用户名: 密码: 验证码:
两种绿潮藻的生理生态学特征及其对黄海绿潮暴发期典型环境变化的响应差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿潮(green tide)是大型定生绿藻脱离固着基后漂浮并不断增殖,而导致生物量迅速扩增形成的藻类灾害,世界范围内已经暴发的绿潮大都是单一物种出现。浒苔(Ulva prolifera)和肠浒苔(U. intestinalis)是世界性的暖温性海藻,因其能在适宜环境条件下快速增长并形成绿潮引起了广泛关注,是绿潮形成的原因种(green tide forming macroalgae),其中浒苔是2007年~2011年我国黄海绿潮的单一优势种。
     浒苔与肠浒苔的分类地位很接近。相关报道及本研究实地调查均表明,在过去五年暴发的黄海绿潮中只有浒苔通过彼此间的缠绕形成了巨大的漂浮群落;肠浒苔在绿潮暴发期间虽然与浒苔并生并具有相当大的生物量,但却始终保持底栖附着的生长状态;另外,浒苔在绿潮期具有明显的生消过程,而肠浒苔的生物量在四季变化并不明显。是什么原因导致并生的两种绿潮藻在绿潮暴发期的差异?我们推测二者对外界环境不同的适应策略可能是导致上述现象产生的原因。本文因此以这两种绿潮藻为目标生物,在实验生态条件下系统分析二者的光合作用、营养盐吸收等重要生理过程的差异及其对黄海绿潮暴发期典型环境变化的响应差异,并从抗氧化系统活性变化入手,初步探讨了胁迫响应的途径和机制。结果发现:
     1.温度、光照、盐度、pH值这四种环境因子中,温度、光照和盐度对两种绿潮藻的生长和生理均有非常显著的影响,而且两种绿潮藻的光合能力(Fv/Fm)和抗氧化能力(T-AOC)对这三种环境因子的变化很敏感。在本实验中三种环境因子的最佳组合为:温度:20℃,盐度:30,光照:60μmol photons.m-2.s-1。
     2.利用叶绿素荧光技术对两种绿潮藻在黄海绿潮暴发期的自然生境中光合能力的比较得出如下结论:
     光合色素分析表明,两种绿潮藻间的叶绿素浓度差异非常显著(two-wayANOVA, p <0.0005),而且浒苔的叶绿素浓度(包括叶绿素a,叶绿素b和总叶绿素)显著高于肠浒苔;
     经暗适应后浒苔的最大潜在光合效率(Fv/Fm)要显著高于肠浒苔,这表明浒苔具有较高的光合作用效率。快速光响应曲线(RLCs)的实验结果进一步证明了这一结论。与肠浒苔相比,浒苔在快速光响应过程中的最大相对电子传递率(rETR)呈现出稳定的、快速的上升趋势,显示出浒苔的光合作用活力保持在较高的水平。本研究将快速光响应曲线拟合后得到的实验数据中,浒苔总体上较高的最大相对电子传递率(maximum rETR),快速光响应曲线初始斜率(α),以及最小饱和光强(Ek)数值也反映出浒苔较肠浒苔具有更强的光合作用能力;
     荧光猝灭分析表明,当光辐射增强时,浒苔较肠浒苔具有更高的非光化学猝灭(NPQ)上升以及较低的光化学猝灭下降(qP),这说明浒苔的光保护较肠浒苔可能更加有效。
     因此可以推论,在黄海绿潮暴发时,浒苔更强的光合作用能力使其在自由漂浮生长过程中具有更大的优势。与共同生长的附着状态的肠浒苔相比,自由漂浮状态避免了浒苔在强光带的下沉。在黄海有利的海洋环境条件以及高营养水平下,加上更为有效的光保护,漂浮着的浒苔迅速生长、聚集并形成了绿潮。
     3.通过两种绿潮藻在黄海绿潮暴发后期的自然生境中对其抗氧化系统的比较得出如下结论:
     在黄海绿潮暴发后期浒苔脂膜过氧化程度(MDA含量)和ROS之一的H2O2含量均比肠浒苔的要高,说明黄海绿潮暴发后期剧烈环境变化带来的的环境胁迫对浒苔的影响要比肠浒苔强;
     在黄海绿潮后期浒苔的总抗氧化能力(T-AOC),抗氧化酶活性(SOD、Gpx、Apx)和抗氧化剂(GSH、AsA)含量相比最适生长条件下的对照组差异显著(post-hoc,p<0.05),而肠浒苔的Gpx、Apx、GSH表现并不明显,而且浒苔的T-AOC,抗氧化酶活性(SOD、Gpx、Apx)和抗氧化因子含量(AsA)要明显低于肠浒苔,说明浒苔抗氧化系统对环境胁迫更敏感,同样的胁迫条件下(如高温、高光照等)其耐受能力要低于肠浒苔。
     因此可以推论,在剧烈变化的环境中两种绿潮藻的氧化系统的不同响应在很大程度上决定了浒苔和肠浒苔能在暴发黄海绿潮同时存在而浒苔在暴发后期消亡这一现象的出现。
