用户名: 密码: 验证码:
甜高粱苗期对苏打盐碱胁迫的适应性机制及差异基因表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐碱化制约作物生长并导致减产,甜高粱是耐盐碱、生物产量高、可食用和饲用,具有发展潜力的作物。为探讨甜高粱对苏打盐碱胁迫的适应机制,本试验使用NaHCO_3和Na_2CO_3按5:1摩尔比混合的苏打盐碱胁迫筛选甜高粱芽期及苗期敏感性及耐性品种,然后以耐性强的M-81E和耐性弱的314B两个品种为试材,分析了不同甜高粱品种在苏打盐碱胁迫后生长发育、渗透调节、活性氧清除、Na~+吸收与分配、有机酸变化与分泌、叶片解剖结构、叶绿体及线粒体超微结构等方面的变化及差异,较全面的阐述了甜高粱苗期对苏打盐碱胁迫的适应机制,为盐碱土壤甜高粱种植种质的筛选和栽培提供参考。同时,通过SSH方法获得一批甜高粱抗盐碱相关基因的ESTs,可为甜高粱及禾本科植物耐盐碱相关基因克隆或抗盐碱基因工程育种提供理论依据和基因资源。主要研究结果如下:
     1.苏打盐碱胁迫下,随浓度升高,甜高粱发芽率逐渐降低,盐害率升高,各品种间存在较大差异。盐碱胁迫对根芽生长的抑制显著高于对发芽的影响,且对胚根生长的抑制尤其严重。根据多个发芽相关指标用隶属函数法对甜高粱品种进行耐盐碱性分析,7个品种的种子耐盐碱性由强到弱的综合排序为: MN3739>M-81E>贝利>Rio>ES725>3222>雷伊。
     2.经盐碱筛选发现甜高粱各品种在芽期和苗期对苏打盐碱胁迫的耐受性不同。进一步苗期试验表明,苏打盐碱胁迫可降低幼苗植株总重量、株高、根长、根系活力和总叶绿素含量,增加质膜相对透性和丙二醛的含量。但胁迫后根冠比在不同品种中或升或降。综合分析后认为,品种M-81E具有较强的耐受性,314B表现出较弱的耐受性。
     3.植物可通过产生渗透调节物质来缓解盐碱胁迫造成的渗透胁迫,还能提高自身抗氧化酶系统活力清除活性氧。苏打盐碱胁迫可增加供试的两个品种甜高粱幼苗的可溶性糖、可溶性蛋白、脯氨酸和甜菜碱等4个渗透调节物质含量,耐性弱的314B产生更多的渗透调节物质。胁迫还使POD、CAT和GSH-Px酶活性增加,SOD在品种间变化不同,有增有降。耐性强的M-81E的抗性酶系统活力均比314B高,体现出更强的活性氧清除能力。甜高粱幼苗地上部的NO含量在胁迫后升高,而地下部则下降。
     4.盐碱胁迫增加了甜高粱幼苗整株、叶、叶鞘及根中的Na~+含量,但Na~+较多积累在根及叶鞘中;胁迫使幼苗各部分的K~+和Ca~(2+)含量降低,导致幼苗叶、叶鞘及根中K~+/Na~+值和Ca2+/Na+值降低,但离子选择性运输系数TS_(K,Na)和TS_(Ca,Na)明显升高,说明甜高粱从根向叶中运输K~+和Ca~(2+)的选择性强,而运输Na~+的选择性弱。
     5.苏打盐碱胁迫降低了甜高粱幼苗根液泡膜上PPase酶的水解和质子泵活力,而增
     强了ATPase酶的水解和质子泵活力。同时,胁迫使H~+/Na~+反向运输蛋白活力显著增强(P<0.05),但高浓度会使该运输体活力显著下降(P<0.05),但仍明显高于对照。
     6.苏打盐碱胁迫下,甜高粱幼苗叶片具有非常微弱的排Na~+能力,因此,幼苗叶片的泌Na~+行为不是其抵抗盐碱胁迫的主要方式。幼苗根及叶鞘的拒Na~+作用以及根液泡中Na~+的区域化是甜高粱适应苏打盐碱胁迫的主要方式。与品种314B相比,M-81E品种根和叶鞘的拒Na~+能力强,叶片中Na+含量少而受盐碱胁迫的影响较小;根液泡膜上ATPase酶和H~+/Na~+反向运输蛋白活力强,PPase酶活力下降程度小,使得液泡中Na+区域化程度高;同时体内K+含量高将进一步提高其耐盐性。
     7.甜高粱在受到苏打盐碱胁迫后,地上部及根部各类有机酸及有机酸总量均下降,且未发现主效有机酸积累。PEPC酶在低浓度胁迫时,活力升高,而在高浓度时则下降。盐碱胁迫下甜高粱有机酸含量与PEPC酶活力不存在直接相关性,但PEPC酶活力升高,有机酸含量下降幅度小,若PEPC酶活力降低,有机酸含量就会大幅下降。甜高粱在受到苏打盐碱胁迫时,能迅速降低根外pH值,且调节能力较强。但根系分泌的有机酸量很少,推测甜高粱利用有机酸降低根外pH值的作用很小。M-81E无论地上部还是根部,其各有机酸量及总酸量均比314B高;其PEPC酶活力在低浓度胁迫时升高幅度大,而在高浓度胁迫时下降幅度小。M-81E降低根外pH值的能力更强,可将培养液的pH值从9.34降低到8.81,而314B则只降到9.10。
     8.苏打盐碱胁迫影响了甜高粱幼苗的生长发育,使幼苗的株高和茎基周长显著降低;使植株基部叶片及叶尖变黄;并使叶片发育滞后,在相同的生长时间内,叶片数变少。胁迫后,甜高粱叶片厚度、中脉厚度和最大导管直径都极显著变小(P<0.01),叶片上下角质层的厚度均极显著增加(P<0.01),下表皮厚度也显著增加。品种314B在盐碱胁迫后叶片变黄面积大,中脉厚度、株高和茎基周长下降的程度均比M-81E大。
     9.苏打盐碱胁迫使叶绿体膨胀,被膜和基质分离,类囊体膜破坏,基粒片层松散肿胀,有些基粒片层还发生扭曲变形,淀粉粒积累,且形成较多嗜锇滴颗粒;线粒体的数量增加,且分布在叶绿体附近,外膜断裂、消解,多数线粒体内膜上嵴数量减少,甚至消失,结构紊乱。314B叶绿体的超微结构受损伤较严重,嗜锇滴颗粒出现数量多,尤其是叶绿体被膜和基质发生的类似质壁分离现象更明显。
     10.以耐苏打盐碱胁迫甜高粱品种M-81E为材料,使用SSH方法成功构建了苏打盐碱胁迫下差异表达基因的cDNA文库。经Blast比对分析,103个ESTs(81.1%)可以找到已知的同源序列,另有24个ESTs(18.9%)未获得同源匹配。其中只有48个ESTs(占46.6%)有功能注释,而55个ESTs(占53.4%)功能未知或者为假定蛋白。且在推测为假定蛋白的ESTs中,发现大多数ESTs与高粱逆境胁迫后构建cDNA文库中的ESTs序列有较高的相似性。
     11.根据数据库中的功能注释,结合GO和COG分类发现,在盐碱胁迫过程中,多种基因被诱导表达,涉及植物的光合作用、物质(包括碳水化合物、脂肪、氨基酸、辅酶和无机离子等)和能量代谢、细胞壁和细胞膜的组成、水通道、信号转导及转录调控因子等。
Large amount areas of saline and alkaline soils limit crop growth and reduce agriculturalproductivity. Sorghum (Sorghum bicolor L. Moench) crop has been considered relativelymore salt tolerant than other cereals and has the potential as a grain and fodder crop in salineand alkaline soils. In order to study the adaptive mechanisms of sweet sorghum seedlingsresponded to saline-alkali stress (molar ratio of NaHCO_3:Na_2CO_3=5:1), based on thescreening results of different varieties resisting the stress, the two contrasting varieties,314B(the sensitive) and M-81E (the resistant) were selected for the actual study. Undersaline-alkali stress, a series of issues were analyzed, including growth and development,osmoregulation, scaenging of reactive oxygen species (ROS), sodium absorption anddistribution, changes and secretion of organic acid, ultrastructure of chloroplast andmitochondria, and leaf anatomical structure. Comparison of the changes and difference ofabove matters between two varieties, the adaptive mechanisms of sweet sorghum seedlingresponded to saline-alkali stress were generally stated. These results will attribute to screenresistant genotypes of sweet sorghum and formulate reasonable measures for planting crops atsoda saline-alkaline lands. Meanwhile, using SSH (suppression subtractive hybridization) kits,a group of ESTs of genes related to enduring the saline-alkali stress were obtained, that willprovide partial sequences to further acquire the overall length cDNA of some important genesand scientific basis on genetic improvement of sweet sorghum and gramineous plants for salttolerance. The major results were as follows:
     1. Under saline-alkali stress, the germination rate of sweet sorghum increased withincreasing concentration of treatment solutions, but salt toxicity rate was the opposite. Therewere differences among varieties. The degree of restraining the growth of radicle and germ,which come from saline-alkali stress was more serious than germination. On the basis of thegermination rate, germination percentage, germination index, relative-vigor index,average-root length, average-germination percentage and salt toxicity rate of7varieties, thetolerance of sweet sorghum was assessed with the method of subordinate function valuesanalysis. The results showed that the7varieties of sweet sorghum were ordered in sequencefrom the strong to weak: MN3739> M-81E> Berry> Rio> ES725>3222>Wray.
