE1基因抗寒水稻株系存活率。
     (7)在低温胁迫过程中,转基因株系的相对电导率和丙二醛含量积累速率明显低于非转基因对照。低温胁迫72h后,11个转基因抗寒水稻株系最终相对电导率大小依次为:T_1L19>T_1L27>T_1L30>T_1L32>T_1L15>T_1L2>T_1L21>T_1L26>T_1L7>T_1L11>T_1L37,均显著低于未转基因对照(P<0.01)。11个转基因抗寒水稻株系最终相对电导率增幅大小依次为:T_1L19>T_1L30>T_1L27>T_1L15>T_1L32>T_1L37>T_1L21>T_1L2>T_1L7>T_1L26>T_1L11,均低于未转基因对照增幅。其中,转RsICE1基因抗寒水稻株系相对电导率增幅>转BcICE1基因抗寒水稻株系相对电导率增幅>转LsICE1基因抗寒水稻株系相对电导率增幅。11个转基因抗寒水稻株系最终丙二醛含量大小依次为:T_1L19>T_1L30>T_1L27>T_1L15>T_1L32>T_1L21>T_1L37>T_1L2>T_1L7>T_1L11>T_1L26,均显著低于未转基因对照(P<0.01)。11个转基因抗寒水稻株系最终丙二醛增幅大小依次为:T_1L19>T_1L30>T_1L27>T_1L15>T_1L32>T_1L37>T_1L21>T_1L2>T_1L26>T_1L7>T_1L11,均低于未转基因对照增幅。其中,转RsICE1基因抗寒水稻株系丙二醛增幅>转BcICE1基因抗寒水稻株系丙二醛增幅>转LsICE1基因抗寒水稻株系丙二醛增幅。
     (8)低温胁迫下,LsICE1、BcICE1、RsICE1基因能促进转基因水稻脯氨酸大量合成。转基因抗寒水稻株系最终游离脯氨酸含量大小依次为:T_1L27>T_1L21>T_1L15>T_1L7>T_1L2>T_1L11>T_1L26>T_1L32>T_1L37>T_1L19>T_1L30,显著高于未转基因对照(P<0.01)。转基因抗寒水稻株系最终游离脯氨酸增幅大小依次为:T_1L27>T_1L2>T_1L15>T_1L21>T_1L7>T_1L11>T_1L26>T_1L30>T_1L32>T_1L37>T_1L19,高于未转基因对照增幅。其中,转RsICE1基因抗寒水稻株系脯氨酸增幅>转LsICE1基因抗寒水稻株系脯氨酸增幅>转BcICE1基因抗寒水稻株系脯氨酸增幅。
     (9) Southern blot分析结果显示,转LsICE1基因抗寒水稻株系(T_1L2、T_1L7和T_1L11)、转BcICE1基因抗寒水稻株系(T_1L15、T_1L19、T_1L21和T_1L26)和转RsICE1基因抗寒水稻株系(T_1L27、T_1L30、T_1L32和T_1L37)中的目的基因均是以单拷贝单位点形式整合,与χ2测验结果完全一致。Northern blot进一步分析结果显示,目的基因LsICE1、BcICE1、RsICE1基因在11个T_1代转基因抗寒水稻株系中能够正常表达。
     (10)利用实时定量PCR对转基因水稻冷胁迫转录因子OsDREB1F、OsDREB1B、OsDREB1A基因进行表达分析表明,在冷胁迫下,LsICE1、BcICE1基因对转基因水稻抗寒性的影响是依赖CBF/DREB1冷反应通路的,而RsICE1基因对转基因水稻抗寒性的影响是不依赖CBF/DREB1冷反应通路的。其中,LsICE1基因能够显著上调OsDREB1A基因的转录水平(P<0.05),而BcICE1基因能够显著上调OsDREB1F基因的转录水平(P<0.05)。
In view of chilling damages happening frequently for rice and the important regulationof transcription factors in plant responses to low temperature, the following studies hawe beencarried out in this study:(1) Three ICE1-like genes related cold stress, members of bHLHfamily genes, were isolated from three cold-resistance plants respectively, the proteinsequences encoded by genes were analyzed, and the protein functions were predicted.(2) Themodes of tissue expression and stress expression for ICE1-like genes were analyzed,prokaryotic expression of genes was conducted, and yeast-one-hybrid system was used tovalidate transactivation function regions of ICE1-like genes.(3) Constructing plant expressionvectors and transformation into rice, the transgenic rice lines with overexpression ofICE1-like genes were used to validate the function of the genes, and the cold-resistanceeffects and regulation modes of cold responsive pathways for the genes in transgenic ricewere evaluated and analyzed respectively, expecting to provide new candidate genes forimproving rice in cold resistance and the theoretical basis for breeding rice varieties with coldresistance. The main results are as follows:
     (1) One ICE1-like gene, designated as LsICE1(GenBank accession No. HQ848932), wasisolated from lettuce by single oligonucleotide nested PCR (SON-PCR) and reversetranscription-PCR (RT-PCR). Sequence analysis showed that the LsICE1cDNA fragmentlength was1622bp containing a full coding region of1497bp encoding498amino acidresidues. The other ICE1-like gene, designated as BcICE1(GenBank accession No.HQ902162), was isolated from Chinese cabbage by SON-PCR and RT-PCR. The full-lengthcDNA of BcICE1was1591bp with a1494bp open reading frame (ORF) encoding497aminoacid residues. Another ICE1-like gene, designated as RsICE1(GenBank accession No.HQ891287), was isolated from radish by in silicon cloning and RT-PCR. Sequence analysisshowed that the full-length cDNA of RsICE1was1375bp and contained a complete codingregion of1266bp, which encoded421amino acid residues. Sequence multialigmentdemonstrated that the primary structures and secondary structure of the LsICE1, BcICE1,RsICE1proteins were extremly similar to that of Arabidopsis thaliana. The C-terminal of deduced LsICE1, BcICE1, RsICE1proteins were high identity with other ICE1-like proteinsfrom different species and exhibited a typical bHLH domain, SUMO binding site and nuclearlocalization signal (NLS). The homology tree showed that LsICE1protein was at the sameevolutionary branch with ICE1-like protein of Vitis vinifera, BcICE1protein was at the sameevolutionary branch with ICE1-like proteins of Eutrema salsugineum and Thellungiellahalophila, and RsICE1protein was at the same evolutionary branch with ICE1-like proteins ofCruciferae plants, such as Eutrema salsugineum.