     4.通过2010年全年在黄海绿潮暴发地对主要环境因子的调查发现:温度、光照、盐度这三种环境因子的变化,不同月份,以及绿潮暴发消亡过程这三者存在一种非常明显的关系。主要表现为:5月-7月下旬,海水表层温度、盐度和光照均处于中间值,然而此段时间正处于黄海绿潮的暴发期;7月下旬-9月上旬,海水表层温度、光照处于最大值,而盐度处于最小值,此段时间正处于黄海绿潮的消亡期;一年中其他月份,海水表层出现了低温、低光照和高盐度,此段时间正处于黄海绿潮发展的准备期。
     调查发现某些气象事件(如降水、台风等)与绿潮的暴发消亡有非常紧密的关联。
     5.通过温度、光照、盐度这三种环境因子与黄海绿潮暴发消亡过程相结合设计实验,实验生态条件下分析两种绿潮藻的重要生理过程及其响应的差异得到如下
     结论:
     本研究所设计的实验方法对两种绿潮藻因环境变化产生的生理响应进行了最大程度地估计判断并尽最大可能地模拟了藻体在自然环境中的生长过程,同时,通过两种绿潮藻实验数据之间的比较进一步解释了浒苔形成黄海海域绿潮的机制和潜在原因。
     在环境因子联合作用的实验环境下,并生的两种绿潮藻光合作用和防御系统生理生态学特征与它们不同的自然生长过程存在密切联系:与肠浒苔相比,浒苔重要生理过程对环境变化更敏感,在绿潮暴发期其较强的光合作用能力和营养盐吸收能力可能是导致其在短期内暴发性增殖而形成绿潮的可能原因,而在绿潮暴发后期其相对较弱的抗氧化系统可能是导致其消亡的可能原因,这显示了其依赖环境条件的机会主义的生长策略。相比浒苔,肠浒苔由于其较强的抗氧化系统对因环境变化带来的胁迫有较高的耐受能力。
     浒苔之所以在黄海绿潮中成为优势种与其较高的光合作用能力与可塑性,以及较强的营养吸收同化能力息息相关。因此,当环境条件适宜时,浒苔较肠浒苔在竞争营养物质和生长空间的过程中更具优势。
     本论文的研究结果为黄海绿潮生消机制及暴发机理的研究提供了一定的科学资料、理论依据及实践基础。但论文中许多研究工作需要继续关注并有待解决。例如:两种绿潮藻光合系统和抗氧化系统的蛋白(或酶)的研究还仅停留在通过表观水平的统计分析得出的结论,其在分子水平等的更深层次的机理还无从得知。因此针对两种绿潮藻光合系统和抗氧化系统的的蛋白(或酶)在转录、表达水平的研究亟待进行。
Yellow Sea green tide occurred almost every year from2007to2011in coastalChina and Ulva prolifera (Müller) J. Agardh was identified as the causativemacroalgal species. Another species observed in the bloom area was U. intestinalis,which co-occurred with U. prolifera and was recorded as the green tide formingspecies but not the causative one in this bloom area. The free-floating life form andthe ephemeral bloom then diminishing strategy of U. prolifera, and attaching and thepersistence of U. intestinalis can be observed in the highly dynamic offshore area ofQingdao during the Yellow Sea green tide although they have very similar taxonomicstatus. The aim of this thesis is from comparing the differences of ecophysiologicaltraits of these two co-occurring Ulva macroalgae to bring light on the possibleexplanation for these observed phenomena correlating with their different naturalprocesses.