     2. After screening the tolerances in buds period and seedling stage of sweet sorghum, therewere various tolerant to saline-alkali stress among varieties. Then, the growth changes anddamage of plasma membrane in the six varieties of sweet sorghum seedlings was determinedwith condition of saline-alkali stress. The results showed that compared with the respectivecontrol group, under saline-alkali stress, the sweet sorghum seedlings was decreased the totalweight of plant, height, root vigor and total chlorophyll content, but increased the relativepermeability of plasma membranes and content of malonaldehyde. However, root-shoot ratioswere showed higher or lower among the different varieties. The assessment of the sweet sorghum tolerance to saline-alkali stress with the method of subordinate function valuesshowed that M-81was more tolerant to saline-alkali stress than314B.
     3. The osmotic regulation substances, antoxidant enzymes and NO contents of sweetsorghum seedlings treated with alkali solutions were detected. The results showed that undersaline-alkali stress, the sweet sorghum seedlings increased the content of soluble sugar,soluble protein, proline and betaine, also, the activities of peroxidase, catalase, andglutathione peroxidase were improved. But, the activities of superoxide were showed higheror lower between the two varieties. The osmotic regulation substances produced from314Bwere more than M-81E, yet, the activities of antoxidant enzymes of M-81E were high than314B. Therefore,314B possessed higher osmotic adjustment abilities, and M-81E ownedstronger scavenging ROS abilities. Under saline-alkali stress, the NO contents in shoots ofsweet sorghum were increased, but, the ones in roots were decreased.
     4. After sweet sorghum seedlings treated for3days with soda alkali solutions, the Na~+contents of whole plant, leaves, sheath and roots in two genotypes almost entirely increased,yet, major Na~+were accumulated in roots and sheath. Under saline-alkali stress, the contentsof K~+and Ca~(2+)in whole plant, leaves, sheath and roots decreased universally in twogenotypes. Consequently, the K~+/Na~+and Ca~(2+)/Na~+ratio decreased completely in eachtissue of two varieties, but, the K~+/Na~+transport selectivity (TSK,Na) and the Ca~(2~+)/Na~+transport selectivity (TSCa,Na) in roots were obviously risen, that from roots to leaves, theselective abilities of sweet sorghum to transport K~+and Ca~(2+)were strong, and to transport Na~+were weak.
     5. Both hydrolytic activities and proton transporting activities of V-H~+-ATPase of rootswere stimulated under soda alkali stress, yet V-H~+-PPase activities were decreased followingincreasing concentration of solutions. Na~+/H~+exchange activities were intensively promoted.When treated with high concentration solution, the Na~+/H~+exchange activities weremarkedly restrained, but the activities were still higher than control.
     6. The Na~+secretion from leaves wasn’t main way for sweet sorghum to resist soda alkali,because under saline-alkali stress, the Na~+concentration expelled from leaves was very little.It played an important role in sweet sorghum adapting to saline-alkali stress that the main Na~+exclusion localization was in roots and sheath. Meanwhile, vacuolar Na~+compartment wasalso major adaptive mechanism of sorghum to alkali stress. In roots, M-81E accumulatedmajor Na~+, but314B in leaves. M-81E had a higher ability to vacuolar Na~+compartment inroot cells that was in view of M-81E had higher activities of V-H~+-ATPase and Na~+/H~+exchanger, the depressed degree of V-H~+_-PPase activities was lesser than314B. And M-81Emaintained a higher level of K~+uptake, which resulted in higher K~+/Na~+transport selectivitythan314B. These result also demonstrated that the most of Na~+accumulated in root and vacuolar Na~+compartment in root cells were conductive to sweet sorghum tolerance to sodaalkali stress.
     7. The organic acid contents in shoots and roots of sweet sorghum after treated soda alkalisolutions were decreased generally. Some organic acids which played important role inresisting stress weren’t accumulated. When treated with low concentration solutions, PEPCactivities were enhanced, but with high concentration solutions, the ones were decreased.Under saline-alkali stress, the organic acid contents had no direct correlation with PEPCactivities, but, the fall of organic acid was small with increasing PEPC activities, and the fallwas declined largely following with decreasing PEPC activities. When grown in soda alkalisolutions, sweet sorghum could rapidly cut down pH value of culture solution. Yet, theorganic acid secreted from root system was very little, thus, we concluded that the organicacid played a little part in regulating pH value outside roots. Both all kinds of organic acidsand total organic acid in shoots or roots were higher of M-81E than314B. Compare with314B, the degree of increasing PEPC activities was greater under low concentration solutions,and the degree of decreasing PEPC activities was littler under high concentration solutions.The pH value was from9.34to9.10in314B culture solution, yet, the value was from9.34to8.81in M-81E culture solution and M-81E showed stronger ability to regulate pH value ofoutside roots than314B.
     8. The growth and development of sweet sorghum seedlings were suppressed on conditionof alkali stress. The plant height and stem base perimeter were reduced dramatically (P<0.01).The leaves located stem base and blade tips were flavescent, the leaf developments werelagged, and the leaf numbers become less. The leaf thickness, midrib thickness and biggervessels diameter of the two sweet sorghum seedlings were significantly decreased undersaline-alkali stress, while the upper stratum corneum thickness and lower stratum corneumthickness were significantly increased compared with the control group (P<0.01). The upperepidermis thickness stayed mainly the same, but lower epidermis thickness were significantlyenhanced (P<0.05). After treated with alkali solutions, the etiolated areas of leaves, the fall ofmidrib thickness plant height and stem base perimeter in314B were larger than in M-81E.
     9. The effects of saline-alkali stress on ultrastructure in chloroplast and mitochondria werestudied. The results showed that the damages appeared such as expansion of chloroplast, thematrix separated from the chloroplast envelope, dissociation of thylakoid membrane,loosening and expanding of grana lamella, and even deformation of some grana lamella. Thestarch grain and osmophilic globule number in chloroplast were significantly increased(P<0.01). The mitochondria number become more and distributed largely near chloroplast. Inthe mitochondria, the number of ridge in the inner coat appeared to decrease and evendisappear. The chloroplast of314B seemed to be injured more serious than M-81E, for themore osmophilic globule number and greater degree of separated between matrix and the envelope.
     10. A suppression subtractive hybridization cDNA library was constructed which wasM-81E treated with soda alkali. Similarity analysis based on Blast software in GenBank wasperformed.81.1%(103) of the ESTs could be found encoding putative proteins.18.9%(24)of the ESTs were found no significant similarity with ESTs collected in GenBank. Functionof48ESTs (46.6%) were known, and55(53.4%) were unknown. Most ESTs of guessedputative proteins were found having similarity with ESTs from cDNA libraries which wereconstructed about the different expression of sweet sorghum grown in various stresses.
     11. According to the annotated function, classifying with GO and COGs, we found that agood deal of genes were induced to express excessively, involving related withphotosynthesis, the metabolisms of substances (such as carbohydrate, fat, amino acid,cozymaze and inorganic irons) and energy, structure of cell wall and membrane, aquaporin,signal transduction and transcription regulation.
引文
1.白志英,李存东,屈平.2009.干旱胁迫对小麦中国春-Synthetic6x代换系叶片超微结构的影响.电子显微学报,28(1):68-73.
    2.柴媛媛,史团省,谷卫彬.2008.种子萌发期甜高粱对盐胁迫的响应及其耐盐性综合评价分析.种子,27(2):43-47.
    3.陈德明,俞仁培,杨劲松.2002.小麦抗盐性的隶属函数值法评价.土壤学报,39(3):368-373.
    4.陈观平,王慧中,施农农等.2006.Na+/H+逆向转运蛋白与植物耐盐性关系研究进展.中国生物工程杂志,26(5):101-106.
    5.陈海燕.2007.盐胁迫及其与La3+对不同耐盐性水稻根中抗氧化酶及质膜H+-ATPase的影响.学位论文.南京:南京农业大学.
    6.陈坚,周木虎.2002.盐胁迫对不同苦瓜品种萌发及幼苗生长的影响.湘潭师范学院学报,24(4):44-48.
    7.陈明,沈文彪,阮海华等.2004.一氧化氮对盐胁迫下小麦幼苗根生长和氧化损伤的影响.植物生理与分子生物学报,30(5):569-576.
    8.陈燕,郑小林,曾富华等.2003.高温干旱下两种冷季型草坪草叶片细胞超微结构的变化.西北植物学报,23(2):304-308.
    9.陈忠林,张学勇,张绵等.2010.碱胁迫对结缕草、高羊茅种子萌发及其胚胎生长的影响.种子,29(12):27-30.
    10.迟春明,王志春,李彬.2008.迫对帚用高粱萌发及苗期生长的影响.干旱地区农业研究,26(4):48-151.
    11.迟丽华,宋凤斌.2006.松嫩平原西部盐碱地区10种植物叶片结构特征及其生态适应性.生态环境,15(6):1269-1273.