     (2) The results showed that LsICE1, BcICE1and RsICE1genes were expressedconstitutively in the examined tissues, such as the leaves, roots and stems of lettuce, Chinesecabbage and radish. LsICE1mRNA levels were dominant in leaves of lettuce seedling,BcICE1mRNA levels were dominant in stems of Chinese Cabbage seedling, while RsICE1gene mRNA levels were dominant in roots of radish seedling. Analysis of inductionexpression indicated that the mRNA levels of LsICE1, BcICE1, RsICE1genes were firstup-regulated then down-regulated in the seedlings under the low temperature stress (4°C) andhigh salt (200mM NaCl) treatments, which proved that both low-temperature and high salteffected the expression of genes. Under100μM ABA stress, the expression of LsICE1andBcICE1was up-regulated, but such stress had little effect on the expression of RsICE1gene.In addition, by time of exposure to the7%PEG6000dehydration stress, the expression ofLsICE1, BcICE1, RsICE1genes had little change observed, suggesting that the expression ofLsICE1, BcICE1, RsICE1genes was insensitive to dehydration stress.
     (3) The prokaryotic expression vectors for LsICE1, BcICE1, RsICE1genes respectively,pET32a-LsICE1, pET32a-BcICE1, pET32a-RsICE1, were constructed, then they weretransferred into E.coli BL21(DE3), recombined strains were screened, and special proteinproduct with the same molecular weight as prediction was detected by SDS-PAGE afterinduced by IPTG. Transcription activation expression vectors with LsICE1, BcICE1, RsICE1gene respectively were constructed to carry out yeast-one-hybridization. The recombinantyeast strains could grow on SD/-Trp plate, and could be dyed blue by X-Gal, suggesting thatLsICE1, BcICE1, RsICE1genes could activate the expression of downstream reporter gene ofyeast, and owned the function of transcriptional activation.
     (4) The over-expression vectors of LsICE1, BcICE1, RsICE1genes were constructedrespectively, then LsICE1, BcICE1, RsICE1genes were transferred into rice asmonocotyledonous model plant by Agrobacterium mediated genetic transformation system,leading to over-expression of LsICE1, BcICE1, RsICE1genes in rice. A total of47transgenicrice plants with over-expression exogenous genes were obtained by the PCR, PCR-Southernand RT-PCR. detection. Among these plants, there were14transgenic rice plants with LsICE1gene,16transgenic rice plants with BcICE1gene,17transgenic rice plants with RsICE1gene,respectively. T_0transgenic rice plants grew slower, and had a delay of growth anddevelopment period than non-transgenic rice plants. The plant height, panicle length, numberof grains per panicle, seed setting rate and1000-grain weight of transgenic rice plants hadsignificant differences from those of non-transgenic plants.
     (5) χ~2test indicated that the Hyg-resistance segregation occurred in self-pollinated seeds(T_1generation) of33T_0rice plants. Among them, the Hyg-resistance segregations of13transgenic rice lines were not in accord with3:1which showed that target genes weretransformed to rice by not a single copy and a single site, while the Hyg-resistancesegregations of20rice lines were3:1, suggesting that target genes were transformed to riceby a single copy and a single site.
     (6) Low temperature recovering growth method was used to test the survival rates oftransgenic rice lines under cold stress,11transgenic rice lines showed obvious cold resistancethan non-transgenic rice lines (P<0.01). The survival rates of them were as follows:T_1L11>T_1L7>T_1L26>T_1L2>T_1L37>T_1L21>T_1L32>T_1L27>T_1L15>T_1L30>T_1L19. In addition,the transgenic rice lines with LsICE1gene had higher survival rates than the transgenic ricelines with BcICE1gene, while the transgenic rice lines with BcICE1gene had higher survivalrates than transgenic rice lines with RsICE1gene.