     The photosynthetic capacities, defense systems and nutrients absorptioncapacities of these two green tide macroalgae were comparatively determined underfield investigation and controlled laboratory conditions. The main methods and resultswere that:
     1. By selecting relative growth rate, Fv/Fm as photosynthetic capacity parameterand T-AOC as defense system parameter of these two macroalgae, the orthogonaldesign was used to investigate their responds to environmental factors(temperature, irradiance, salinity and pH value). Results showed that temperature,irradiance, salinity had a significant effect on physiological characteristics ofthese two macoalgae, but not pH value. Fv/Fm as photosynthetic capacityparameter and T-AOC as defense system parameter were sensitive toenvironmental factor changes (temperature, irradiance, salinity). The most suitable combination after the orthogonal experiment was: temperature (20℃),salinity (30PSU),irradience (60μmol photons.m~(-2).s~(-1)).
     2. The photosynthetic capacities in-situ during the Yellow Sea green tide (June,2010) and after lab acclimation of these two macroalgae were comparativelydetermined by chlorophyll fluorescence. Results suggested that higherphotosynthetic capacity in U. prolifera largely contributes to its free-floating lifeform. Compared with co-occurring attached U. intestinalis, free-floating life formprevented U. prolifera from sinking out of euphotic zone. In addition to moreefficacious photoprotection, the favorable oceanographic conditions and highnutrient levels in the Yellow Sea can support the floating U. prolifera growingand aggregating to form a green tide.
     3. The antioxidant systems in-situ in the late phase of Yellow Sea green tide (earlyAugust,2010) and after lab acclimation of these two macroalgae werecomparatively determined. Results suggested that U. prolifera was moresusceptible than U. intestinalis to the harsh environmental changes in the latephase of Yellow Sea green tide, but insufficient antioxidative activity in U.prolifera u cannot prevent and repair ROS damaging effects. So, the ephemeralbloom then diminishing strategy of U. prolifera and the persistence of U.intestinalis can be explained in the highly dynamic offshore area of Qingdao.
     4. The environmental changes (irradiance, temperature and salinity) wereinvestigated from November,2009to March,2011. The results showed that SST,PAR and SSS had the regular variability with the green tide developing phases: ithad low SST and PAR but high SSS at the beginning of the bloom (designated aspre-bloom in the present study), and intermediate SST, PAR and SSS during thebloom while had high SST and PAR but low SSS at the end of it (designated aspost-bloom). A close relationship was observed between the changes of theenvironmental factors and the bloom developing phases. Furthermore, ourinvestigation found that some meteorological events (such as rainfall, typhoons,etc.) were closely associated with the bloom and diminishing of green tide.
     5. Basing on the field investigation three culture condions (pre-bloom, at10°C, 30μmol photons.m~(-2).s~(-1),35practical salinity units (PSU); bloom, at20°C,60μmolphotons.m~(-2).s~(-1),30PSU; post-bloom, at26°C,90μmol photons.m~(-2).s~(-1),25PSU)were set to estimate the physiological responses of these two macroalgae. Theresuilts suggested that differences of the physiological traits in these twoco-occurring species correlates with their different life strategies: U. prolifera ismore sensitive to dynamic environment especially to the harsh changingenvironment conditions, characterizing their purely opportunistic life strategy;while U. intestinalis is more stable, which is due to its stress tolerance capacitygain by antioxidant system; Ecological success of U. prolifera is inextricablylinked with its higher capacity and plasticity of photosynthesis and nutrientabsorption/assimilation. So once when conditions are favourable, U. proliferaseems to be able to successfully compete with U. intestinalis for nutrients andspace when they co-occur. Therefore, from comparison of the ecophysiologicalbasis of these two species in this present study gave a further understand of theirnature ecological processes, and proved the method successful in the laboratory.