    12.丛靖宇,杨冠宇,张烨等.2010.不同品种甜高粱幼苗耐受渗透胁迫能力的研究.华北农学报,25(4):136-140.
    13.戴高兴,彭克勤,皮灿辉.2003.钙对植物耐盐的影响.中国农业通报,19(3):97-101.
    14.单雷,赵双宜,夏光敏.2006.植物耐盐相关基因及其耐盐机制研究进展.分子植物育种,4(1):15-22.
    15.董秋丽,夏方山,董宽虎.2010.碱性盐胁迫对芨芨草苗期脯氨酸和可溶性蛋白含量的影响.畜牧与饲料科学,31(4):11-12.
    16.杜长霞,李娟,郭世荣等.2007.外源亚精胺对盐胁迫下黄瓜幼苗生长和可溶性蛋白表达的影响.西北植物学报,27(6):1179-1184.
    17.樊怀福,郭世荣,焦彦生等.2007.外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响.生态学报,27(2):546-553.
    18.范华,董宽虎,侯燕平等.2011.NaCl胁迫对盐生植物碱蒿超微结构的影响.草地学报,19(3):482-486.
    19.谷艳芳,丁圣彦,李婷婷等.2009.盐胁迫对冬小麦幼苗干物质分配和生理生态特性的影响.生态学报,29(2):840-845.
    20.谷颐.2005.白城地区盐碱生态环境3种植物的结构.东北林业大学学报,33(5):110-111.
    21.郭立泉,陈建欣,崔景军.2009.盐、碱胁迫下星星草有机酸代谢调节的比较研究.东北师大学报(自然科学版),41(4):123-128.
    22.郭立泉,石德成,马传福.2005.植物在响应逆境胁迫过程中的有机酸代谢调节及分泌现象.长春教育学院学报,21(3):19-24.
    23.郭新红,姜孝成,潘晓玲等.2001.用抑制差减杂交法分离和克隆梭梭幼苗受渗透胁迫诱导相关基因的cDNA片段.植物生理学报,27(5):401-406.
    24.郭艳茹,詹亚光.2006.植物耐盐性生理生化指标的综合评价.黑龙江农业科学,(1):66-70.
    25.郭英慧,于月平,郑成超等.2010.棉花锌指蛋白GhZFP1相互作用蛋白的酵母双杂交筛选.中国生物化学与分子生物学报,26(5):423-428.
    26.韩春梅,李春龙,贺阳冬等.2009.NaCl胁迫对莴笋种子萌发及幼苗根系生理生化指标的影响.长江蔬菜,(10):21-23.
    27.韩亚琦,唐宇丹,张少英等.2007.盐胁迫抑制桷栎2变种光合作用的机理研究.西北植物学报,27(3):583-587.
    28.何龙飞,沈振国,刘友良.2000.铝胁迫下钙对小麦液泡膜功能和膜脂组成的影响.南京农业大学学报,23(1):10-13.
    29.何若韫.1995.植物低温逆境生理.北京:中国农业大学出版社,107-141.
    30.何雪银,文仁来,吴翠荣等.2008.模糊隶属函数法对玉米苗期抗旱性的分析.西南农业学报,21(1):52-56.
    31.黑龙江省土地管理局,黑龙江省土壤普查办公室.1992.黑龙江土壤.北京:农业出版社.
    32.胡薇.2010.黑木相思遗传多样性及寒胁迫诱导差异表达基因的研究.博士学位论文.福州:福建农林大学.
    33.胡晓辉,王素平,曲斌.2009.NaCl胁迫下亚精胺对番茄种子萌发及幼苗抗氧化系统的影响.应用生态学报,20(2):446-450.
    34.华春,王仁雷.2004.盐胁迫对水稻叶片光合效率和叶绿体超显微结构的影响.山东农业大学学报(自然科学版),35(1):27-31.
    35.黄冀,王建飞,张红生等.2004.植物C2H2锌指蛋白的结构和功能.遗传,26(3):414-418.
    36.黄志伟,彭敏,陈桂琛等.2001.青海湖盐碱地灰绿藜叶的形态解剖学研究.西北植物学报,21(6):1199-1203.
    37.霍晨敏,赵宝存,葛荣朝等.2004.小麦耐盐突变体盐胁迫下的蛋白质组分析.遗传学报,31(12):1408-1414.
    38.贾洪涛,赵可夫.1998.盐胁迫下Na+、K+、Cl-对碱蓬和玉米离子的吸收效应.山东师大学报(自然科学版),13(4):437-440.
    39.贾立平,顾云杰,姚和雨.2000.大庆地区盐碱土改良利用初探.北方园艺,131:47-48.
    40.贾娜尔阿汗,张相锋,赵玉.2010.盐碱胁迫对小冰麦种子萌发和早期幼苗生长的影响.种子,29(9):52-55.
    41.简令成,王红.2009.逆境植物细胞生物学.北京:科学出版社,168-179.
    42.姜卫兵,高光林,戴美松等.2003.盐胁迫对不同砧穗组合犁幼树光合日变化的影响.园艺学报,30(6):653-657.
    43.焦进安,施教耐.1987.马齿苋叶片磷酸烯醇式丙酮酸羧化酶活性及调节特性的光/暗变化.植物生理学报,13(2):190-196.
    44.孔令安,郭洪海,董晓霞.2000.盐胁迫下杂交酸模超微结构的研究.草业学报,2000,9(2):53-57.
    45.郎志红.2008.盐碱胁迫对植物种子萌发和幼苗生长的影响.学位论文.兰州:兰州交通大学环境与市政工程学院.
    46.黎大爵,廖馥荪.1992.甜高粱及其利用.北京:科学出版社.
    47.黎昊雁,徐亮.2002.植物抗逆机制及相关基因工程研究进展.检验检疫科学,12(6):53-55.
    48.李会勇,黄素华,赵久然等.2007.应用抑制差减杂交法分离玉米幼苗期叶片土壤干旱诱导的基因.中国农业科学,6(6):647-651.
    49.李杰,陈康,唐静等.2008.NaCl胁迫下玉米幼苗中一氧化氮与茉莉酸积累的关系.西北植物学报,28(8):1629-1636.
    50.李平华,张慧,王宝山.2003.盐胁迫下植物细胞离子稳态重建机制.西北植物学报,23(10):1810-1817.
    51.李庆余,徐新娟,朱毅勇等.2011.半定量RT-PCR研究氮素形态对樱桃番茄果实中有机酸代谢相关酶基因表达的影响.植物营养与肥料学报,17(2):341-348.
    52.李万福,刘海燕,钟旎等.2009.花生防御素基因的克隆及原核表达.基因组学与应用生物学,28(4):645-650.
    53.李玉明,石德成,李毅丹等.2002.混合盐碱胁迫对高梁幼苗的影响.杂粮作物,22(1):41-45.
    54.利容千,王建波.2002.植物逆境细胞及生理学.武汉:武汉大学出版社,217.
    55.林加涵,魏文铃,彭宣宪.2002.现代生物学实验.北京:高等教育出版社,70-82.
    56.刘爱峰,赵檀方,段友臣.2000.盐胁迫对大麦叶片细胞超微结构影响的研究.大麦科学,(3):20-221.
    57.刘爱荣,张远兵,陈登科.2006.盐胁迫下盐芥(Thellungieila halophila)生长和抗氧化酶活性的影响.植物研究,126(2):216-221.
    58.刘爱荣,赵可夫.2005.盐胁迫对盐芥生长及硝酸还原酶活性的影响.植物生理与分子生物学学报,3l(5):469-476.
    59.刘迪秋,王继磊,葛锋等.2009.植物水通道蛋白生理功能的研究进展.生物学杂志,26(5):63-66.
    60.刘华,舒孝喜,赵银等.1997.盐胁迫对碱茅生长及碳水化合物含量的影响.草业科学,14(1):18-20.
    61.刘惠芬,高玉葆,张强等.2004.不同种群羊草幼苗对土壤干旱胁迫的生理生态响应.南开大学学报,(自然科学版),37(4):105-110.
    62.刘吉祥,吴学明,何涛等.2004.盐胁迫下芦苇叶肉细胞超微结构的研究.西北植物学报,24(6):1035-1040.
    63.刘家尧,衣艳君,白克智等.1996.CO2/盐冲击对小麦幼苗呼吸酶活性的影响.植物学报(英文版),38(8):641-646.
    64.刘玉杰,王宝增.2007.不同品种大豆耐盐性的比较研究.安徽农业科学,35(15):4462-4464.
    65.刘祖祺,张石城.1994.植物抗性生理学.北京:科学技术出版社.
    66.卢静君,李强,多立安.2002.盐胁迫对金牌美达丽和猎狗种子萌发的研究.植物研究,22(3):328-332.
    67.芦翔,石卫东,王宜伦等.2011.外源NO对NaCl胁迫下燕麦幼苗抗氧化酶活性和生长的影响.草业科学,28(12):2150-2156.
    68.陆静梅,李建东,张洪芹等.1996.吉林西部草原区7种耐盐碱双子叶植物结构研究.应用生态学报,7(3):283-286.
    69.陆静梅,李建东.1994.一种新型的植物盐腺.东北师范大学学报(自然科学版),3:88-89.
