用户名: 密码: 验证码:
阿尔茨海默病脑电信号多尺度时空定量特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口的老龄化,阿尔茨海默病(Alzheimer's Disease, AD)的发病率日益增多,关于AD诊断的生物学标志物的研究倍受关注。近年来,对痴呆的基因、病理、影像等方面都取得了一定的进展。脑电信号是伴随人生始终的神经生理曲线,随时记录着人脑在感知、认知、思维的执行过程中的神经系统电活动行为,蕴藏着丰富的信息,对认知功能研究来说,应该是一种最佳的手段。然而目前临床对于脑电信号的分析仍依靠医生的肉眼识别和经验性判断,在AD的诊断和病情评估中还没有发挥出应有的作用。采用新的数学分析方法对脑电信号进行定量分析,提取有价值的客观定量信息和参数,对于AD的诊断、病情评估及电生理机制的研究具有重要意义。
     目的:
     本研究拟采用连续子变换(Contiuous wavelet transform, CWT)对轻、中、重度AD患者的自发状态下的脑电信号进行多尺度分析,与正常对照进行比较,提取AD脑电信号的时频特征,子波功率谱分布特征,以子波熵(wavelet entropy,WE)来衡量脑电信号的复杂程度,采用条件采样和相位平均技术(Conditional sampling and phase-average technique)提取分尺度的相位平均波形特征及不同导联脑电信号的同步相位差和波幅差。比较轻、中、重度AD患者与正常对照之间脑电信号时频特征、子波功率谱、子波熵、第9尺度相位平均波形的波长、不同导联的相位差和波幅差的差异,提取有助于AD诊断和病情评估的电生理指标。
     方法:
     1.对轻、中、重度AD患者行详细病史采集,神经系统及全身查体,行简易智能精神状态量表(MMSE),画钟试验(CDT), Hachinski缺血量表(HIS),临床痴呆评定量表(CDR),日常生活能力量表(ADL)测评,所有患者均行头核磁共振检查,对中颞叶萎缩程度进行分级。对正常对照行病史采集、查体,行MMSE、MoCA、ADL量表测评。
     2.采集轻、中、重度AD患者和正常对照,安静清醒闭目状态下的数字脑电信号,采样频率200Hz,选择无伪差的脑电信号,以20秒数据存为一个数据模块,用于脑电信号定量分析。
     3.脑电信号的定量分析分5个部分
     (1)采用连续子变换的方法对研究对象的脑电信号进行多尺度子波分析,共分析30个尺度,绘制子波系数等值线图,显示脑电信号的时频特征。
     (2)根据子波系数计算脑电信号的分尺度功率,绘制不同导联分尺度功率随频率分布图,观察脑电信号的子波功率谱分布特征。
     (3)根据脑电信号分尺度功率的百分比随尺度分布的特征,提取描述脑电信号复杂程度的定量指标——子波熵。
     (4)以子波系数为检测对象,用条件采样方法检测第9尺度(对应频率中心10Hz)脑电信号,并对脑电信号的同类事件进行相位对齐叠加平均,获得该尺度脑电信号的相位平均波形。
     (5)采用同步互相关分析方法,对不同导联同步采集的脑电信号相位平均波形进行时间相位分析,获得不同导联相位平均波形的相位差和波幅差。
     4.统计学分析采用SPSS13.0统计软件包。计量资料以均数±标准差(X±S)表示。计数资料采用χ2检验。三组及以上计量资料比较采用单因素方差分析,Levene方差齐性检验,两两比较采用LSD;计量资料单因素之间相关性分析采用Pearson相关分析。显著性检验标准为α=0.05。
     结果:
     (1)正常对照尺度丰富,节律性活动明显,在10Hz,1Hz,0.1Hz附近三个频带上形成稳定的节律性活动,且不同尺度间脑电信号密切关联,而AD患者自发脑电信号的时频特征表现为,尺度单一,节律性活动不稳定,节律性活动在1Hz附近明显,失去正常脑电信号的多尺度间相互关联的时频结构特征,AD患者脑电信号的多尺度时频特征随病情的加重逐渐演变。
     (2)正常对照自发脑电信号的子波功率谱随频率分布较宽,在0.1Hz、1Hz、10Hz附近存在3个低而宽的功率峰,而AD患者自发脑电信号的子波功率谱分布特征为频率分布较窄,1Hz附近的功率峰增高,而0.1Hz、10Hz附近的功率峰降低,且随病情的加重逐渐演变。
     (3)轻、中、重度AD患者自发脑电信号不同导联的子波熵均低于正常对照(P<0.01),且与AD患者MMSE评分呈正相关(P<0.01),说明认知障碍的程度越重,脑电信号的子波熵越低,脑电信号的多尺度复杂程度越低。
     (4)轻、中、重度AD患者自发脑电信号不同导联第9尺度相位平均波形的波长均大于正常对照(P<0.01),且与AD患者MMSE评分呈负相关(P<0.01)。说明认知功能障碍的程度越重,第9尺度相位平均波形的波长越长,在这一尺度范围内脑电信号的频率越慢。
     (5)正常对照从枕部导联到额部导联存在明显的相位差和波幅差,枕部导联与额部导联的相位差大约π/2相位,而AD患者自发脑电信号不同导联第9尺度相位平均波形的相位差和波幅差较正常对照减少,重度AD患者脑电信号不同导联第9尺度相位平均波形的相位差和波幅差几乎为零,这一结果与AD患者脑电信号的a节律的泛化,a节律的前移相一致。
     结论:
     基于子波变换、子波功率谱、子波熵、条件采样和相位平均、同步互相关分析等技术建立的脑电信号多尺度分析方法适合于脑电信号的定量客观分析和AD的临床辅助诊断。
     通过对AD患者自发脑电信号的多尺度定量分析,结果表明AD患者脑电信号的时频特征、子波功率谱分布特征、子波熵、第9尺度相位平均波形的波长、不同导联第9尺度相位平均波形的相位差和波幅差等定量特征和参数可以作为辅助AD临床诊断和病情评估的神经电生理指标。
With the aging of the population, the incidence of Alzheimer's disease (AD) is keeping increasing, researches on biomarkers of AD have drawn more and more attention. In recent years, researches on gene, pathology, and imaging of AD have made some progress. EEG, as a kind of neurophysiological curve, accompanies with whole person's life. It records brain electrical activities of perception, cognition, thinking and execution instantaneously, and contains rich information. For research of cognitive function, EEG is one of the best tools. However, the analysis of EEG in clinic still relies on the naked eye recognition and empirical judgment of the doctor. EEG, as a tool for the diagnosis of AD. has not yet played its due role. Using new mathematical methods for the quantitative analysis of the EEG signal, extracting valuable objective quantitative information and parameters has important value for the diagnosis and assessment of AD. At the same time it may provide new ideas for the study of the electrophysiological mechanisms in AD.
     Objective:
     In this study, continuous wavelet transform (CWT) is introduced for multi-scale analysis of spontaneous EEG in mild, moderate and severe AD patients, comparing with normal controls. Wavelet power spectrum is used to characterize the EEG time-frequency multi-scale features in AD patients. Wavelet entropy, as a quantitative parameter, is introduced to measure the complexity of EEG. Conditional sampling and phase-average technique obtain the phase-average wavelength, synchronous phase difference and amplitude difference from leads at different brain area. Time-frequency characteristics, such as wavelet power spectrum, wavelet entropy, average wavelength of scale9, the lead phase difference and amplitude differences, were compared among light, moderate, severe AD patients and normal controls. The aim of this study is to find useful quantitative electrophysiological parameters of spontaneous EEG for the diagnosis and assessment of AD.
     Methods:
     1. Detailed history, nervous system and systemic examination was underwent for light, moderate and severe AD patients. Assessment of MMSE, CDT, HIS, CDR, ADL were made for all AD patients.temporal lobe atrophy(MTA) of MRI were classified by Visual assessment of MTA. Detailed history, nervous system and systemic examination were underwent, Assessment of MMSE, MoCA and ADL were evaluated for normal controls.
     2. Raw digital EEG signals were cllected at quiet, sober eye-close state for light, moderate, severe AD patients and normal controls. Sampling frequency was200Hz, Artifact-free digital EEG data was selected and storaged as20seconds segment, for quantitative analysis.
     3. Quantitative analysis of the EEG is divided into five parts
     (1) Multi-scale quantitative analysis was made for EEG data recored at different brain eara by CWT. Time-frequency characteristics of30scales were analyzed, the wavelet coefficient contour map of EEG.were drawn for AD patients and normal controls.
     (2) Sub-scale wavelet power was calculated according to wavelet coefficients for the EEG data of all the leads, maps of sub-scale power spectrum distribution with frequency were drawn, to observe the characteristics of wavelet power distribution of EEG in AD patients and normal controls.
     (3) Wavelet entropy, as a quantitative parameters to measure the complexity of the EEG was extracted according to the percentage of the sub-scale power distribution with frequency of EEG in AD patients and normal controls.(4) EEG signal of scale9(corresponding to the frequency center of10Hz) was tested by wavelet coefficient, and detected similar incidents using by conditional sampling was superimposed and averaged in the phase alignment. EEG phase average waveform of scale9was obtained.
     (5) The phase-average waveform of the different lead simultaneously acquisied by synchronous cross-correlation method, the differents of phase and amplitude of phase averaged waveforms between the leads at different brain area were obtained.
     4. SPSS13.0statistical package was used for statistical analysis. Measurement data were expressed as (X±S). Count data were analyzed by χ2test.measurement data≥3groups were compared using single factor analysis of variance, and homogeneity of variance, pairwise comparisons of LSD. Single factor correlation analysis between measurement data using Pearson correlation analysis. Significant test for a=0.05.
     Results:
     (1) Rich scale, stable rhythmic activities near the three frequency bands of10Hz,1Hz,0.1Hz, and closed association between neighber scales was the time-frequency characteristics of EEG of normal controls. However time-frequency feather of AD patients was characterized by single scale, instability rhythmic activities, obvious rhythmic activity near1Hz, and loss of the normal EEG of multi-scale interconnected time-frequency structural. The time-frequency characteristics of EEG in AD patients evolved with the worsen of the disease.