     (7) Under low temperature stress treatment, compared to control, the transgenic lines hadlower accumulation rate of relative conductivity and malondialdehyde (MDA) content. Afterlow temperature stress for72h, the final relative electric conductivity of11transgenic ricelines with cold resistance was as follows: T_1L19>T_1L27>T_1L30>T_1L32>T_1L15>T_1L2>T_1L21>T_1L26>T_1L7>T_1L11>T_1L37, which was significantly lower than that of the non-transgenic control (P<0.01). The final relative electric conductivity increase amplitude of11transgenicrice lines with cold resistance was as follows: T_1L19>T_1L30>T_1L27>T_1L15>T_1L32>T_1L37>T_1L21>T_1L2>T_1L7>T_1L26>T_1L11, which was significantly lower than that of thenon-transgenic control. The transgenic rice lines with RsICE1gene had higher relative electricconductivity increase amplitude than the transgenic rice lines with BcICE1gene, while thetransgenic rice lines with BcICE1gene had higher relative electric conductivity increaseamplitude than transgenic rice lines with LsICE1gene.The final malonyldialdehyde (MDA)content of11transgenic plants with cold resistance was as follows: T_1L19>T_1L30>T_1L27>T_1L15>T_1L32>T_1L21>T_1L37>T_1L2>T_1L7>T_1L11>T_1L26, which was significantly lowerthan that of the non-transgenic control (P<0.01). The final MDA increase amplitude of11transgenic rice lines with cold resistance was as follows: T_1L19>T_1L30>T_1L27>T_1L15>T_1L32>T_1L37>T_1L21>T_1L2>T_1L26>T_1L7>T_1L11, which was significantly lower than that ofthe non-transgenic control. The transgenic rice lines with RsICE1gene had higher MDAincrease amplitude than the transgenic rice lines with BcICE1gene, while the transgenic ricelines with BcICE1gene had higher MDA increase amplitude than transgenic rice lines withLsICE1gene.
     (8) Under low temperature stress, LsICE1, BcICE1, RsICE1gene promoted the masssynthesis of proline in transgenic plants. The final free proline content of11transgenic ricelines with cold resistance was as follows: T_1L27>T_1L21>T_1L15>T_1L7>T_1L2>T_1L11>T_1L26>T_1L32>T_1L37>T_1L19>T_1L30, which was significantly higher than that of the non-transgeniccontrol (P<0.01). The final free proline content increase amplitude of11transgenic rice lineswith cold resistance was as follow: T_1L27>T_1L2>T_1L15>T_1L21>T_1L7>T_1L11>T_1L26>T_1L30>T_1L32>T_1L37>T_1L19>T_1L19, which was significantly higher than that of thenon-transgenic control. The transgenic rice lines with RsICE1gene had higher prolineincrease amplitude than the transgenic rice lines with LsICE1gene, while the transgenic ricelines with LsICE1gene had higher MDA increase amplitude than transgenic rice lines withBcICE1gene.
     (9) Southern blot analysis showed that the target genes of transgenic rice lines withLsICE1gene (T_1L2, T_1L7, T_1L11), transgenic rice lines with BcICE1gene (T_1L15, T_1L19, T_1L21, T_1L26) and transgenic rice lines with RsICE1gene (T_1L27, T_1L30, T_1L32, T_1L37)were transformed to rice by a single copy and a single site, which was completely in accordwith the results of χ2test. Northern blot analysis further indicated that LsICE1, BcICE1,RsICE1genes were able to express normally in11T_1rice lines.
     (10) Real time quantitative RT-PCR was used to analyze the expression levels of coldstress-inducible transcription factors, OsDREB1F, OsDREB1B and OsDREB1A genes, intransgenic rice lines. The expression analysis of OsDREB1F, OsDREB1B and OsDREB1Agenes showed that the effects of LsICE1, BcICE1genes on the cold resistance of transgenicrice lines were dependent on CBF/DREB1cold responsive pathway, but the effect ofRsICE1genes on the cold resistance of transgenic rice lines was independent onCBF/DREB1cold responsive pathway under the cold stress. In addition, LsICE1gene wasable to upregulate significantly the transcriptional levels of OsDREB1A gene (P<0.05), whileBcICE1gene was able to upregulate significantly the transcriptional levels of OsDREB1Fgene (P<0.05).
引文
1. Thomashow M F.1999. Plant cold acclimation: freezing tolerance genes and regulatory. Annual Reviewof Plant Physiology and Plant Molecular Biology,50:571-599.
    2. Guy C L.1990. Cold acclimation and freezing stress tolerance: Role of protein metabolism. AnnualReview of Plant Physiology and Plant Molecular Biology,41:187-223.
    3. Knight H, Veale E L, Warren G J, Knight M R.1999. The sfr6mutation in Arabidopsis suppresseslow-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell,11:875-886.
    4.刘强,张贵友,陈受宜.2000.植物转录因子的结构与调控作用.科学通报,45(14):1465-1474.
    5. Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M.2000. Arabidopsis ethylene-responsiveelement binding factors act as transcriptional activators or repressors of GCC box-mediated geneexpression. Plant Cell,12:393-404.
    6. Gutterson N, Reuber T L.2004. Regulation of disease resistance pathways by AP2/ERF transcriptionfactors. Curr Opin Plant Biol,7:465-471.
    7. Feng J X, Liu D, Pan Y, Gong W, Ma L G, Luo J C, Deng X W, Zhu Y X.2005. An annotation update viacDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmentalresponsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol Biol,59:853-868.
    8. Riechmann J L, Meyerowitz E M.1998. The AP2/EREBP family of plant transcription factors. BiolChem,379:633-646.
    9. Gu Y Q, Wildermuth M C, Chakravarthy S, Loh Y T, Yang C, He X, Han Y, Martin G B.2002. Tomatotranscription factors pti4, pti5, and pti6activate defense responses when expressed in Arabidopsis. PlantCell,14:817-831.
    10. Singh K, Foley R C, Onate-Sanchez L.2002. Transcription factors in plant defense and stress responses.Curr Opin Plant Biol,5:430-436.
    11. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y,Hayami N, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S.2004.Solution structure of the B3DNA binding domain of the Arabidopsis cold-responsive transcriptionfactor RAV1. Plant Cell,16:3448-3459.
    12. Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K.2002. DNA-bindingspecificity of the ERF/AP2domain of Arabidopsis DREBs, transcription factors involved indehydration-and cold-inducible gene expression. Biochemical and Biophysical ResearchCommunications.290:998-1009.