    70.陆静梅,刘友良,胡波等.1998.中国野生大豆盐腺的发现.科学通报,43(19):2074-2078.
    71.吕金印,郭涛.2010.水分胁迫对不同品种甜高粱幼苗保护酶活性等生理特性的影响.干旱地区农业研究,28(4):89-93.
    72.罗群,唐自慧,李路娥等.2006.干旱胁迫对9种菊科杂草可溶性蛋白质的影响.四川师范大学学报(自然科学版),29(3):356-359.
    73.马翠兰,刘星辉,杜志坚.2003.盐胁迫对柚、福橘种子萌发和幼苗生长的影响.福建农林大学学报(自然科学版),32(3):320-324.
    74.马德源,李发育,朱剑峰等.2009.盐胁迫下荞麦体内Na+分配与品种耐盐性的关系.安徽农业科学,37(13):5908-5909.
    75.马德源,战伟龑,杨洪兵等.2011.荞麦主要拒Na+部位及其Na+/H+逆向转运活性的研究.中国农业科学,44(1):185-191.
    76.马兰涛,陈双林.2008.瓜多竹(Guadua amplexifolia)对NaCl胁迫的生理响应.生态学杂志,27(9):1487-1491.
    77.买合木提·卡热,吾甫尔·巴拉提,侯江涛等.2005.NaCl胁迫对扁桃砧木可溶性蛋白质和脯氨酸含量的影响.新疆农业大学学报,28(1):1-5.
    78.毛桂莲,许兴,徐兆桢.2004.植物耐盐生理生化研究进展.中国生态农业学报,12(1):43-46.
    79.苗海霞,孙明高,夏阳等.2005.盐胁迫对苦楝根系活力的影响.山东农业大学学报(自然科学版),36(1):9-12.
    80.苗雨晨,白玲,苗琛等.2005.植物谷胱甘肽过氧化物酶研究进展.植物学通报,22(3):350-356.
    81.宁建凤,郑青松,杨少海等.2010.高盐胁迫对罗布麻生长及离子平衡的影响.应用生态学报,21(2):325-330.
    82.潘瑞炽.2004.植物生理学(第五版).北京:高等教育出版社,284-300.
    83.祁栋灵,郭桂珍,李明哲等.2007.水稻耐盐碱性生理和遗传研究进展.植物遗传资源学报,8(4):486-493.
    84.秦景,贺康宁,谭国栋等.2009.NaCl胁迫对沙棘和银水牛果幼苗生长及光合特性的影响.应用生态学报,20(4):791-797.
    85.闰先喜,赵檀方,胡延吉.1994.盐胁迫预处理对大麦根尖分生区细胞超微结构的影响.西北植物学报,14(4):273-277.
    86.邵红雨,孔广超,齐军仓等.2006.植物耐盐生理生化特性的研究进展.安徽农学通报,12(9):51-53.
    87.盛彦敏,石德成,肖洪兴等.1999.不同程度中碱性复合盐对向日葵生长的影响.东北师大学报(自然科学版),(4):65-69.
    88.石德成,盛彦敏.1998.复杂盐碱生态条件的人工模拟及其对羊草生长的影响.草业学报,(3):36-41.
    89.石德成,盛艳敏,赵可夫.1998.复杂盐碱生态条件的人工模拟及其对羊草生长的影响.草业学报,7(1):36-41.
    90.石德成,殷立娟.1993.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异.植物学报,35(2):144-149.
    91.石德成,尹尚君,杨国会等.2002.碱胁迫下耐碱植物星星草体内柠檬酸特异积累现象.植物学报(英文版),44(5):537-540.
    92.石德成.1995.磷酸中和缓解Na2CO3对星星草的胁迫作用.草业学报,4(4):34-38.
    93.石永红,万里强,刘建宁等.2010.多年生黑麦草抗旱性主成分及隶属函数分析.草地学报,18(5):669-672.
    94.时冰.2009.盐碱地对园林植物的危害及改良措施.河北林业科技,(9):61-62.
    95.时丽冉.2007.混合盐碱胁迫对玉米种子萌发的影响.衡水学院学报,9(1):13-15.
    96.宋冰,洪洋,王丕武等.2010.植物C2H2型锌指蛋白的研究进展.基因组学与应用生物学,29(5):1133-1141.
    97.宋凤鸣,郑重,葛起新.1992.富含羟脯氨酸糖蛋白在植物-病原物相互作用中的积累、作用及调控.植物生理学通讯,28(2):141-145.
    98.宋清晓,王学敏,高洪文等.2010.东方山羊豆盐诱导抑制差减杂交文库构建及其表达序列标签分析.植物遗传资源学报,11(6):777-783.
    99.眭晓蕾,毛胜利,王立浩等.2009.辣椒幼苗叶片解剖特征及光合特性对弱光的响应.园艺学报,36(2):195-208.
    100.唐静,车永梅,侯丽霞等.2009.NO缓解玉米幼苗盐胁迫伤害的生理机制.西北植物学报,29(10):2007-2012.
    101.田晓艳,刘延吉,郭迎春.2008.盐胁迫对NHC牧草Na+、K+、Pro、可溶性糖及可溶性蛋白的影响.草业科学,25(10):34-38.
    102.佟金凤,汪仁,李晓丹等.2011.石蒜核糖体蛋白L21的基因克隆及氨基酸序列分析.植物资源与环境学报,20(4):13-16.
    103.王宝山,赵可夫.1995.小麦叶片中Na、K提取方法的比较.植物生理学通讯,31(1):50-52.
    104.王宝山,邹琦,赵可夫.1997.高粱不同器官生长对NaCl胁迫的响应及其耐盐阈值.西北植物学报,17(3):270-285.
    105.王宝山,邹琦,赵可夫.2000.NaCl胁迫对高粱不同器官离子含量的影响.作物学报,26(6):845-850.
    106.王宝山,邹琦.2000.NaCl胁迫对高粱根、叶鞘和叶片液泡膜ATP酶和焦磷酸酶活性的影响.植物生理学报,26(3):181-188.
    107.王波,宋凤斌,任长忠等.2005.盐碱胁迫对燕麦叶绿体超微结构及一些生理指标的影响.吉林农业大学学报,27(5):473-477,485.
    108.王耿明.2008.基于BP神经网络的松辽平原盐碱土含盐量遥感反演研究.硕士学位论文.长春:吉林大学.
    109.王厚麟,缪绅裕.2000.大亚湾红树林及海岸植物叶片盐腺与表皮非腺毛.台湾海峡,19(3):372-378.
    110.王建华,刘鸿先,徐同.1980.超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用.植物生理学通讯,(1):1-7.
    111.王静,王艇.2007.高等植物光敏色素的分子结构、生理功能和进化特征.植物学通报,24(5):649-658.
    112.王淼,李秋荣,付士磊等.2005.一氧化氮对杨树耐旱性的影响.应用生态学报,16(5):805-810.
    113.王仁雷,华春,刘友良.2002.盐胁迫对水稻光合特性的影响.南京农业大学学报,25(4):11-14.
    114.王淑慧.2006.NaCl胁迫下甘菊甜菜碱的积累及其合成酶基因片段的克隆与转录表达.硕士学位论文.北京:北京林业大学.
    115.王树凤,陈益泰,徐爱春.2007.盐胁迫对2种珍贵速生树种种子萌发及幼苗生长的影响.植物资源与环境学报,16(1):49-52.
    116.王文柱,张庆成.1987.大庆农业资源与区划.哈尔滨:黑龙江科技出版社.
    117.王晓冬,王成,马智宏等.2011.短期NaCl胁迫对不同小麦品种幼苗K+吸收和Na+、K+积累的影响.生态学报,31(10):2822-2830.
    118.王秀玲,程序,李桂英.2010.甜高粱耐盐材料的筛选及芽苗期耐盐性相关分析.中国生态农业学报,18(6):1239-1244.
    119.王秀玲,程序,李桂英.2010.甜高粱耐盐材料的筛选及芽苗期耐盐性相关分析.中国生态农业学报,18(6):1239-1244.
    120.王怡.2003.三种抗旱植物叶片解剖结构的对比观察.四川林业科技,24(1):64-67.
    121.王颖,杜荣骞,赵素然.1999.高粱在盐胁迫下特定蛋白的表达及与耐盐性关系的研究.作物学报,25(1):76-81.
    122.王有华,王素霞.1994.东北地区盐碱灾害及其治理.东北水利水电,(10):27-30.
    123.王羽梅,任安详,潘春香.2004.长时间盐胁迫对苋菜叶片细胞结构的影响.植物生理学通讯,40(3):289-292.
    124.王越,赵辉,马凤江等.2006.盐碱地与耐盐碱牧草.山西农业科学,34(1):55-57.
    125.王转,贾普平,景蕊莲.2003.用抑制差减杂交法分离小麦幼苗水分胁迫诱导表达的cDNA.生物技术通报,(5):36-39.
    126.王遵亲.1993.中国盐渍土.北京:科学出版社,470-483.
    127.吴锦程,陈建琴,梁杰等.2009.外源一氧化氮对低温胁迫下枇杷叶片AsA-GSH循环的影响.应用生态学报,20(6):1395-1400.