引文
[1] Taylor R, Fletcher R, Raven J.2001. Preliminary studies on the growth of selected 'greentide' algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients ongrowth rate. Botanica Marina,44:327-336.
    [2] Nelson T, Nelson A, Tjoelker M.2003. Seasonal and spatial patterns of "green tides"(ulvoidalgal blooms) and related water quality parameters in the coastal water of Washington State,USA. Botanica Marina,46:263-275.
    [3] Nelson T, Haberlin K, Nelson A, Ribarich H, Hotchkiss R.2008. Ecological andphysiological controls of species composition in green macroalgal blooms. Ecology,89:1287-1298.
    [4] Sun S, Wang F, Li C, Qin S, Zhou M, Ding L, Pang S, Duan D, Wang G, Yin B.2008.Emerging challenges: Massive green algal blooms in the Yellow Sea. Nature Proceedings:http://dx.doi.org/10101/npre.12008.12266.10101.
    [5] Yabe T, Ishii Y, Amano Y, Koga T, Hayashi S.2009. Green tide formed by free-floating Ulvaspp. at Yatsu tidalflat, Japan. Limnology,10(3):239-245.
    [6] Kim J-H, Kang E J, Park M G, Lee B-G, Kim K Y.2010. Effects of temperature andirradiance on photosynthesis and growth of a green-tide-forming species (Ulva linza) in theYellow Sea. Journal of Applied Phycology,23(3):421-432.
    [7]唐启生,张晓雯,叶乃好,庄志猛.2010.绿潮研究现状与问题.中国科学基金,1:5-9.
    [8]李大秋,贺双颜,杨倩.2008.青岛海域浒苔来源与外海分布特征研究.环境保护,402:45-46.
    [9] Merceron M, Antoine V, Auby I, Morand P.2007. In situ growth potential of the subtidal partof green-tide forming Ulva spp. Stocks. Science of the Total Environment,384:293-305.
    [10] Lin A, Shen S, Wang J, Yan B.2008. Reproduction Diversity of Enteromorpha prolifera.Journal of Integrative Plant Biology,50(5):622-629.
    [11] Gao S, Chen X, Yi Q, Wang G, Pan G.2010. A Strategy for the Proliferation of Ulva prolifera,Main Causative Species of Green Tides, with Formation of Sporangia by Fragmentation.PLoS ONE,5(1): e8571.
    [12] Ye N, Zhuang Z, Jin X.2008. China is on the tracking Enteromorpha spp. forming green tide.Nature Proceedings: http://dx.doi.org/10101/npre.12008.12352.10101.
    [13] Wu H, Zou D, Gao K.2008. Impacts of increased atmospheric CO2concentration onphotosynthesis and growth of micro and macro algae. Science in China Series C: LifeSciences,51:1144-1150.
    [14] Bolam S, Fernandes T, Read P, Raffaelli D.2000. Effects of macroalgal mats on intertidalsandflats: an experimental study. Journal of Experimental Marine Biology and Ecology,249:123-137.
    [15] Pardal M, Cardoso P, Sousa J, Marques J, Raffaelli D.2004. Assessing environmental quality:a novel approach. Marine Ecology Progress Series,267:1-8.
    [16]王超.2010.浒苔(Ulva prolifera)绿潮危害效应与机制的基础研究.博士.
    [17]刘英霞,常显波,王桂云,赵俊生.2009.浒苔的危害及防治.安徽农业科学,37(20):9566-9567.
    [18] Blomster J, Baeck S, Fewer D, Kiirikki M, Lehvo A, CHRISTINE A.2002. Novelmorphology in Enteromorpha (Ulvophyceae) forming green tides. American Journal ofBotany,89:1756-1763.
    [19] Hayden H, Waaland J.2002. Phylogenetic systematics of the Ulvaceae(Ulvales,Ulvophyceae)using chloroplast and nuclear DNAsequences. Journal of Phycology,38:1200-1212.