    13. Yamaguchi-Shinozaki K, Shinozaki K.1994. A novel cis-acting element in an Arabidopsis thalianagene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell,6:251-264.
    14. Baker S S, Wilhem K S, Thomashow M F.1994. The50-region of Arabidopsis thaliana cor15a hascis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant MolecularBiology,24:701-713.
    15. Guiltinan M J, Mareotte W R, Quatrano R S.1990. A plant leucine zipper protein that recognizes anabscisic acid response element. Science,250:267-271.
    16. Stockinger E J, Gilmour S J, Thomashow M F.1997. Arabidopsis thaliana CBF1encodes an AP2domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNAregulatory element that stimulates transcription in response to low temperature and water deficit.Proceedings of the National Academy of Sciences of the United States of America,94:1035-1040.
    17. Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F.1998. Lowtemperature regulation of the Arabidopsis CBF family of AP2transcriptional activators as an early stepin cold-induced COR gene expression. Plant Journal,16:433-442.
    18. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K.1998. Twotranscription factors, DREB1and DREB2, with an EREBP/AP2DNA binding-domain separate twocellular signal-transduction pathways in drought-and low-temperature-responsive gene expression,respectively, in Arabidopsis. Plant Cell,10:1391-1406.
    19. Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K.2002. DNA-bindingspecificity of the ERF/AP2domain of Arabidopsis DREBs, transcription factors involved indehydration-and cold-inducible gene expression. Biochem Biophys Res Commun,290(3):998-1009.
    20. Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K,Yamaguchi-Shinozaki K.2003. OsDREB genes in rice, Oryza sativa L., encode transcription activatorsthat function in drought-, high-salt-and cold-responsive gene expression. The Plant Journal,33:751-763.
    21. Tian X H, Li X P, Zhou H L, Zhang J S, Gong Z Z, Chen S Y.2005. OsDREB4Genes Rice EncodeAP2-Containing Proteins that Bind Specifically to the Dehydration Responsive Element. JournalofIntegrative Plant Biology,47(4):467-476.
    22. Wang Q Y, Guan Y C, Wu Y R, Chen H L, Chen F, Chu C C.2008. Overexpression of a riceOsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice.Plant Mol Biol,67:589-602.
    23. Chen J Q, Dong Y, Wang Y J, Liu Q, Zhang J S, Chen S Y.2003. An AP2/EREBP-typetranscription-factor gene from rice is cold-inducible and encodes a nuclear-localized protein. TheorAppl Genet,107:972-979.
    24. Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P.2008. Over-expression of OsDREB genes lead toenhanceddrought tolerance in rice. Biotechnol Lett,30:2191-2198.
    25. Xue G P.2002. An AP2domain transcription factor HvCBF1activates expression of cold-responsivegenes in barley through interaction with a (G/a)(C/t)CGAC motif. Bioehim Biophys Aeta,1577(1):63-72.
    26.王呈玉,翟凤艳,张明哲,吕世友,李彦舫.2009.短芒大麦DREB1转录因子的克隆与特性分析.西北农林科技大学学报(自然科学版),37(7):59-66.
    27. Shen Y G, Zhang W K,He S J,Zhang J S,Liu Q,Chen S Y.2003. An EREBP/AP2.type protein inTriticum aestivum was a DRE-binding transcription factor induced by cold,dehydration and ABAstress.Theor appl genet,106:923-930.
    28. Chen M, Wang Q Y, Cheng G X, Xu Z S, Li L C, Ye X G, Xia L Q, Ma Y Z.2007. GmDREB2, asoybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenicplants. Biochem Biophys Res Cornrnun,353(2):299-305.
    29.谢永丽,王自章,刘强,张淑.2005.草坪草狗牙根中抗逆基因BeDREB的克隆及功能鉴定.中国生物化学与分子生物学报,21(4):521-527.
    30.刘卫群,冯锋,郭红祥,陈红歌,赵同金扪,周海梦.2008. DREBlA类转录调控域中对转录激活功能起关键作用的氨基酸,24(2):134-14l.
    31.牛一丁,哈斯阿古拉,张丽,扈廷茂.2008.紫花苜蓿逆境胁迫诱导相关转录因子MsDREB1基因克隆与分析.植物生理学通,44(3):454-458.
    32.蒋芳玲,侯喜林,史公军,崔秀敏.2007.不结球白菜BrCBF基因cDNA全序列克隆及结构特征分析.南京农业大学学报,30(2):18-22.
    33.陈暄,房婉萍,邹中伟,王玉花,成浩,黎星辉.2009.茶树冷胁迫诱导抗寒基因CBF的克隆与表达分析.茶叶科学,29(1):53-59.
    34. Qin F, Li J, Zhang G Y, Zhao J, Chen S Y, Liu Q.2003. Isolation and structural analysis ofDREB-binding transcription factor from maize (Zea mays L.). Acta Botanic Sinica,45(3):331-339.
    35.曾会明,王天祥,王华芳,尹伟伦,夏新莉.2004.白腊DREB基因克隆中简并引物的设计.生物技术通讯,15(4):342-345.
    36.程汉,安泽伟,黄华孙.2005.巴西橡胶树CBF1基因的克隆和序列分析.热带作物学报,26(3):50-55.
    37. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K.1999. Improving plant drought, salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor. NatureBiotechnology,17:287-291.
    38. Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F.2000. Overexpression of theArabidopsis CBF3transcriptional activator mimics multiple biochemical changes associated with coldacclimation. Plant Physiology,124:1854-1865.
    39. Stockinger E J, Gilmour S J, Thomashow M F.1997. Arabidopsis thaliana CBF1encodes an AP2domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNAregulatory element that stimulates transcription in response to low temperature and water deficit.Proceedings of the National Academy of Sciences of the United States of America,94:1035-1040.