    128.吴淑杭,周德平,姜震方.2007.盐碱地改良与利用研究进展.上海农业科技,(2):23-25.
    129.吴文林,吴穗洁.2006.Rab蛋白的结构、功能与研究展望.台湾海峡,25(4):599-605.
    130.吴雪霞,朱月林,朱为民等.2007.外源一氧化氮对NaCl胁迫下番茄幼苗光合作用和离子含量的影响.植物营养与肥料学报,13(4):658-663.
    131.吴艳红,陈建龙,许媛媛等.2005.多聚腺苷酸结合蛋白的结构与功能.生命的化学,25(4):301-303.
    132.夏卓盛,吴跃明,李新伟等.2007.紫花苜蓿铝胁迫抑制消减文库的构建和初步分析[J].农业生物技术学报,15(5):805-809.
    133.肖玮.孙国荣.阎秀峰等.1995.盐胁迫下星星草幼苗地上部无机离子的累积.哈尔滨师范大学自然科学学报,11(2):82-85
    134.肖雯.2002.五种盐生植物营养器官显微结构观察.甘肃农业大学学报,37(4):421-427.
    135.谢潮添,张元,陈昌生等.2011.坛紫菜糖体蛋白S7基因的克隆与表达分析.水产学报,35(12):1814-1821.
    136.谢得意,王惠萍,王付欣等.2000.盐胁迫对棉花种子萌发及幼苗生长的影响.中国棉花,27(9):12-13.
    137.徐健遥,蒋昌华,石金磊等.2010.月季eIF5A基因的表达提高毕氏酵母高温和氧化胁迫的抗性.复旦学报(自然科学版),49(3):273-280.
    138.许培磊,白吉刚,王秀娟等.2009.低温对不同基因型黄瓜叶片蛋白质组的影响.中国农业科学,42(2):588-596.
    139.许详明,叶和春,李国风.2000.植物抗盐机理的研究进展.应用与环境生物学报,6(4):379-387.
    140.闫永庆,王文杰,朱虹等.2009.3种杂交杨在不同盐碱地上的生长和生理适应性研究.植物研究,29(4):433-438.
    141.阎秀峰,孙国荣2000..星星草生理生态学研究.北京:科学出版社.
    142.颜宏,石德成,尹尚军等.2000.盐碱胁迫对羊草体内N及几种有机代谢产物积累的影响.东北师大学报(自然科学版),32(3):47-52.
    143.颜宏,赵伟,盛艳敏等.2005.碱胁迫对羊草和向日葵的影响.应用生态学报,16(8):1497-1501.
    144.阳燕娟,郭世荣,李晶等.2011.嫁接对盐胁迫下西瓜幼苗生长和可溶性蛋白表达的影响.南京农业大学学报,34(2):54-60.
    145.杨春武,李长有,尹红娟等.2007.小冰麦(Triticum aestivum-Agropyron intermedium)对盐胁迫和碱胁迫的生理响应.作物学报,33(8):1255-1261.
    146.杨国会.2010.碱胁迫诱导小冰麦有机酸积累和分泌的研究.西北农林科技大学学报(自然科学版),38(7):77-84.
    147.杨洪兵,陈敏,王宝山.2002.小麦幼苗拒Na+部位的拒Na+机理.植物生理与分子生物学学报,28(3):181-186.
    148.杨洪兵,丁顺华,邱念伟等.2001.耐盐性不同的小麦根和根茎结合部的拒Na+作用.植物生理学报,27(2):179-185.
    149.杨洪兵.2004.苹果属植物抗盐机理的研究.博士学位论文.北京:中国农业大学.
    150.杨继涛.2003.植物耐盐性研究进展.农艺科学,19(6):46-48,51.
    151.杨瑾,王铭,李涛等.2011.氮胁迫对雨生红球藻色素积累与抗氧化系统的影响.植物生理学报,47(2):147-152.
    152.杨微.2007.盐碱化土壤中四种常见盐分对碱地肤的胁迫作用比较.学位论文.长春:东北师范大学.
    153.姚允聪,王绍辉,孔云.2007.弱光条件下桃叶片结构及光合特性与叶绿体超微结构变化.中国农业科学,40(4):855-863.
    154.叶春江,赵可夫.2002.盐分胁迫对大叶藻某些胞内酶耐盐性及其生理功能的影响.植物学报,44(7):788-794.
    155.尹红娟.2008.虎尾草对盐碱混合胁迫的生理响应特点.学位论文.长春:东北师范大学.
    156.尹喜霖,王勇,柏钰春.2004.浅论黑龙江省的土地盐碱化.水利科技与经济,10(6):361-363.
    157.于凤芝.2004.不同草坪品种萌发期耐盐能力的研究.黑龙江农业科学,(2):6-9.
    158.于延冲,乔孟,刘振华等.2010.WRKY转录因子功能的多样化.生命科学,22(4):345-351.
    159.於丙军,罗庆云,刘友良.2003.NaCl胁迫下野生和栽培大豆幼苗体内离子的再转运.植物生理与分子生物学学报,29(1):39-44.
    160.俞仁培,扬道平,石万普等.1984.土壤碱化及其防治.北京:农业出版社,39-42.
    161.袁琳,克热木伊力,张利权.2005.NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响.植物生态学报,29(6):985-991.
    162.袁振宏,吴创之,马隆龙等.2004.生物质能利用原理与技术.北京:化学工业出版社.
    163.苑盛华,杨传平,焦喜才等.1996.盐渍条件下种子的萌发特性.东北林业大学报,24(6):41-46.
    164.曾日中,段翠芳,黎瑜等.2003.茉莉酸刺激的橡胶树乳胶cDNA消减文库的构建及其序列分析.热带作物学报,24(3):29-36.
    165.翟中和,王喜忠,丁明孝.2000.细胞生物学.北京:高等教育出版社,207-245.
    166.张朝阳,许桂芳.2009.利用隶属函数法对4种地被植物的耐热性综合评价.草业科学,26(2):57-60.
    167.张道远,尹林克,潘伯荣.2003.柽柳泌盐腺结构、功能及分泌机制研究进展.西北植物学报,23(1):190-194.
    168.张建新,刘拉平,彭玉奎等.1997.甜菜碱对小麦幼苗抗旱生理作用的研究.陕西农业科学,(4):21-22.
    169.张景云,吴凤芝.2007.盐胁迫对黄瓜不同耐盐品种膜脂过氧化及脯氨酸含量的影响.中国蔬菜,(7):12-15.
    170.张俊莲,张国斌,王蒂.2006.向日葵耐盐性比较及耐盐生理指标选择.中国油料作物学报,28(2):176-179.
    171.张立军,樊金娟.2007.植物生理学实验教程.北京:中国农业大学出版社,19-101.
    172.张立军,梁宗锁.2007.植物生理学.北京:科学出版社.
    173.张丽平,王秀峰,史庆华等.2008.黄瓜幼苗对氯化钠和碳酸氢钠胁迫的生理响应差异.应用生态学报,19(8):1854-1859.
    174.张士功,高吉寅,宋景芝.1999.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响.植物学通报,16(4):429-432.
    175.张万钧.盐渍土绿化.1999.北京:中国环境科学出版社.
    176.张文利,沈文飚,徐朗莱.2002.一氧化氮在植物体内的信号分子作用.生命的化学,22(1):61-62.
    177.张秀春,李文彬,夏亦荠等.2010.AtNUDT8过量表达的拟南芥转基因植株.热带生物学报,1(1):8-11.
    178.张艳艳,刘俊,刘友良.2004.一氧化氮缓解盐胁迫对玉米生长的抑制作用.植物生理与分子生物学学报,30(4):455-459.
    179.赵博生,衣艳君,刘家尧.2001.外源甜菜碱对干旱/盐胁迫下的小麦幼苗生长和光合功能的改善.植物学通报,18(3):378-380.
    180.赵可夫,冯立田.2001.中国盐生植物资源.北京:科学出版社.
    181.赵可夫,李军.1999.盐浓度对3种单子叶盐生植物渗透调节剂及其在渗透调节中贡献的影响.植物学报,41(12):1287-1292.
    182.赵彦坤,张文胜,王幼宁等.2008.高pH对植物生长发育的影响及其分子生物学研究进展.植物生态农业学报,16(3):783-787.
    183.郑春芳,姜东,戴廷波等.2010.外源一氧化氮供体硝普钠浸种对盐胁迫下小麦幼苗碳氮代谢及抗氧化系统的影响.生态学报,30(5):1174-1183.
    184.郑敏娜,李向林,万里强等.2009.水分胁迫对6种禾草叶绿体、线粒体超微结构及光合作用的影响.草地学报,17(5):643-649.
    185.郑文菊,王勋陵,沈禹颖.1999.几种盐地生植物同化器官的超微结构研究.电子显微学报,18(5):507-512.
    186.郑文菊,张承烈.1998.盐生和中生环境中宁枸杞叶显微和超微结构的研究.草业科学,7(3):72-76.
    187.周婵,邹志远,杨允菲.2009.盐碱胁迫对羊草可溶性蛋白质含量的影响.东北师大学报(自然科学版),41(3):94-96.
    188.周桂生,李军,董伟伟等.2009.海滨锦葵生长发育、产量和产量构成对盐分胁迫的影响.中国油料作物学报,31(2):202-206.