     (2) There were three low and wide power peaks near the frequecy of0.1Hz,1Hz,10Hz on wavelet power spectrum distribution of spontaneous EEG in normal controls. While the wavelet power spectrum distribution in patients with AD was characteristic for a narrow power peak near1Hz, with the aggravation of the disease evolved, the power peak near1Hz increased, and power peak near0.1Hz,10Hz decreased.
     (3) Wavelet entropy of spontaneous EEG recorded from all leads in Mild, moderate and severe AD patients were lower than normal controls (P<0.01). Wavelet entropy and the MMSE score was positively correlated (P<0.01). This shows that the more severe cognitive impairment, the lower wavelet entropy, the lower complexity of the EEG.
     (4) Wavelength of phase average waveform of scale9recorded from all leads is greater than the normal controls (P<0.01), Wavelength of phase average waveform of scale9and MMSE score was negtivly correlated (P<0.01). This shows that the more severe cognitive impairment, the longer the wavelength of phase average waveform of scale9, the slower EEG frequency within the range of this scale.
     (5) There exist significant phase and amplitude difference of phase average waveform at scale9for spontaneous EEG between occipital leads and forehead leads in normal controls with phase difference between occipital leads and forehead leads is about π/2phase. Amplitude of phase average waveform of occipital leads at scale9is higher than that of forehead lead. Phase difference and amplitude difference of phase average waveform at scale9between occipital leads and forehead leads in AD patients decrease when compared with normal controls while phase difference and amplitude difference in sever AD patients are almost negligible. The result is consistent with alpha rhythm diffused and forward transfer in AD patients on visual EEG.
     Conclusion:
     The new EEG multi-scale analysis methods including wavelet transform, wavelet power spectrum, wavelet entropy, conditional sampling and phase average, synchronous cross-correlation analysis technology is suitable for EEG analysis. It can privide new quantitative parameters for diagnosis and assesment of AD.
     Spontaneous EEG signals of AD patints and normal controls were quantitative analyzed by new methods. The results showed time-frequency characteristics, wavelet power spectrum distribution, wavelet entropy, wavelength of phase average waveform of scale9, Phase difference and amplitude difference of phase average waveform at scale9between occipital leads and forehead leads, as quantitative characteristics and parameters can be used for clinical diagnosis and assessment of AD.
引文
[1]Liu HC, Hu CJ, Tang YC, etal. A pilot study for circadian gene disturbance in dementia patients[J]. Neuroscience Letters,2008,435(3):229-233.
    [2]Kada S. Radiographers'attitudes towards persons with dementia[J]. European Journal of Radiography,2009,1 (4):163-168.
    [3]Koeppe RA, Gilman S, Junck L, etal. Differentiating Alzheimer's disease from dementia with Lewy bodies and Parkinson's disease with (+)-[11C] dihydrotetrabenazine positron emission tomography[J]. Alzheimer's and Dementia, 2008,4, (1), Supl:S67-S76.
    [4]Stiphane M. A theory multiresolution signal decomposition:the wavelet representation [J]. IEEE Tran. On PAMI.1989,11(7):674-693.
    [5]Farge M. Wavelet transforms and ther applcatons to turbulence[J]. Annu Revew Flud Mech.1992,24:395-457.
    [6]Gupta A, Joshi S D, Prasad S. A new method of estimating wavelet with desired features from a given signal [J]. Signal Processing,2005,85(1):147-161.
    [7]Chen D, Zhang T. Neville-Lagrange wavelet family for lossless image compression[J]. Signal Processing,2008,88(11):2833-2842.
    [8]Cho E. Wavelet Network[J]. Encyclopedia of Ecology,2008,1:3759-3764.
    [9]Poterasu VF. Wavelets transform for nonlinear control of multibody systems[J]. Journal of the Franklin Institute,2001,338:321-334.
    [10]Kim JE, Jang GW, Kim YY. Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its applications to multiscale topology design optimization [J]. International Journal of Solids and Structures,2003,40(23): 6473-6496
    [11]Effern A, Lehnertz K, Fernandez K,etal. Single trial analysis of event related potentials:non-linear de-noising with wavelets[J]. Clinical Neurophysiology, 2000,111(12):2255-2263.
    [12]Ravier P, Amblard PO. Wavelet packets and de-noising based on higher-order-statistics for transient detection[J]. Signal Processing,2001,81 (9):1909-1926.
    [13]Alexander B, Wiltschko, Gregory J. Wavelet filtering before spike detection preserves waveform shape and enhances single-unit discrimination[J]. Journal of Neuroscience Methods,2008,173(1):34-40.
    [14]Adeli H, Zhou Z, Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform [J]. Journal of Neuroscience Methods,2003,123:69-87.
    [15]Turner S, Picton P, Campbell J. Extraction of short-latency evoked potentials using a combination of wavelet and evolutionary algorithms [J]. Medical Engineering & Physics,2003,25:407-412.
    [16]Hazarika N, Chen JZ, Chung A. Classification of EEG signals using the wavelet transform[J]. Signal Processing,1997,59, (1):61-72.
    [17]Ubeyli ED. Wavelet/mixture of experts network structure for EEG signals classification[J]. Expert Systems with Applications,2008,34(3):1954-1962.
    [18]Guler I, Ubeyli ED. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients [J]. Journal of Neuroscience Methods, 2005,148(2):113-121.