    40. Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F.1998. ArabidopsisCBF1overexpression induces COR genes and enhances freezing tolerance. Science,280:104-106.
    41. Haake V, Cook D, Riechmann J, Pineda O, Thomashow M F, Zhang J Z.2002. Transcription factorCBF4is a regulator of drought adaptation in Arabidopsis. Plant Physiology,130(2):639-648.
    42. Hsieh T H, Lee J T, Chiu L H, Charng Y Y, Wang Y C, Chan M T.2002a. Heteorlogous expression ofthe Arabidopsis CBF1gene confers elevated tolerance to chilling and oxidative stresses in transgenictomato. Plant Physiology,129:1086-1094.
    43. Hsieh T H, Lee J T, Charng Y Y, Chan M T.2002b. Tomato plants ectopically expressing ArabidopsisCBF1show enhanced resistance to water deficit stress. Plant Physiology,130:618-626.
    44. Pellegrineschi A, Reynolds M, Pacheco M, Brito R M, Almeraya R, Yamaguchi-Shinozaki K,Hoisington D.2004. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A genedelays water stress symptoms under greenhouse conditions. Genome,47:493-500.
    45. Oh S J, Song S I, Kim Y S, Jang H J, Kim S Y, Kim M, Kim Y K, Nahm B H, Kim J K.2005.Arabidopsis CBF3/DREB1A and ABF3in transgenic rice increased tolerance to abiotic stress withoutstunting growth. Plant Physiology,138:341-351.
    46. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K.2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsivegene expression in transgenic rice. Plant and cell physiology,41:41-153.
    47. Jaglo K R, Kleff S, Amundsen K L, Zhang X, Haake V, Zhang J Z, Deits T, Thomashow M F.2001.Components of the Arabidopsis C-Repeat/Dehydration-Responsive Element Binding Factorcold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology,127:910-917.
    48.刘荣梅,李凤兰,胡国富,徐永清,魏琪,胡宝忠.2010.低温胁迫转CBF3基因烟草生理生化响应.作物杂志,3:37-39.
    49.吴关庭,郎春秀,胡张华,陈笑芸,王伏林,金卫,陈锦清.2006.核农学报,20(3):169-173.
    50.包永霞,李雪,满达,韩烈保.2011.转DREB1A基因多年生黑麦草T1代萌发期耐盐性研究.草业科学,28(18):1440-1444.
    51.于洋,吴萍,李春水,洪波.2011.转DREB1A基因地被菊耐旱节水性.东北林业大学学报,39(8):33-39.
    52.吴琰,董静,郭宝林,鲁韧强,金万梅.2007.转CBF1基因地被石竹的抗寒性评价.中国农学通报,23(5):59-62.
    53. Yamaguchi-Shinozaki K, Shinozaki K.2006. Transcriptional regulatory networks in cellular responsesand tolerance to dehydration and cold stresses. Annual review of plant biology,57:781-803.
    54. Xiong L, Schumaker K S, Zhu J K.2002. Cell signaling during cold, drought, and salt stress. Plant cell,14:165-183.
    55. Shinozaki K, Yamaguchi-Shinozaki, Seki M.2003. Regulatory network of gene expression in thedrought and cold stress responses. Current opinion in plant biology,6:410-417.
    56. Zhang J Z, Creelman R A, Zhu J K.2004. From laborytory to field. Using information fromArabidopsis to engineer salt, cold, and drought tolerance in crops. Plant physiology,135:1-7.
    57. Llorente F, Oliveros J C, Martínez-Zapater J M, Salinas J.2000. A freezing-sensitive mutant ofArabidopsis, frs1, is a new aba3allele. Planta,211(5):648-55.
    58. Li C, Puhakainen T, Welling A, Viher-Aarnio A, Ernstsen A, Jullttila O, Heino P, Palva E T.2002.Cold acclimation insilver birch (Betula Pendula). Development of freezing tolerance in different tissuesand elimatic ecotypes. Physiol Plant,116:478-48.
    59. Li C, Jullttila O, Heino P, Palva E T.2003. Different responses of northern and southern ecotypes ofBetula pendula to exogenous ABA application. Tree Physiology,23:481-487
    60. Choi H I, Hong J H, Ha J O, Kang J Y, Kim S Y.2000. ABFs, a Family of ABA-responsive ElementBinding Factors. The Journal of biological,275(3):1723-1730.
    61. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K.2000. Proceedings of theNational Academy of Sciences of the United States of America,97(21):11632-11637.
    62. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K.2003. Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling. Plantcell,15:63-78.
    63. Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X, Agarwal M, Zhu J K.2003. ICE1: a regulator ofcold-induced transcriptome and freezing tolerance in Arabidopsis. Genes&Development,17:1043-1054.
    64.林元震,张志毅,刘纯鑫,郭海,朱保庆,陈晓阳.2007.甜杨抗冻转录因子ICE1基因的in silico克隆及其分析.分子植物育种,5(3):424-430.
    65. Badawi M, Reddy Y V, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M.2008. Structure andfunctional analysis of wheat ICE (Inducer of CBF Expression) genes. Plant Cell Physiol,49(8):1237-1249.
    66.轩春雷,肖向文,李晓波,祝建波.2010.盐芥ICE1转录因子的克隆及生物信息学分析.生物技术通报,11:108-114.
    67. Lee B H, Henderson D A, Zhu J K.2005. The Arabidopsis cold-responsive transcriptome and itsregulation by ICE1, The Plant Journal,17:3155-3175.