    [20] Hayden H, Blomster J, Maggs C, Silva P, Stanhope M, Waaland J.2003. Linnaeus was rightall along:Ulva and Enteromorpha are not distinct genera. European Journal of Phycology,38:277-294.
    [21]叶乃好,张晓雯,毛玉泽,庄志猛,王清印.2008.黄海绿潮浒苔(Enteromorphaprolifera)生活史的初步研究.中国水产科学,15(5):853857.
    [22]丁兰平,栾日孝.2009.浒苔(Enteromorphaprolifera)的分类鉴定、生境习性及分布.海洋与湖沼,40(1):68-71.
    [23] Baeck S, Lehvo A, Blomster J.2000. Mass occurrence of unattached Enteromorphaintestinalis on the Finnish Baltic Sea coast. Annales Botanici Fennici37:155-161.
    [24] Cohen R, Fong P.2004. Physiological responses of a bloom-forming green macroalga toshort-term change in salinity, nutrients, and light help explain its ecological success.Estuaries,27:209-216.
    [25] Figueroa F, Nygard C, Ekelund N.2003. Photobiological characteristics and photosyntheticUV responses in two Ulva species (Chlorophyta) from southern Spain. Journal ofPhotochemistry and Photobiology B: Biology,72:35-44.
    [26] Choo K, Snoeijs P, Pedersén M.2004. Oxidative stress tolerance in the filamentous greenalgae Cladophora glomerata and Enteromorpha ahlneriana. Journal of Experimental MarineBiology and Ecology,298:111-123.
    [27] Bischof K, Rautenberger R, Perez-Llorens J L.2006. Physiological acclimation to gradientsof solar irradiance within mats of the filamentous green macroalga Chaetomorpha linumfrom southern Spain. Marine Ecology Progress Series,306:165-175.
    [28] Tang W, Li X, Huang H.2009. Effects of different light intensity and temperature treatmenton photosynthesis and chlorophyll fluorescence in Ulva linza. Journal of Fisheries of China,33(5):762-769.
    [29] Liu F, Pang S, Chopin T.2010b. The dominant Ulva strain of the2008green algal bloom inthe Yellow Sea was not detected in the coastal waters of Qingdao in the following winter.Journal of Applied Phycology,22(5):531-540.
    [30] Xia J, Li Y, Zou D.2004. Effects of salinity stress on PS II in Ulva lactuca as probed bychlorophyll fluorescence measurements. Aquatic Botany,80:129-137.
    [31] Lu I, Sung M, Lee T.2006. Salinity stress and hydrogen peroxide regulation of antioxidantdefense system in Ulva fasciata. Marine Biology,150:1-15.
    [32] Choi T, Kang E, Kim J, Kim K.2010. Effect of salinity on growth and nutrient uptake ofUlva pertusa (Chlorophyta) from an eelgrass bed. Algae,25:17-26.
    [33] Luo M, Liu F.2011. Salinity-induced oxidative stress and regulation of antioxidant defensesystem in the marine macroalga Ulva prolifera. Journal of Experimental Marine Biology andEcology: http://dx.doi.org/10.1016/j.jembe.2011.1008.1023.
    [34]汤文仲,李信书,黄海燕,蔡春尔,霍元子,何培民.2009.不同光强和温度对长石莼(缘管浒苔)光合作用和叶绿素荧光参数的影响.水产学报,33:762-769.
    [35]刘静雯,董双林.2001.海藻的营养代谢及其对主要营养盐的吸收动力学.植物生理通讯,37(4):325-330.
    [36] Schreiber U.2004. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulsemethod: an overview.:279-319.
    [37] Strasser R, Tsimill-Michael M.2004. Advances in Photosynthesis and Respiration. ASrivastavaAnalysis of the chlorophyll a fluorescence transient:321–362.
    [38] Li X, Phippard A, Pasari J, Niyogi K.2002. Structure–function analysis of photosystem IIsubunit S(PsbS)in vivo. BMC Plant Biology,29:1131–1139.
    [39] Mullineaux C, Daniel E.2005. State transitions:an example of acclimation to low-light Stress.Journal of Experimental Botany,56:389–393.