    [19]Senhadji L, Wendling F. Epleptic transient detection:wavelets and time-frequency approaches [J]. Clin Neurophysiol,2002,32:175-92.
    [20]Sartoretto F, Ermani M. Automatic detection of epileptiform activity by single-level wavelet analysis. Clinical Neurophysiology,1999,110(1):239-249.
    [21]Sunde C, Avdic S, Pazsit I. Classification of two-phase flow regimes via image analysis and a neuro-wavelet approach [J]. Progress in Nuclear Energy,2005, 46:348-358.
    [22]Zheng Y, David B, Li L. Signal extraction and power spectrum estimation using wavelet transform scale space filtering and Bayes shrinkage [J]. Signal Processing, 2000,80(8):1535-1549.
    [23]Quiroga, R. Quian; Garcia, H. Single-trial event-related potentials with wavelet denoising[J].Clinical Neurophysiology,2003,114, (2):376-390.
    [24]Adeli H, Ghosh SD, Dadmehr N. A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy[J], IEEE Transactions on Biomedical Engineering,2007,54:205-211.
    [25]Quian RQ, Garcia H. Single-trial event-related potentials with wavelet denoising [J]. Clinical Neurophysiology,2003,114(2):376-390.
    [26]Wang Z, Maier A, Leopold DA. Single-trial evoked potential estimation using wavelets[J]. Computers in Biology and Medicine,2007,37(4):463-473.
    [27]Bradley AP, Wilson WJ. On wavelet analysis of auditory evoked potentialsfJ], Clinical Neurophysiology,2004,115:1114-1128.
    [28]Caravaglios G, Costanzo E, Palermo F. Decreased amplitude of auditory event-related delta responses in Alzheimer disease[J].International Journal of Psychophysiology,2008,70:23-32
    [29]Rossini PM, Buscema M, CapriottiM. Is it possible to automatically distinguish resting EEG data of normal elderly vs. mild cognitive impairment subjects with high degree of accuracy[J]?Clinical Neurophysiology,2008,119:1534-1545.
    [30]Escudero J, Hornero R, Poza J. Assessment of classification improvement in patients with Alzheimer's disease based on magnetoencephalogram blind source separation[J]. Artificial Intelligence in Medicine,2008,43:75-85.
    [31]Basar E, Schurmann M, Demiralp T. Event-related oscillations are "real brain responses" [J] International of Psychophysiology,2001,39:91-127.
    [32]Basar E, Ozgoren M, Basar CE, etal. Superbinding:Spatio-Temporal Oscillatory Dynamics[J]. Theory in Biosciences,2003,121(4):371-386.
    [33]Gallinat J, Winterer G, Herrmann CS, etal. Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicat impaired frontal network processing[J]. Clinical Neurophysiology,2004,115:1863-1874.
    [34]Sakowitz OW, Quian RQ, Schurmann M, etal. Spatio-temporal frequency characteristics of intersensory components in audiovisually evoked potentials[J]. Cognitive Brain Research,2005,23:316-326.
    [35]Adeli H, Ghosh S, Dastidar. A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease[J]. Neuroscience Letters,2008,444: 190-194.
    [36]Dauwels J, Vialatte F, Musha T,etal. A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG[J]. Neurolmage, 2010,49(1):668-693.
    [37]Karrasch M, Laine M, Rinne JO, etal. Brain oscillatory responses to an auditory-verbal working memory task in mild cognitive impairment and Alzheimer's disease[J]. International Journal of Psychophysiology,2006, 59(2):168-178.
    [38]Karakas S, Erzengin OU, Basar E. A new strategy involving multiple cognitive paradigms demonstrates that ERP components are determined by the superposition of oscillatory signals[J]. Clinical Neurophysiology,2000,111: 1719-1732.
    [39]Liu X, Qi H, Wang S, etal. Wavelet-based estimation of EEG coherence during Chinese Stroop task[J]. Computers in Biology and Medicine,2006,36: 1303-1315.
    [40]Ktonas PY, Golemati S, Xanthopoulos P. Time-frequency analysis methods to quantify the time-varying microstructure of sleep EEG spindles:Possibility for dementia biomarkers[J]? Journal of Neuroscience Methods,2009,185:133-142.
    [41]宦飞,王志中,郑崇勋.睡眠EEG的多尺度信息熵分析.北京生物医学工程,2001,1(3):6-8.
    [42]宋立国,陆绕胜.小波分析脑脑电信号分析中的应用[J].医疗设备信息,2007,22(7):7-10.
    [43]谢涛嵘,裴剑,陈超等.高功率毫米波辐照大鼠失能效应的脑电观察[J1.强激光与离子束,2010,22(2):284-288.
    [44]郁洪强,赵欣,詹启生等.基于子波熵的网络成瘾脑电复杂性分析[J].天津大学学报,2008,41:751-756.
    [45]Wang D, Miao D, Xie C. Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection[J]. Expert Systems with Applications,2011,38:14314-14320.
    [46]Zhang Meiyun, Zhang Benshu, Wang Fenglou, etal.Multi-scale phase average waveform of electroencephalogram signal using wavelet transform during childhood absence epilepsy seizure[J]. Neural Regeneration Research. Neural Regeneration Research.2010,5 (10):774-780.