    68. Huang J Q, Sun Z H.2005. Agrobacterium-mediated transfer of Arabidopsis ICEl gene into lemon(Citrus Limon L.). Agricultural Sciences in China,4(9):714-720.
    69. Miura K, Jin J B, Lee J, Hasegawa P M.2007. SIZ1-mediated sumoylation of ICE1controlsCBF3/DREB1A expression and freezing tolerance in Arabidopsis. The Plant Cell,19:1403-1414.
    70.郑银英,崔百明,常明进,彭明.2009.转拟南芥ICE1基因增强烟草抗寒性的研究.西北植物学报,29(1):75-79.
    71.张玉,蒋欣梅,于欣宏.2010. ICE1基因表达载体的构建及对番茄的转化.中国蔬菜,18:27-33.
    72. Liu L Y, Duan L S, Zhang J C, Zhang Z C, Mi G Q, Ren H Z.2010. Cucumber (Cucumis sativus L.)over-expressing cold-induced transcriptome regulator ICE1exhibits changed morphological charactersand enhances chilling tolerance. Scientia Horticulturae,124:29-33.
    73. Li F, Guo S Y, Zhao Y A, Chen D Z, Chong K, Xu Y Y.2010. Overexpression of a homopeptiderepeat-containing bHLH protein gene (OrbHLH001) from Dongxiang Wild Rice confers freezing andsalt tolerance in transgenic Arabidopsis. Plant Cell Reports29:977-986.
    74. Dong C H, Agarwal M, Zhang Y, Xie Q, Zhu J K.2006. The negative regulator of plant cold responses,HOS1, is a RING E3ligase that mediates the ubiquitination and degradation of ICE1. Proceedings ofthe National Academy of Sciences of the United States of America,103:8281-8286.
    75. Wan B, Lin Y, Mou T.2007. Expression of rice Ca2+-dependent protein kinases (CDPKs) genes underdifferent environmental stresses. Febs Lett,581:1179-1189.
    76. Martin M L, Busconi L.2001. A rice membrane-bound calcium dependent protein kinase is activated inresponse to low temperature. Plant Physiol,125:1442-1449.
    77. Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K.2000. Various abiotic stresses rapidlyactivate Arabidopsis MAP kinase ATMPK4and ATMPK6. Plant Journal,24:655-665.
    78. Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T.2005.Abscisic acid-activated SNRK2protein kinases function in the gene-regulation pathway of ABA signaltransduction by phosphorylating ABA response element-binding factors. Plant Journal,44:939-949.
    79. Yuasa T, Tomikubo Y, Yamauchi T, Inoue A, Iwaya-Inoue M.2007. Environmental stress activates atomato SNF1-related protein kinase2homolog, SlSnRK2C. Plant Biotechnol,24:401-408.
    80. Anand A, Trick H N, Gill B S, Muthukrishnan S.2003. Stable transgene expression and random genesilencing in wheat.1(4):241-251.
    81. Kang T J, Kwon T H, Kim T G, Loc N H, Yang M S.2003. Comparing constitutive promoters usingCAT activity in transgenic tobacco plants. Mol Cells,16(1):117-22.
    82.侯文胜,郭三堆,路明.2002. cry1a基因小麦高效表达载体的构建.西北农林科技大学学报,30(6):121-124.
    83.刘根齐,李秀丽,杨春玲,陈钟,赵世民.2005.不同调控序列控制下的GUS基因在水稻和毛白杨愈伤组织中的瞬时表达.植物生理与分子生物学学报,31(3):327-330.
    84. Wang J L, Jiang J, Oard J H.2000. Structure, expression and promoter activity of two polyubiquitingenes from rice. Plant Science,156(2):201-211.
    85.郭殿京,傅荣昭,李文彬,陈颖,张晓东,张利明,孙勇如.1999.小麦中外源基因瞬间表达调控研究及兔防御素(NP2l)基因的转化.遗传学报,26(2):168-173.
    86. Genschik P, Marbach J, Uze M, Feuerman M, Plesse B, Fleck J.1994. Structure and promoter activityof a stress and developmentally regulated polyubiquitin-encoding gene of Nicotiana Tabacum. Gene,148(2):195-202.
    87. Liu D, Oard S V, Oard J H.2003. High transgene expression levels in sugarcane (Saccharumofficinarum L.) driven by the rice ubiquitin promoter RUBQ2.165(4):743-750.
    88.谢伟,乐超银.2007.泛素启动子在转基因植物中的应用.三峡大学学报,29(2):176-179.
    89. Beers E P, Moreno T N, Callis J.1992. Subcellular localization of ubiquitin and ubiquitinated proteinsin Arabidopsis thaliana. Biol Chem,267:15432-15439.
    90. Bruce W B, Quail P H.1990. Cis-acting elements involved in photoregulation of an oat phytochromepromoter in rice. Plan Cell,2(11):1081-1089.
    91. Norris S R, Meye S E, Callis J.1993. The intron of Arabidopsis Thaliana polyubiquitin genes isconserved in loccation and is a quantiandtative determinant of chimeric gene expression. Plant MolBiol,21(5):895-906.
    92. Garbarino J E, Belknap W R.1994. Isolation of a ubiquitin ribosomal protein gene (ubi3) from potatoand expression of its promoter in transgenic plants. Plant Mol Biol,24(1):119-127.
    93. Christensen A H, Quail P H.1996. Ubiquitin promoter based vectors for high level expression ofselectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res,5(3):213-218.
    94. Binet M N, Lepetit M, Weil J H, Tessier L H.1991. Analysis of a sunflower polyubiquitin promoter bytransient expression. Plant Sci,79(1):87-94.