    189.周文彬,邱报胜.2004.植物细胞内pH值的测定.植物生理学通讯,40(6):724-728.
    190.朱晓军,梁永超,杨劲松等.2005.钙对盐胁迫下水稻幼苗抗氧化酶活性和膜脂过氧化作用的影响.土壤学报,42(3):453-459.
    191.朱宇旌,张勇,胡自治等.2001.小花碱茅根适应盐胁迫的显微结构研究.中国草地,23(1):37-40.
    192.宗会,李明启.2001.钙信使在植物适应非生物逆境中的作用.植物生理学通讯,37(4):330-335.
    193.邹剑秋,宋仁本,卢庆善等.2003.新型绿色可再生能源作物-甜高粱及其育种策略.杂粮作物,23(3):134-135.
    194.Al-Khateeb S A.2006. Effect of salinity and temperature on germination, growth and ion relations ofPanicum turgidum Forssk. Bioresource Technology,97(2):292-298.
    195.Almodares A, Hadi M R, Ahmadpour H.2008. Sorghum stem yield and soluble carbohydrates underdifferent salinity levels. African Journal of Biotechnology,7(22):4051-4055
    196.Alshammary S F, Qian Y L, Wallner S J.2004. Growth response of four turfgrass species to salinity.Agricultural Water Management,66(2):97-111.
    197.Apse M P, Aharon G S, Snedden W A, et a1.1999. Salt tolerance conferred by overexpression of avacuolar Na+/H+antiport in Arabidopsis. Science,285(5431):1256-1258.
    198.Arasimowicz M, Floryszak-Wieczorek J.2007. Nitric oxide as a bioactive signaling molecule in plantstress responses. Plant Science,172(5):876-887.
    199.Archie R, Portis Jr.1995. The regulation of Rubisco by Rubisco activase. Journal of ExperimentalBotany,46:1285-1291.
    200.Ashraf M, Ozturk M, Athar H R.2006. Salinity and water stress improving crop efficiency.Springer-Verlag New York, LLC, pp19-23.
    201.Ballesteros E, Blunwald E, Donaire J P, et al.1997. Na+/H+antiport activity in tonoplast vesiclesisolated from sunflower roots induced by NaCl stress. Physiologia Plantarum,99(2):328-334.
    202.Ballesteros E, Donaire J P, Belver A.1996. Effects of salt stress on H+-ATPase and H+-PPase activitiesof tonoplast-enriched vesicles isolated from sunflower roots. Physiologia Plantarum,97(2):259-268.
    203.Bandeo lu E, Eyido an F, Yücel M, et a1.2004. Antioxidant responses of shoots and roots of lentil toNaCl-salinity stress. Plant Growth Regulation,42(1):69-77.
    204.Barkla B J, Zingarelli L, Blumwald E, et al.1995. Tonoplast Na+/H+antiport activity and itsenergization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L.Plant Physiology,109(2):549-56.
    205.Bassam N EI.1998. Energy plant species-their use and impact on environment and development.London: James&James Ltd.
    206.Bates P W, Vierstra R D.1999. UPL1and2, two405kDa ubiquitin-protein ligases from Arabidopsisthaliana related to the HECT-domain protein family. Plant Journal,20(2):183-195.
    207.Beligni M V, Lamattina L.2000. Nitric oxide stimulates seed germination and de-etiolation, andinhibits hypocotyl elongation, three light inducible responses in plants. Planta,210(2):215-222.
    208.Beligni M V, Lamattina L.2001. Nitric oxide: a non-traditional regulator of plant growth. Trends inPlant Science,6(11):508-509.
    209.Blumwald E, Aharon G S, Apse M P.2000. Sodium transport and salt tolerance in plants. CurrentOpinion in Cell Biology,12(4):431-434.
    210.Bradford M M.1976. A rapid and sensitive method for the quantification of microgram quantities ofprotein utilizing the principle of protein-dye binding. Analytical Biochemistry,72:248-254.
    211.Britto D T, Kronzucker H J.2008. Cellular mechanisms of potassium transport in plants. PhysiologiaPlantarum,133(4):637-650.
    212.Carter D R, Cheeseman J M.1993. The effect of external NaCl on thylakoid stacking in lettuce plants.Plant, Cell and Environment,16:215-223.
    213.Chaterton N J, Carlson G E, Hungerford W E, et al.1980. Effect of tillering and cool nights onphotosynthesis and chloroplast starch in pangola. Crop Science,12(2):206-208.
    214.Cheeseman J M.1988. Mechanism of salinity tolerance in plant. Plant Physiology,87:547-550.
    215.Chen W C, Cui P J, Sun H Y, et al.2009. Comparative effects of salt and alkali stresses on organicacid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.). Industrial Cropsand Products,30:351-358.
    216.Colombo R, Cerana R.1993. Enhanced activity of tonoplast pyrophosphatase in NaCl-grown cells ofDaucus carota. Journal of Plant Physiology,142:226-229.
    217.Cramer G R, Bowman D C.1991. Short-term leaf elongation kinetics of maize in response to salinityare independent of the root. Plant Phsiology.95(3):965-967.
    218.Cui X H, Hao F S, Chen H, et al.2008. Expression of the Vicia faba VfPIP1gene in Arabidopsisthaliana plants improves their drought resistance. Joural of Plant Research,121(2):207-214.
    219.Debez A, Ben Hamed K, Grignon C, et a1.2004. Salinity effects on germination, growth and seedproduction of the Halophyte Cakile maritime. Plant and Soil,262:179-189.
    220.Demiral T, Türkan I.2004. Does exogenous glycinebetaine affect antioxidative system of riceseedlings under NaCl treatment? Journal of Plant Physiology,161(10):1089-1100.
    221.Desikan R, Cheung M K, Bright J, et al.2004. ABA,hydrogen peroxide and nitric oxide signalling instomatal guard cells. Journal of Experimental Botany,55(395):205-212.
    222.Diatachenko L, Lau Y F, Campbell A P, et al.1996. Suppression subtractive hybridization: a methodfor generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of theNational Academy of USA,93(12):6025-6030.
    223.Endress A G, Sjolund R D.1976. Ultrastructural cytology of callus cultures of streptanthus tortuosus asaffected by temperature. American Journal of Botany,63(9):1213-1224.
    224.Fischer-Schliebs E, Ball E, Berndt E, et al.1997. Differential immunological cross-reactions withantisera against the V-ATPase of Kalancho daigremontiana reveal structural differences of V-ATPasesubunits of different plant species. Biological Chemistry,378(10):1131-1139.
    225.Flowers T J, Gaur P M, Gowda C L L, et al.2010. Salt sensitivity in chickpea. Plant, Cell andEnvironment,33(4):490-509.
    226.Francoise F, Daniel L R, John G.1991. Effects of salt stress on amino acid, organic acid andcarbohydrate composition of root, bacteroids and cytosol of alfalfa. Plant Physiology,96:1228-1236.
    227.Garbarino J, DuPont F M.1988. NaCl induces a Na+/H+antiport in tonoplast vesicles from barley roots.Plant Physiology,86(1):231-236.
    228.Gaume A, M chler F, León C D, et al.2001. Low-P tolerance by maize (Zea mays L.) genotypes:significance of root growth, and organic acids and acid phosphatase root exudation. Plant and Soil,228(2):253-264.
    229.Gossett D R, Millhollon E P, Lucas M C.1994. Antioxidan response to NaCl stress in salt tolerant andsalt sensitive cultivar of cotton. Crop Science,34:706-714.
    230.Gramer G R.1985. Displacement of Ca2+and Na+form the plasmalemma of rottlells. Plant Physiology,79:207-211.
    231.Greenway H, Munns R.1980. Mechanisms of salt tolerance in nonhalophytes. Annual Review of PlantPhysiology,31:149-190.
    232.Grieve C M, Francois L E, Maas E V.1994. Salinity affects the timing of phasic development in springwheat. Crop Science,34(6):1544-1549.
    233.Grieve C M, Lesch S M, Maas E V et al.1993. Leaf and spikelet primordia initiation in salt-stressedwheat. Crop Science,33(6): l286-1294.
    234.Grieve C M, Maas E V.1984. Betaine accumulation in salt-stressed sorghum. Physiologia Plantarum,61(2):167-171.
    235.Guo L Q, Shi D C, Wang D L.2010. The key physiological response to alkali stress by the alkaliresistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids andinto the rhyzosphere. Journal of Agronomy and Crop Science,196(2):123-135.
    236.Guy R D, Warne P G, Reid D M.1984. Glycinebetaine content of halophytes: Improved analysis byliquid chromatography and interpretations of results. Physiologia Plantarum,61(2):195-202.
    237.Hamel P, Saint-Georges Y, Pinto B, et al.2004. Redundancy in the function of mitochondrialphosphate transport in Saccharomyces cerevisiae and Arabidopsis thaliana. Molecular Microbiology,51(2):307-317.
    238.Hernández J A, Jiménez A, Mullineaux P, et al.2000. Tolerance of pea (Pisum sativum L.) tolong-term salt stress is associated with induction of antioxidant defences. Plant, Cell and Environment,23(8):853-862.