    [47]张美云,陈英,王凤楼.青少年肌阵挛癫痫腑电信号多尺度特征分析[J].中国神经精神疾病杂志,2011,37(3):161-165.
    [48]张美云,张本恕,王凤楼,陈英,姜楠.儿童失神癫痫脑电图的多尺度特征[J].临床神经电生理学杂志,2006,15(5):259-267.
    [49]张美云,张本恕.正常成人脑电图多尺度特征分析.临床神经电生理学杂志[J],2009,15(5):259-267.
    [50]Hiele K, Vein AA, Welle A, etal. EEG and MRI correlates of mild cognitive impairment and Alzheimer's disease[J]. Neurobiology of aging.2007,28: 1322-1329.
    [51]Gray CM, Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex[J]. Proc Natl Acad Sci U S A.1989,86:1698-1702.
    [52]Wehr M, Laurent G. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature[J],1996,384:162-165.
    [53]Nikulin V. Brismarl T. Long-range temporal correlations in electroencephalographic oscillations:relation to topography frequency band, age and gender[J]. Neuroscience,2005,130:549-555.
    [54]大熊辉雄著,周锦华译,临床脑电图学[M].第五版,北京,清华大学出版社,2005:96-98.
    [55]Babiloni C, Frisoni G, Steriade M, etal. Frontal white matter volume and delta EEG sources negatively correlated in awake subjects with mild cognitive impairment and Alzheimer's disease[J]. Clin Neurophysiology,2006,117: 1113-1129.
    [56]Fritz NE, Fell J, Burr W, etal. Do surface DC-shifts affect epileptic hippocampal EEG activity [J]? Epilepsy Research,2011,95:136-143.
    [57]Vanhatalo S, Palva JM, Holmes MD. Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep [J]. Proc Natl Acad Sci USA,2004,101:5053-5057.
    [58]Leopold DA, Murayama Y, Logothtis NK. Very slow activity fluctuations in monkey visual cortex:implications for functional brain imaging [J]. Cereb Cortex, 2003,13:422-433.
    [59]Vanhatalo S, Voipio J, Kaila K. Full-band EEG(FbEEG):an amerging standard in electroencephalography[J]. Clinical Neurophysiology,2005,116:1-8.
    [60]Kemp B, Beelen T, Stijl, etal. A DC attenuator allows common EEG equipment to record fullband EEG, AND FITS fullband EEG into standard European Data Format[J]. Clinical Neurophysiology,2010,121:1992-1997.
    [61]张美云.脑电图多尺度特征临床应用研究[D].天津医科大学,2005:28-34.
    [62]Powell CE, Perceival IC. A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems [J]. Phys.A,1979,12:2053-2071.
    [63]Inouye T, Shinosaki K, Iyama A,etal. Localization of activated areas and directional EEG patterns during mental arithmetic[J]. Clin. Neurophysiol, 1993,86:224-230.
    [64]Stam CJ, Tavy DLJ, Keunen RWM. Quantification of alphy rhythm desynchronization using the acceleration spectrum entropy of the EEG[J]. Clin Electroencephalogr,1993,24:104-109.
    [65]Inouye T, Shinosaki K, Sakamoto H, etal. Quantifcation of EEG irregularity by use of the entropy of power spectrum[J]. Electroencephalogr Clin Neurophysiol, 1991,79:204-210.
    [66]Blanco S, Figliola A, Quian Quiroga R, etal. Time-frequency analysis of electroencephalogram series(Ⅲ):wavelet packets and information cost function[J]. Phys Rev E,1998,57:932-40.
    [67]Zoughi T, Boostani R, Deypir M. A wavelet-based estimating depth of anesthesia[EB/OL]. Eng. Appl. Artif. Intel.2011, doi:10.1016/j.engappai. 2011.10.006.
    [68]Yildiz A, Akin M, Poyraz M, etal. Application of adaptive neuro-fuzzy inference system for vigilance level estimation by using wavelet-entropy feature extraction [J]. Expert Systems with Applications,2009,36,7390-7399.
    [69]Kar S, Bhagat M, Routray A. EEG signal analysis for the assessment and quantification of driver's fatigue[J]. Trans. Res. Part F,2010,13:297-306.
    [70]Slobounov S, Cao C, Sebastianelli W. Differential effect of first versus second concussive episodes on wavelet information quality of EEG[J]. Clin. Neurophys. 2009,120,862-867.
    [71]Rosso OA, Blanco S, Yordanova J, etal. Wavelet entropy:a new tool for analysis of short duration brain Electrical signals[J]. Neurosci. Methods,2001,105:65-75.
    [72]Quian RQ, Rosso OA, Basar E, etal. Wavelet entropy in event related potentials: a new method shows ordering of EEG oscillations[J]. Biol. Cybern,2001,84: 291-299.
    [73]Baser E. EEG brain dynamics. Relation between EEG and brain evoked potentials[M]. Elsevier, Amsterdam.
    [74]Yordanova, Kolev V, Rosso OA, etal. Wavelet entropy analysis of event related potentials indicates modality independent theta dominance[J]. Neurosci Method, 2002,117:99-109.