    [40] Leipner J, Stamp P, Fracheboud Y.2000. Articially increased ascorbate content affectszeaxanthin formation but not thermal energy dissipation or degradation of antioxidantsduring coldinduced photooxidative stress in maize leaves. Planta,210:964–969.
    [41] Savitch L, Barker-Astrom J, Ivanov A, Hurry V, Oèquist G, Huner N.2001. GardestroèmP.Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosyntheticcapacity,associated with an increased reduction of the chloroplast stroma. Planta,214:295–303
    [42] Wen X, Gong H, Lu C.2005. Heat stress induces a reversible inhibition of electron transportat the acceptor side of photosystem II in a cyanobacterium Spirulina platensis..Plant Science,168:1471–1476.
    [43] Sepehri A, Sanavy M.2003. Water and nitrogen stress on maize photosynthesis. Journal ofBiological Sciences,3(6):578–584.
    [44]许大全.2002.光合作用效率. In.上海科学技术出版社,上海.29.
    [45] Schreiber U.2004. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulsemethod: an overview. In: Papageorgiou G (ed).. Springer, New York. p.279-319.
    [46] Ralph P, Polk S, Moore K, Orth R, Smith W.2002. Operation of the xanthophylls cycle in theseagrass Zostera marina in response to variable light. Journal of Experimental MarineBiology and Ecology,271:189-207.
    [47]史华明.2009.浒苔对氮磷吸收和释放及与中肋骨条藻竞争关系的初步研究.硕士.
    [48]李俭平,赵卫红,付敏.2010.氮磷营养盐对浒苔生长影响的初步探讨.海洋科学,34(4):45-48.
    [49]吴晓文,李瑞香,徐宗军.2010.营养盐对浒苔生长影响的围隔实验.海洋科学进展,28(4):538~544.
    [50]张寒野,田千桃,王阳阳.2010.浒苔和条浒苔生长及其氨氮吸收动力学研究.上海海洋大学学报,19(2):252~258.
    [51] Poole L, Raven J.1997. The biology of Enteromorpha. In: FE Round, Chapman D (eds).Progress in Phycological Research. Biopress Ltd.8.
    [52] Touchette B, Burkholder J.2000. Review of nitrogen and phosphorus metabolish in seagrass.Journal of Experimental Marine Biology and Ecology,250:133-167.
    [53] Imlay J.2003. Pathways of oxidative damage. Annual Review of Microbiology,57:395-418.
    [54] Joseph B, Jini D.2011. Development of salt stress-tolerant plants by gene manipulation ofantioxidant enzymes. Asian Journal of Agricultural Research,5:17-27.
    [55]尹永强,胡建斌,邓明军.2007.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展.植物生理科学,23(1):105-110.
    [56]刘素,张全胜,李伟,鞠青,唐学玺.2008. UV-B辐射对海带幼孢子体生长和生理的影响.中国海洋大学学报,38(6):937-942.
    [57] Apel K, Hirt H.2004. Reactive oxygen species: metabolism, oxidative stress, and signaltransduction. Annual Review of Plant Biology,55: pp.373–399.
    [58] Hiraoka M, Ohno M, Kawaguchi S, Yoshida G.2004. Crossing test among floating Ulvathalli forming 'green-tide' in Japan. Hydrobiologia,512:239-245.
    [59] Guillard R.1975. Culture of phytoplankton for feeding marine invertebrates in "Culture ofMarine Invertebrate Animals.". Plenum Press, New York. p.26-60.
    [60] Lotze H, Worm B, Sommer U.2000. Propagule banks, herbivory and nutrient supply controlpopulation development and dominance patterns in macroalgal blooms. Oikos,89:46-58.
    [61] Liu D, Keesing J, Xing Q, Shi P.2009. World's largest macroalgal bloom caused byexpansion of seaweed aquaculture in China. Marine Pollution Bulletin,58:888-895.
    [62] Wang J, Jiang P, Cui Y, Li N.2010. Molecular analysis of green-tide-forming macroalgae inthe Yellow Sea. Aquatic Botany,93:25-31.