    95. Causing K, Jensen C B.1990. Two ubiqutin-long-tail fusion genes arranges as closely spaced directrepeats in barely. Gene,94(2):165-171.
    96. Hoffman N E, Ko K, Milkowski D, Pichersky E.1991. Isolation and characterization of tomato cDNAand genomic clones encoding the ubiquitin gene ubi3. Plant Mol Biol,17(5):1189-1201.
    97.郭志鸿,王汉宁,陶玲,张金文,白斌,陈正华.2004. ubi启动子驱动的花生芪合酶基因表达载体的构建及玉米遗传转化初报.甘肃农业大学学报,39(2):117-123.
    98.徐子勤,龚莉桂,黄萱,张永彦,高丽美.2004.采用玉米Ubi1启动子获得低拷贝转基因玉米植株.生物工程学报,20(1):119-125.
    99.杨振泉,刘巧泉,潘志明,焦新安.2004.根癌农杆菌介导的转新城疫病毒融合蛋白基因水稻植株的获得.生物技术通讯,15(2):128-130.
    100.王闵霞,马欣荣,王天山,谭红.2006.染色体步行PCR技术.应用与环境生物学报,12(3):427-430.
    101. Antal Z, Rascle C, Fevre M, Bruel C.2004. Single oligonucleotide nested PCR: a rapid method for theisolation of genes and their flanking regions from expressed sequence tags. Current Genetics,46:240-246.
    102.邓洪渊,王闵霞,孙雪文,马欣荣,曹婷婷,谭红.2006.一种改进的SON-PCR基因扩增方法.应用与环境生物学报,12(6):857-860.
    103. Zhou J, Li Fei, Wang J L, Ma Y, Chong K, Xu Y Y.2009. Basic helix-loop-helix transcription factorfrom wild rice (OrbHLH2) improves toleranceto salt-and osmotic stress in Arabidopsis. Journal ofPlant Physiology,166:1296-1306.
    104. Nakamura J, Yuasa T, Huong T T, Harano K, Tanaka S, Iwata T, Phan T, Iwaya-Inoue M.2011. Ricehomologs of inducer of CBF expression (OsICE) are involved in cold acclimation. PlantBiotechnology,28:303-309.
    105. Jiang F L, Wang F, Wu Z, Li Y, Shi G J, Hu J D, Hou X L.2011. Components of the Arabidopsis CBFcold responsive pathway are conserved in non-heading Chinese Cabbage. Plant Molecular BiologyReporter,29:525-532.
    106.林元震;郭海;刘纯鑫;陈晓阳.2011.赤桉抗寒转录因子ICE1基因的分子克隆与表达分析.植物生理学报,47(5):488-494.
    107.叶玲,刘建伟,刘静.2003.酿酒酵母感受态细胞的低温保存及酵母菌落PCR-快速筛选鉴定.生物化学与生物物理进展,30(6):956-959.
    108.王荣,李红菊.2007.半定量RT-PCR法在检测基因表达水平中的应用.阜阳师范学院学报(自然科学版),24(1):49-52.
    109.高海波,张拴林,陈燕红.2008.半定量RT-PCR在基因表达方面的应用.畜禽业,226:34-36.
    110.陈名红,陈毅坚,叶艳青,苏源,李成云.2009.用半定量RT-PCR法分析基因表达水平的影响因素,贵州农业科学,37(8):28-30.
    111.张丽娜,牛吉山,于玲.2005.用半定量RT-PCR方法分析小麦TaMlo-A1c基因的表达.西北植物学报,25(7):1368-1371.
    112.石艳丽,郭学平,王凤山,凌沛学.2005.半定量RT-PCR法测定链球菌透明质酸合酶mRNA的水平.食品与药品,7(2A):22-24.
    113.陈昕,王保莉,曲东,张燕.2006.小麦硫转运蛋白基因半定量RT-PCR检测方法的建立.西北植物学报,26(2):0309-0313.
    114.胡迎利,徐春兰,汪以真.2006.半定量RT-PCR法分析猪肝脏中铜锌超氧化物歧化酶mRNA表达水平.中国兽药杂志,40(4):20-24.
    115. Hiei Y, Ohta S, Komar T, Kumashiro T.1994. Efficient transformation of rice (Oryza sativa L.)mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal,6(2):271-282.
    116. Hiei Y, Komari T, Kubo T.1997. Transformation of rice mediated by Agrobacterium tumefaciens.Plant Molecular Biology,35:205-218.
    117. Xiang D J, Hu X Y, Zhang Y, Yin K D.2008. Over-Expression of ICEl Gene in Transgenic RiceImproves Cold Tolerance. Rice Science,15(3):173-178.
    118.向殿军,张瑜,殷奎德.2007.农杆菌介导的转ICE1基因提高水稻的耐寒性.中国水稻科学,21(5):482-486.
    119.向殿军,满丽莉,殷奎德.2008.拟南芥ICE1基因转化水稻的进一步研究.生物技术通报,(6):87-96.
    120. Baba A, Hasezawa S, Syōno K.1986. Cultivation of Rice Protoplasts and Their TransformationMediated by Agrobacterium Spheroplasts. Plant and cell physiology,27(3):463-471.
    121. Raineri D M, Bottino P, Gordon M P, Nester E M.1990. Agrobacterium-Mediated Transformation ofRice (Oryza sativa L.). Nature Biotechnology,8:33-38.
    122.李宝健,欧阳学智,许耀.1990.应用农杆菌Ti质粒系统将外源基因转入籼稻细胞研究.中国科学(B辑),2:145-149.