    [75]Rosso OA. Entropy changes in brain function[J]. Int. J. Psychophysiol,2007, 64:75-80.
    [76]Emre CM, Ozgoren M, Acar SF. Continuous time wavlet entropy of auditory evoked potentials[J]. Computers in Biology and Medicine,2010,40:90-96.
    [77]Rosso OA, Martin MT, Figliola A, etal. EEG analysis using wavelet-based information tools[J]. Journal of Neuroscience Methods,2006,153:163-182.
    [78]Weiss S, Rappelsberger P. Long-range EEG synchronization during word encoding correlates with successful memory performance[J]. Cognitive Brain Research,2000,9:299-312.
    [79]Weiss S, Rappelsberger P. Left frotal EEG coherece reflects modality independent language processes[J]. Brain Topography,1998,11:33-42.
    [80]Karrasch M, Laine M, Rinne JO, etal. Brain oscillatory responses to an auditory-verbal working memory task in mild congnitive impairment and Alzheimer's disease[J]. International Journal of Psychophysiology,2006,59: 168-178.
    [81]Anderer P, Saletu B, Kloppel B, etal. Discrimination between demented patients and normals based on topographic EEG slow wave activity:comparision between z statistics,discriminant analysis and artificial neural network classifiers[J]. Electroencephalogr Clin Neurophysiol,1994,91:108-117.
    [82]Besthorn C, Forstl H, Geiger KC, etal. EEG coherences in Alzheimer's disease[J], Electroencephalogr Clin Neurophysiol,1994,90:242-245.
    [1]Liu HC, Hu CJ, Tang YC, etal. A pilot study for circadian gene disturbance in dementia patients[J]. Neuroscience Letters,2008,435(3):229-233.
    [2]Kada S. Radiographers'attitudes towards persons with dementia[J]. European Journal of Radiography,2009,1(4):163-168.
    [3]Koeppe RA, Gilman S, Junck L,etal. Differentiating Alzheimer's disease from dementia with Lewy bodies and Parkinson's disease with (+)-[11C] dihydrotetrabenazine positron emission tomography[J]. Alzheimer's and Dementia, 2008,4(1):S67-S76.
    [4]Stiphane M. A theory multiresolution signal decomposition:the wavelet representation[J]. IEEE Tran. On PAMI.1989,11(7):674-693.
    [5]Farge M. Wavelet transforms and their applications to turbulence[J]. Annu. Reveiw Flud Mech.1992,24:395-457.
    [6]Gupta A, Joshi S D, Prasad S. A new method of estimating wavelet with desired features from a given signal[J]. Signal Processing,2005,85(1):147-161.
    [7]Chen D, Zhang T. Neville-Lagrange wavelet family for lossless image compression[J]. Signal Processing,2008,88(11):2833-2842.
    [8]Cho E. Wavelet Network. Encyclopedia of Ecology[J].2008,1:3759-3764.
    [9]Poterasu VF. Wavelets transform for nonlinear control of multibody systems[J]. Journal of the Franklin Institute.2001.338:321-334.
    [10]Kim JE, Jang GW, Kim YY. Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its applications to multiscale topology design optimization[J]. International Journal of Solids and Structures,2003,40(23): 6473-6496
    [11]Effern A, Lehnertz K, Fernandez K,etal. Single trial analysis of event related potentials:non-linear de-noising with wavelets[J]. Clinical Neurophysiology, 2000,111(12):2255-2263.
    [12]Ravier P, Amblard PO. Wavelet packets and de-noising based on higher-order-statistics for transient detection[J]. Signal Processing,2001,81 (9): 1909-1926.
    [13]Alexander B, Wiltschko, Gregory J. Wavelet filtering before spike detection preserves waveform shape and enhances single-unit discrimination[J]. Journal of Neuroscience Methods,2008,173(1):34-40.
    [14]Adeli H, Zhou Z, Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform[J]. Journal of Neuroscience Methods,2003,123:69-87.
    [15]Turner S, Picton P, Campbell J. Extraction of short-latency evoked potentials using a combination of wavelet and evolutionary algorithms[J]. Medical Engineering & Physics,2003,25:407-412.
    [16]Hazarika N, Chen JZ, Chung A. Classification of EEG signals using the wavelet transform[J]. Signal Processing,1997,59, (1):61-72.
    [17]Ubeyli ED. Wavelet/mixture of experts network structure for EEG signals classification[J]. Expert Systems with Applications,2008,34, (3):1954-1962.
    [18]Guler I, Ubeyli ED. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients[J]. Journal of Neuroscience Methods, 2005,148(2):113-121.
    [19]Senhadji L, Wendling F. Epleptic transient detection:wavelets and time-frequency approaches[J]. Neurophysiol Clin,2002,32:175-92.
    [20]Sartoretto F, Ermani M. Automatic detection of epileptiform activity by single-level wavelet analysis[J]. Clinical Neurophysiology,1999,110(1):239-249.
    [21]Sunde C, Avdic S, Pazsit I. Classification of two-phase flow regimes via image analysis and a neuro-wavelet approach[J]. Progress in Nuclear Energy,2005, 46:348-358.