    [63] Leliaert F, Zhang X, Ye N, Malta E, Engelen A.2009. Identity of the Qingdao algal bloom.Phycological Research,57:147-151.
    [64] Liu D, Keesing J, Dong Z, Shi P.2010a. Recurrence of the world's largest green-tide in2009in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery formacroalgal blooms. Marine Pollution Bulletin,60(9):1423-1432.
    [65] Lambers H, Chapin F, Pons T.2008. Plant physiological ecology.2edn. Springer. p.26-63.
    [66] Henley W.1993. Measurement and interpretation of photosynthesis light-response curves inalgae in the context of photoinhibition and diel changes. Journal of Phycology,29:729-739.
    [67] Liu F, Pang S.2010. Stress tolerance and antioxidant enzymatic activities in the metabolismsof the reactive oxygen species in two intertidal red algae Grateloupia turuturu and Palmariapalmate. Journal of Experimental Marine Biology and Ecology,382(2):82-87.
    [68] Mishra N, Mishra R, Singhal G.1993. Changes in the activities of anti-oxidant enzymesduring exposure of intact wheat leaves to strong visible light at different temperatures in thepresence of protein synthesis inhibitors. Plant Physiology,102:903-908.
    [69] Lawrence R, Burk R.1976. Glutathione peroxidase activity in selenium-deficient rat liver.Biochemical and Biophysical Research Communications71:952-958.
    [70] Nakano Y, Asada, K.1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidasein spinach chloroplasts. Plant and Cell Physiology,22:867-880.
    [71] Foyer C, Rowell, J., Walker, D.,.1983. Measurement of the ascorbate content of spinach leafprotoplasts and chloroplasts during illumination. Planta,157:239-244.
    [72] Kim K Y, Choi T S, Kim J H, Han T, Shin H W, Garbary D J.2004. Physiological ecologyand seasonality of Ulva pertusa on a temperate rocky shore. Phycologia,43(4):483-492.
    [73] Collén J, Davison I.1999. Stress tolerance and reactive oxygen metabolism in the intertidalred seaweeds. Plant, Cell&Environmen,22:1143-1151.
    [74] Thimijan R W, Royal DH.1982. Photometric, radiometric, and quantum light units ofmeasure: a review of procedures for Interconversion. HortScience,18:818-812.
    [75] Xia B, Ma S, Cui Y, Chen B, Chen J, Song Y.2009. Distribution of temperature, salinity,dissolved oxygen, nutrients and their relationships with green tide in Enteromorpha proliferaoutbreak area of the Yellow Sea. Progress in Fishery Sciences,30(5):94-101.
    [76] Yi L, Zhang S, Yin Y.2010. Influnce of environmental hydro-meteorological conditions toEnteromorpha prolifera blooms in Yellow Sea,2009. Periodical of Ocean University ofChina,40(10):15-23.
    [77] Young E, Lavery P, van-Elven B, Dring M J, Berges J A.2005. Dissolved inorganic nitrogenprofiles and nitrate reductase activity in macroalgal epiphytes within seagrass meadows.Marine Ecology Progress Series,288:103-114.
    [78] Eggert A, Raimund S, Michalik D, West J, Karsten U.2007. Ecophysiological performanceof the primitive red alga Dixoniella grisea (Rhodellophyceae) to irradiance, temperature andsalinity stress: growth responses and the osmotic role of mannitol. Phycologia,46(1):22-28.
    [79] Ross C, Alstyne K V.2007. Intraspecific variation in stress-induced hydrogen peroxidescavenging by the ulvoid macroalga Ulva lactuca. Journal of Physiology,43:466-474.
    [80] Constantin A R.2010. The Chloroplast: Basics and Applications Volume31of Advances inPhotosynthesis and Respiration. Springer.379-392.
    [81] Mackerness S, Jordan B, Thomas B.1999. Reactive oxygen species in the regulation ofphotosynthetic genes by ultraviolet radiation (UV-B:280-320nm) in green and etiolated budsof pea (Prism sativum L.). Journal of Photochemistry and Photobiology B: Biology,48:180-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700