    239.Hernández-Nistal J, Dopico B, Labrador E, et al.2002. Cold and salt stress regulates the expressionand activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Science,163(3):507-514.
    240.Jahnke L S. White A L.2003. Long-term hyposaline and hypersaline stresses produce distinctantioxidant responses in the marine alga Dunaliella tertiolecta. Plant Physiology,160(10):1193-1202.
    241.Jiang Y, Deyholos M K.2006. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsisroots reveals novel classes of responsive genes. BMC Plant Biology,6:25.
    242.Kipreos E T, Pagano M.2000. The F-box protein family. Genome Biology,1(5):30021-30027.
    243.Kirsch M, Zhigang A, Viereck R, et al.1996. Salt stress induces an increased expression of V-type H+-ATPase in mature sugar beet leaves. Plant Molecular Biology,32(3):543-547.
    244.Kishor P, Hong Z, Miao G H, et al.1995. Overexpression of [delta]-pyrroline-5-carboxylatecarboxylate synthetase increases proline production and confers osmotolerance in transgenic plants.Plant Physiolology,108(4):1387-1394.
    245.Kocsy G, Galiba G, Sutka J.1991. In vitro system to study salt and drought tolerance of wheat.Acta.Horticulturae,2(89):235-236.
    246.Lacerda C F, Cambraia J, Oliva M A, et al.2003. Solute accumulation and distribution during shootand leaf development in two sorghum genotypes under salt stress. Environmental and ExperimentalBotany,49(2):107-120.
    247.Lacerda C F, Cambraia J, Oliva M A, et al.2005. Changes in growth and in solute concentrations insorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany,54(1):69-76.
    248.Landfald B, Strom A R.1986. Choline-glycine betaine pathway confers a high level of osmotictolerance in Escherichia coli. Journal of Bacteriology,165(3):849-855.
    249.Levitt J.1980. Responses of plants to environmental stresses. Academic Press, pp375-393.
    250.Li P H, Chen M, Wang B S.2002. Effect of K+nutrition on growth and activity of leaf tonoplastV-H+-ATPase and V-H+-PPase of Suaeda salsa under NaCl stress. Acta Botanica Sinica,44(4):433-440.
    251.Lin C C, Kao C H.2000. Effect of NaCl stress on H2O2metabolism in rice leaves. Plant GrowthRegulation,30(2):151-155.
    252.Lin C C,Kao C H.1996. Proline accumulation is associated with inhibition of rice seeding root growthcaused by NaCl. Plant Science.114(2):121-128.
    253.Lippuner V, Cyert M S, Gasser C S.1996. Two classes of plant cDNA clones differentiallycomplement yeast calcineurin mutants and increase salt tolerance of wild-type yeast,The Journal ofBiological Chemistry,271(22):12859-12866.
    254.Liu H, Liu Y, Yu B, et al.2004. Increased polyamines conjugated to tonoplast vesicles correlate withmaintenance of the H+-ATPase and H+-PPase activities and enhanced osmotic stress tolerance in wheat.Journal of Plant Growth Regulation,23(2):156-165.
    255.Loewus F A, Murthy P P N.2000. Myo-inositol metablism in plants. Plant Science,150(1):1-19.
    256.Luttge U, Ratajczak R, Rausch T, et al.1995. Stress responses of tonoplast proteins: an example formolecular ecophysiology and the search for eco-enzymes. Acta Botanica Neerlandica,44(4):343-362.
    257.Maas E V, Grieve C M.1990. Spike and leaf development of salt-stressed wheat. Crop Science,30(6):1309-1313.
    258.Maathuis F J M, Amtmann A.1999. K+nutrition and Na+toxicity: the basis of cellular K+/Na+ratios.Annals of Botany,84(2):123-133.
    259.Macfarlane G R, Burchett M D.2000. Cellular distribution of copper, lead and zinc in the greymangrove, Avicennia marina (Forsk) Vierh. Aquatic Botany,68(1):45-59.
    260.Manners J M, Penninckx I A M A, Vermaere K, et al.1998. The promoter of the plant defensin genePDf1.2from Arabidopsis is systemically activated by fungal pathogens and responds to methyljasmonate but not to salicylic acid. Plant Molecular Biology,38(6):1071-1080.
    261.Martinoia E, Maeshima M, Neuhaus H E.2007. Vacuolar transporters and their essential role in plantmetabolism. Journal of Experimental Botany,58(1):83-102.
    262.Mccue K F, Hanson A D.1990. Drought and salt tolerance: towards understanding and application.Trends in Biotechnology,8:358-362.
    263.McLenna A G, Cartwright J, Gasmi L.2000. The human NUDT family of nucleotide hydrolaseswidespread enzymes of diverse substrate specificity. Advances in Experimental Medicine and Biology,486:115-118.
    264.McLennan A G.2006. The Nudix hydrolase superfamily. Cellular and Molecular Life Sciences,63(2):123-143.
    265.Mitsuya S, Takeoka Y, Miyake H.2000. Effects of sodium chloride on foliar ultrastructure of sweetpotato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. Journal ofPlant Physiology,157(6):661-667.
    266.Mittova V, Tal M, Volokita M, et al.2003. Up-regulation of the leaf mitochondrial and peroxisomalantioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomatospecies Lycopersicon pennellii. Plant, Cell and Environment,26(6):845-856.
    267.Munns R, Termaat A.1986. Whole-plant responses to salinity. Australian Journal of Plant Physiology,13(1):143-160.
    268.Munns R.2002. Comparative physiology of salt and water stress. Plant, Cell and Environment,25(2):239-250.
    269.Nassery H, Baker D A.1972. Extrusion of sodium ions by barley roots. II. Localization of theextrusion mechanism and its relation to long-distance sodium ion transport. Annals of Botany,36(5):889-895
    270.Neill S J, Desikan R, Hancock J T.2003. Nitric oxide signaling in plants. New Phytologist,159(1):11-35.
    271.Netondo G W, Onyango J C, Beck E.2004. Sorghum and salinity: I. response of growth, waterrelations, and ion accumulation to NaCl salinity. Crop Science,44(3):797-805.
    272.Ogawa T, Ueda Y, Yoshimura K, et al.2005. Comprehensive analysis of cytosolic nudix hydrolases inArabidopsis thaliana. The Journal of Biological Chemistry,280(26):25277-25283.
    273.Ohnishi T, Gall R S, Mayer M L.1975. An improved assay of inorganic phosphate in the presence ofextralabile phosphate compounds: application to the ATPase assay in the presence of phosphocreatine.Analytical Biochemistry,69(1):261-267.
    274.Otoch M L O, Sobreira A C M, Arag o M E F, et al.2001. Salt modulation of vacuolar H+-ATPaseand H+-Pyrophosphatase activities in Vigna unguiculata. Journal of Plant Physiology,158(5):545-551.
    275.Parida A K, Das A B, Mittra B.2003. Effects of NaCl stress on the structure, pigment complexcomposition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts.Photosynthetica,41(2):191-200.
    276.Parks G E, Dietrich M A, Schumaker K S.2002. Increased vacuolar Na+/H+exchange activity inSalicornia bigelovii Torr. in response to NaCl. Journal of Experimental Botany,53(371):1055-1065.
    277.Peng YH, Zhu YF, Mao YQ, Wang SM, Su WA, Tang ZC.(2004). Alkali grass resists salt stressthrough high [K+] and an endodermis barrier to Na+. Journal of Experimental Botany,55(398):939-949.
    278.Petrusa L M, Winicov I.1997. Proline status in salt-tolerant and salt-sensitive alfalfa cell lines andplants in response to NaCl. Plant Physiology and Biochemistry,35(4):303-310.
    279.Pitman M G.1984. Transport across the roots and shoot/root interactions. In: Staples RC, ToenniessenGH, eds. Salinity tolerance in plants: strategies for crop improvement. New York: John Wiley andSons, pp93-123.
    280.Qian Y L, Wilhelm S J, Marcum K B.2001. Comparative responses of two kentucky bluegrasscultivars to salinity sties. Crop Science Society of America,41(6):1895-1900.
    281.Qiu N, Chen M, Guo J, et al.2007. Coordinate up-regulation of V-H+-ATPase and vacuolar Na+/H+antiporter as a response to NaCl treatment in a C3halophyte Sueda salsa. Plant Science,172(6):1218-1225.
    282.Qiu Y,Yu D.2009. Over-expression of the stress-induced OsWRKY45enhances disease resistance anddrought tolerance in Arabidopsis. Environmental and Experimental Botany,65(1):35-47.
    283.Qu X X, Huang Z Y, Baskin J M, et al.2008. Effect of temperature, light and salinity on seedgermination and radicle growth of the geographically widespread halophyte shrub Halocnemumstrobilaceum. Annals of Botany,2008,101(2):293-299.
    284.Queirós F, Fontes N, Silva P, et al.2009. Activity of tonoplast proton pumps and Na+/H+exchange inpotato cell cultures is modulated by salt. Journal of Experimental Botany,60(4):1363-1374.
    285.Ramoliya P J, Pandey A N.2003. Effect of salinization of soil on emergence, growth and survival ofseedlings of Cordia rothii. Forest Ecology and Management,176:185-194.