    [22]Zheng Y, David B, Li L. Signal extraction and power spectrum estimation using wavelet transform scale space filtering and Bayes shrinkage[J]. Signal Processing, 2000,80(8):1535-1549.
    [23]Demiralp T, Ademoglu A, Schurmann M,etal. Detection of P300 Waves in Single Trials by the Wavelet Transform (WT) [J]. Brain and Language,1999,66(1): 108-128.
    [24]Adeli H, Ghosh SD, Dadmehr N. A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy[J]. IEEE Transactions on Biomedical Engineering,2007,54:205-211.
    [25]Quian RQ, Garcia H. Single-trial event-related potentials with wavelet denoising[J]. Clin Neurophysiol,2003,114(2):376-390.
    [26]Wang Z, Maier A, Leopold DA. Single-trial evoked potential estimation using wavelets[J]. Computers in Biology and Medicine,2007,37(4):463-473.
    [27]Bradley AP, Wilson WJ. On wavelet analysis of auditory evoked potentials[J]. Clin Neurophysiol,2004,115:1114-1128.
    [28]Caravaglios G, Costanzo E, Palermo F. Decreased amplitude of auditory event-related delta responses in Alzheimer disease[J]. International Journal of Psychophysiology,2008,70:23-32
    [29]Rossini PM, Buscema M, CapriottiM. Is it possible to automatically distinguish resting EEG data of normal elderly vs. mild cognitive impairment subjects with high degree of accuracy[J]? Clinical Neurophysiology,2008,119:1534-1545.
    [30]Escudero J, Hornero R, Poza J. Assessment of classification improvement in patients with Alzheimer's disease based on magnetoencephalogram blind source separation [J]. Artificial Intelligence in Medicine,2008,43:75-85.
    [31]Samar VJ, Swartz K.P, Raghuveer MR. Multi-resolution Analysis of Event-Related Potentials by Wavelet Decomposition[J]. Brain and Cognition, 1995,27 (3):398-438.
    [32]Samar VJ, Bopardikar A, Rao R, etal. Wavelet Analysis of Neuroelectric Waveforms:A Conceptual Tutorial[J]. Brain and Language,1999,66(1):7-60.
    [33]Basar E, Martin Schurmann, Demiralp T. Event-related oscillations are "real brain responses" [J]. International of Psychophysiology,2001,39:91-127.
    [34]Demiralp T, Ademoglu A, Istefanopulos Y,etal. Wavelet analysis of oddball P300[J]. International Journal of Psychophysiology,2001,39:221-227.
    [35]Quian RQ, Sakowitz OW, Basar E.,etal. Wavelet Transform in the analysis of the frequency composition of evoked potentials[J]. Brain Research Protocols,2001,8 (1):16-24.
    [36]Rosso OA, Blanco S, Yordanova J,etal. Wavelet entropy:a new tool for analysis of short duration brain electrical signals[J]. Journal of Neuroscience Methods, 2001,105,(1):65-75.
    [37]Sakowitz OW, Quian RQ, Schurmann M,etal. Spatio-temporal frequency characteristics of intersensory components in audiovisually evoked potentials[J]. Cognitive Brain Research,2005,23:316-326.
    [38]Basar E, Ozgoren M, Basar CE,etal. Superbinding:Spatio-Temporal Oscillatory Dynamics[J]. Theory in Biosciences,2003,121(4):371-386.
    [39]Liu XF, Qi H, Wang S, etal. Wavelet-based estimation of EEG coherence during Chinese Stroop task[J]. Computers in Biology and Medicine,2006, 36(12):1303-1315.
    [40]Herrmann CS, Mecklinger A, Pfeifer. Gamma responses and ERPs in a visual classification task[J]. Clin Neurophysiol,1999,110,(4):636-642.
    [41]Gallinat J, Winterer G, Herrmann CS, etal. Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing[J]. Clin Neurophysiol,2004,115:1863-1874.
    [42]Busch NA, Debener S, Kranczioch C,etal. Size matter:effects of stimulus size, during and eccentricity on the visual gamma-band response[J]. Clinical Neurophysiology,2004,115:1810-1820.
    [43]Neuper C, Pfurtscheller G. Evidence for distinct beta resonance frequencies in human EEG related to specific sensor motor cortical areas[J]. Clin Neurophysiol, 2004,112:2084.
    [44]Yordanova J, Rosso OA, Kolev V. A transient dominance of theta event-related brain potential component characterizes stimulus processing in an auditory oddball task[J]. Clin Neurophysiol,2003,114:529-540.
    [45]Sunderland T, Gur RE, Arnold SE, The use of biomarkers in the elderly:current and future challenges[J]. Biol.Psychiatry,2005,58:272-276.
    [46]Leon MJ, Klunk W. Biomarkers for the early diagnosis of Alzheimers disease[J]. Lancet Neurol,2006,5:198-119.
    [47]Ally BA, Jones G.E, Cole JA, etal. The P300 component in patients with Alzheimers disease and thei rbiological children[J]. BiolPsychol,2006,72 180-187.
    [48]Golob EJ, Starr A. Effects of stimulus sequence on event-related potentials and reaction time during target detectionin Alzheimer disease[J]. Clin.Neurophysiol, 2000.111:1438-1449.