    123. Chan M T, Lee T M, Chang H H.1992. Transformation of Indica Rice (Oryza sativa L.) Mediated byAgrobacterium tumefaciens. Plant Cell Physiol,33(5):577-583.
    124. Chan M T, Chang H H, Ho S L, Tong W F, Yu S M.1993. Agrobacterium-mediated production oftransgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene. PlantMolecular Biology,22(3):491-506.
    125. Rashid H, Yokoi S, Toriyama K, Hinata K.1996. Transgenic plant production mediated byAgrabacterium in indica rice. Plant cell Rep,727-730.
    126. Dong J, Teng W, Buchholz W G, Hall T C.1996. Agrabacterium-mediated transformation of javanicarice. Mol Breed,267-276.
    127.刘巧泉,张景六,王宗阳,洪孟民,顾铭洪.1998.根癌农杆菌介导的水稻高效转化系统的建立.植物生理学报,24(3):259-271.
    128.黄键秋,卫志明,安海龙,徐淑平,章冰.2000.根癌农杆菌介导的水稻高效转化和转基因植株的高频再生.植物学报,42(11):1172-1178.
    129.林拥军,陈浩,曹应龙,吴昌银,文静,李亚芳,华红霞.2002.农杆菌介导的牡丹江8号高效转基因体系的建立.作物学报,28(3):294-300.
    130.王芋华.2004.水稻高效转化系统的建立.应用与环境生物学报,10(2):139-142.
    131. Maike S, Joseph N M, Kooter J M.1997,The silence of genes in transgenic plants. Annals of Botany,79:3-12.
    132.陈小强,王春国,李秀兰,宋文芹,陈瑞阳.2007.植物DNA甲基化及其表观遗传作用.细胞生物学杂志,29:519-524.
    133.曾晓珊,戴良英,刘雄伦,王国梁.2007. dsRNA介导植物基因沉默及其应用.生命科学,19(2):132-137.
    134.李新玲,徐香玲.2008.植物DNA甲基化与表观遗传.中国农学通报,24(1):123-125.
    135.南楠,曾凡锁,詹亚光.2008.植物DNA甲基化及其研究策略.植物学通报,25(1):102-111.
    136.王海海,吴慎杰,李飞飞,陈天子,蒋彦婕,琚铭,赵君,吕艳辉,张天真,郭旺珍.2008.35S启动子甲基化引起棉花转基因沉默.棉花学报,20(4):274-280.
    137.蒋自立.2009.植物DNA甲基化与转基因沉默.安徽农业科学,37(12):5386-5389.
    138.董延龙.2009.转基因植物转录后的基因沉默.中国林副特产,4:97-99.
    139.张晓辉,邹哲,张余洋,李汉霞,叶志彪.2009.从反义RNA到人工miRNA的植物基因沉默技术革新.自然科学进展,19(10):1029-1036.
    140.翟敏,魏华丽.2010.植物转基因沉默现象的发生机制.陕西农业科学,1:111-113.
    141.孙颖,葛锋,刘迪秋,陈朝银.2011.植物中DNA甲基化模式及其相关机制.植物生理学报,47(8):745-751.
    142.赵彦平,赵春海.2011.植物转基因育种的分析与研究.生物技术通报,3:72-76.
    143. Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K.1999.Antisense suppression of proline degradation improves tolerance to freezing and salinity inArabidopsis thaliana. Febs Letters,461:205-210.
    144. Hodges D M, DeLong J M, Forney C F, Prange R K.1999. Improving the thiobarbituricacid-reactive-substances assay for estimating lipid peroxidation in plant tissues containinganthocyanin and other interfering compounds. Planta,207:604-611.
    145.王渭霞,朱廷恒,玄松南.2006.农杆菌介导的匍匐翦股颖胚性愈伤组织的转化和转CBF1基因植株的获得.中国草地学报,28(4):167325021.
    146.陈军营,阮祥经,杨凤萍,张晓东,陈新建.2007.转DREB基因烟草悬浮细胞系(BY-2)的建立及其几个与抗盐和抗渗透胁迫相关指标的检测.植物生理学通讯,43(2):226-230.
    147.林秀锋,郭喜英,刘志明,韦正乙,邢少辰.2008.转CBF1基因提高水稻抗寒能力的初步研究.吉林农业科学,33(5):6-8.
    148.袁维风,钱玉梅,徐德聪,高贵珍.2009.影响草莓遗传转化率的因子及转CBF1基因植株的获得.江苏农业学报,25(5):1124-1128.
    149.孙京燕,李伟明,张寒霜,赵俊莉,王永强,王立安.2009.低酚棉胚性愈伤组织农杆菌转化体系建立及转DREB1C植株的获得.河北农业科学,13(6):53-56.
    150.李召春,张晗,郭惠明,程红梅.2010.转棉花CBF基因烟草的耐逆性生理指标测定.中国农业科技导报,12(4):101-107.
    151.李超,史春风,魏倩,宁艳民,洪波.2010.转DREB1A基因地被菊花Fall Color后代综合性状及耐寒性检测.西北农业学报,19(6):163-169.
    152.赵汝,韩烈保,曾会明.2010.铅胁迫下转DREB1A高羊茅对铅的吸收与耐受性研究.中国草地学报,32(2):1673-5021.
    153.曹阳,丁伟,李新海,马有志,王振华,李文滨.2011.转DREB3基因抗旱大豆对土壤微生物群落及有益微生物的影响.东北农业大学学报,42(1):17-20.
    154.李晶,刘煌,篙连梅,朱延明.2011.转DREB1A基因提高烟草抗逆性的研究.东北农业大学学报,42(1):124-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700