    286.Rao G G, Rao G R.1986. Pigment composition and chlorophyllase activity in Pigeon pea (Cajanusindicus Spreng.) and gingelly (Sesamum indicum L.) under NaCl salinity. Indian Journal ofExperimental Biology,19:768-770.
    287.Rausell A, Kanhonou R, Yenush L, et al.2003. The translation initiation after eIFIA1is an importantdeterminant in the tolerance to NaCl stress in yeast and plants. The Plant Journal,34(3):257-267.
    288.Rehman S, Harris P J C, Bourne W F, et al.1996. The effect of sodium chloride on germination andthe potassium and calcium contents of Acacia seeds. Seed Science and Technology,25:45-57.
    289.Sakamoto A, Murata N.2000. Genetic engineering of glycinebetaine synthesis in plants: current statusand implications for enhancement of stress tolerance. Journal of Experimental Botany,51(342):81-88.
    290.Santa-Cruz A, Acosta M, Rus A, et al.1999. Short-term salt tolerance mechanisms in differentially salttolerant tomato species. Plant Physiology Biochemistry,37(1):65-71.
    291.Sarvesh A, Anuradha M, Pulliah T, et al.1996. Salt stress and antioxidant response in high and lowproline producing cultivars of niger, Guizotia abyssinica (L.f) Cass. Indian Journal of ExperimentalBiology,34:252-256.
    292.Schachtman D P.2000. Molecular insights into the structure and function of plant K(+) transportmechanisms. Biochimica et Biophysica Acta,1465(1-2):127-139
    293.Seneoka H, Nagasaka C, Hahn D T, et al.1995. Salt tolerance of glycinebetaine-deficient andcontaining maize lines. Plant Physiology,107(2):631-638.
    294.Serrano R, Gaxiola R.1994. Microbial models and salt stress tolerance in plants. Plant Science,13(2):121-138.
    295.Shalata A, Neumann P M.2001. Exogenous ascorbic acid (vitamin C) increases resistance to salt stressand reduces lipid peroxidation. Journal of Experimental Botany,52(364):2207-2211.
    296.Shalata A, Tal M.1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of thecultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantarum,104(2):169-174.
    297.Shi D C, Sheng Y M.2005. Effect of various salt-alkaline mixed stress conditions on sunflowerseedling and analysis of their stress factors. Environmental and Experimental Botany,54:8-21.
    298.Shi D C, Yin S J, Yang G H, et al.2002. Citric acid accumulation in an alkali-tolerant plantPuccinellia tenuiflora under alkaline stresss. Acta Botanica Sinica,44:537-540.
    299.Shi H Z, Kim Y S, Guo Y, et al.2003. The Arabidopsis SOS5locus encodes a putative cell surfaceadhesion protein and is required for normal cell expansion. The Plant Cell,15(1):19-32.
    300.Silva P, Fa anha A, Tavares R, et al.2009. Role of tonoplast proton pumps and Na+/H+antiportsystem in salt tolerance of Populus euphratica Oliv. Journal of Plant Growth Regulation, In press.
    301.Singh N K, Handa A K, Hasegawa P M, et al.1985. Protein associated with adaptation of culturedtobacco cells to NaCl. Plant Physiology,79(1):126-137.
    302.Soussi M, Oca a A, Lluch C.1998. Effect of salt stress on growth, photosynthesis and nitrogenfixation in chick-pea (Cicer arietinum L.). Journal of Experimental Botany,49(325):1329-1337.
    303.Steudle E.2000. Water uptake by roots: effect of water deficit. Journal of Experimental Botany,51(350):1531-1542.
    304.Su J, Shen Q X, David Ho T H, et al.1998. Dehydration-stress-regulated transgene expression instably transformed rice plants. Plant Physiology,117(3):913~922.
    305.Szczerba M W, Btitto D T, Kronzucker H J.2009. K+transport in plants: physiology and molecularbiology. Journal of Plant Physiology,166(2009):447-466.
    306.Tamura T, Hara K, Yamaguchi Y, et al.2003. Osmotic stress tolerance of transgenic tobaccoexpressing a gene encoding a membrane-located receptor-like protein from tobacco plants. PlantPhysiology,131(2):454-462.
    307.Tanaka K, Kondo N, Sugahara K.1982. Accumulation of hydrogen peroxide in chloroplasts of SO2fumigated spinach leaves. Plant and Cell Physiology,23(6):999-1007.
    308.Tang C, Turner N C.1999. The influence of alkalinity and water stress on the stomatal conductance,photosynthetic rate and growth of Lupinus augustifolius L. and Lupinus pilosus Murr. AustralianJournal of Experimental Agriculture.39:457-464.
    309.Tao R, Uratsu S L, Dandekar A M, et al.1995. Sorbitol synthesis in transgenic tobacco with applecDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant and Cell Physiology,36(3):525-532.
    310.Tarczynski M C, Jensen R G, Bohnert H J.1992. Expression of a bacterial mtlD gene in transgenictobacco leads to production and accumulation of mannitol. Proceedings of the National Academy ofSciences,89:2600-2604.
    311.Tester M, Davenport R.2003. Na+tolerance and Na+transport in higher plants. Annals of Botany,91(5):503-527.
    312.Vani B, Saradhi P P, Mohanty P.2001. Alteration in chloroplast structure and thylakoid membranecomposition due to in vivo heat treatment of rice seedlings: correlation with the functional changes.Journal of Plant Physiology,158:583-592.
    313.Vierstra R D.2003. The ubiquitin/26S proteasome pathway, the complex last chapter in the life ofmany plant proteins. Trends in Plant Science,8(3):135-142.
    314.Waditee R, Hibino T, Nakamura T, et al.2001. Overexpression of a a+/H+antiporter confers salttolerance on freshwater cyanobacterium, making it capable of growth in sea water. Proceedings of theNational Academy of Sciences of the United States of America,99(6):4109-4114.
    315.Wang B, Lüttge U, Ratajczak R.2001. Effects of salt treatment and osmotic stress on V-ATPase andV-PPase in leaves of the halophyte Suaeda salsa. Journal of Experimental Botany,52(365):2355-2365.
    316.Wang H W, Su J H, Shen Y G.2003. Difference in response of photosynthesis to bisulfite between twowheat genotypes. Acta Photophysiologica Sinica,29(1):27-32.
    317.Wang T W, Lu L, Wang D, et al.2001. Isolation and characterization of senescence-induced cDNAsencoding deoxyhypusine synthase and eucaryotic translation initiation factor5A from tomato. TheJournal of Biological Chemistry,276(20):17541-17549.
    318.Weis P, Windham L, Burke D J, et al.2002. Release into the environment of metals by two vascularsalt marsh plants. Marine Environmental Research,54(3-5):325-329.
    319.Widell S, Larsson C.1990. A critical evaluation of markers used in plasma membrane purification. In:Larsson C, Moller IM, eds. The plant plasma membrane. Berlin: Springer Verlag. pp16-43.320Xu D, Duan X, Wang B, et al.1996. Expression of a late embryogenesis abundant protein gene, HVA1,from barley conferred tolerance to water deficit and salt stress in transgenic rice. Plant Physiology,110(1):249-257.
    321.Yamada S, Katsuhara M, Kelly W B, et al.1995. A family of transcripts encoding water channelproteins: tissue-specific expression in the common ice plant. Plant Cell,7(8):1129-1142.
    322.Yang C P, Wang Y C, Liu G F, et al.2004. Study on gene expression of Tamarix under NaHCO3stressusing SSH technology. Journal of Plant Physiology and Molecular Biology,31(9):926-933.
    323.Zeier J, Delledonne M, Mishina T, et al.2004. Genetic elucidation of nitric oxide signaling inincompatible plant-pathogen interactions. Plant Physiology,136(1):2875-2886.
    324.Zhang C K, Lang P, Dane F, et al.2005. Cold acclimation induced genes of trifoliate orange (Poncirustrifoliate). Plant Cell Reports,23(10-11):764-769.
    325.Zhang H X, Blumwald E.2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage butnot in fruit. Nature Biotechnology,19(8):765-768.
    326.Zhang J S, Xie C, Li Z Y, et al.1999. Expression of the plasma membrane H+-ATPase gene inresponse to salt stress in a rice salt-tolerant mutant and its original variety. Theoretical and AppliedGenetics,99(6):1006-1011.
    327.Zhang L X, Kirkham M B.1994. Drought-stress-induced changes in activities of superoxide dismutase,catalase, and peroxidase in wheat species. Plant and Cell Physiology,35(5):785-791.
    328.Zhang S, Klessig D F.2001. MAPK cascades in plant defense signaling. Trends in Plant Science,6(11):520-527.
    329.ZhangY X, Wang Z, Chai T Y, et al.2008. Indian mustard aquaporin improves drought andheavy-metal resistance in tobacco. Molecular Biotechnology,40(3):280-292.
    330.ZhangY, Mian M A R, Chekhovskiy K, et al.2005. Differential gene expression in Fesluca under heatstress conditions. Journal of Experimental Botany,56(413):897-907.
    331.Zheng N, Schulman B A, Song L, et al.2002. Structure of the Cul1-Rbx1-Skp1-F boxSkp2SCFubiquitin ligase complex. Nature,416(6882):703-709.
    332.Zhu J K.2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology,124(3):941-948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700