    [49]Blankertz B, Lemm S, Treder M, etal. Single-trial analysis and classification of ERP components—A tutorial Original Research Article[J]. Neurolmage,2011, 56(2):814-825.
    [50]Demiralp T, Ademoglu A. Decomposition of event-related brain potentials into multiple functional components using wavelet transform. Clin. Electroencephalogram.2001,32:122-138.
    [51]Petrosian AA, Prokhorov DV, Lajara NW, etal. Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG[J]. Clinical Neurophysiology,2001,112(8):1378-1387.
    [52]Adeli H, Ghosh S, Dastidar. A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease[J]. Neuroscience Letters,2008,444: 190-194.
    [53]Sankari Z, Adeli H, Adeli A. Intrahemispheric, interhemispheric, and distal EEG coherence in Alzheimer's disease[J]. Clin Neurophysiol,2011,122(5):897-906.
    [54]Gu FJ, Meng X, Shen EH, etal. Can we measure consciousness with EEG complexities [J]? International Journal of Bifurcation and Chaos,2003,13: 733-742.
    [55]Ikawa M, Nakanishi M, Furukawa T, etal. Relationship between EEG dimensional complexity and neuropsychological findings in Alzheimer's disease[J]. Psychiatry and Clinical Neurosciences,2000,54:537-541.
    [56]Jelles B, Birgelen JH, Slaets JPJ, etal. Decrease of non-linear structure in the EEG of Alzheimer's patients compared to healthy controls[J]. Clin Neurophysiol 1999,110:1159-1167.
    [57]Jeong J. EEG dynamics in patients with Alzheimer's disease[J]. Clin Neurophysiol,2004,115:1490-1505.
    [58]Dauwels J, Vialatte F, Musha T, etal. A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG[J]. Neurolmage,2010,49(1):668-693.
    [59]Stam CJ, Made Y, Pijnenburg, etal. EEG synchronization in mild cognitive impairment and Alzheimer's disease[J]. Acta Neurol. Scand,2003,108:90-96.
    [60]Stam CJ, Montez T, Jones BF, etal. Disturbed fluctuations of resting state EEG synchronization in Alzheimer's disease[J]. Clin. Neurophysiol.2005,116: 708-715.
    [61]Stevens A, Kircher T, Nickola M, etal. Dynamic regulation of EEG power and coherence is lost early and globally in probable DAT[J]. Eur. Arch. Psychiatry Clin. Neurosci,2001,251:199-204.
    [62]Uhlhaas P, Singer W. Neural synchrony in brain disorders:relevance for cognitive dysfunctions and pathophysiology[J]. Neuron,2006,52:155-168.
    [63]Wan B, Ming D, Qi H, etal. Linear and nonlinear quantitative EEG analysis[J]. IEEE Eng. Med. Biol. Mag.2008,27:58-63.
    [64]Clemens Z, Fabo D, Halasz P. Overnight verbal memory retention correlates with the number of sleep spindles[J]. Neuroscience,2005.132:529-535.
    [65]. Fogel SM, Nader R, Cote KA, etal. Sleep spindles and learning potential[J]. Behav Neurosci,2007,121:1-10.
    [66]Huupponen E, Clercq W, Gomez-Herrero G., et al. Determination of dominant simulated spindle frequency with different methods[J] Neurosci Methods, 2006,156:275-283.
    [67]Petit D, Gagnon JF, Fantini ML, etal. Sleep and quantitative EEG in neurodegenerative disorders[J]. Psychosom Res,2004,56:487-496.
    [68]Neil JF, Holzer BC, Spiker DG, etal. EEG sleep alterations in olivopontocerebellar degeneration Neurology,1980,30:660-665.
    [69]Ktonas PY, Golemati S, Xanthopoulos P. Time-frequency analysis methods to quantify the time-varying microstructure of sleep EEG spindles:Possibility for dementia biomarkers[J]? Journal of Neuroscience Methods,2009,185:133-142.
    [70]Adeli H, Ghosh SD, Dadmehr N. Alzheimers disease and models of computation: imaging classifcation and neural models[J]. Journal of Alzheimer Disease,2005, 7:187-199.
    [71]Adeli H, Ghosh SD, Dadmehr N. Alzheimers disease:models of computation and analysis of EEGs[J]. Clinical EEG and Neuroscience,2005,36:131-140.
    [72]Hsu WY, Lin CC, Ju MS,etal. Wavelet-based fractal features with active segment selection:Application to single-trial EEG data[J]. Journal of Neuroscience Methods,2007,163(1):145-160.
    [73]Topalis A, Stepenosky N, Frymiare J, etal. Comparison of ERP spectral bands for early diagnosis of Alzheimer Disease using multiresolution wavelet analysis[J]. Alzheimer's and Dementia,2005,1 (1), Supl:S23.
    [74]Cornforth D, Jelinek H. Automated classification reveals morphological factors associated with dementia[J]. Applied Soft Computing,2008,8(1):182-190.
    [75]Hayes TL, Abendroth F, Adami A,etal. Unobtrusive assessment of activity patterns associated with mild cognitive impairment[J]. Alzheimer's and Dementia, 2008,4(6):395-405.
    [76]Polikar R, Topalis A, Parikh D,etal. An ensemble based data fusion approach for early diagnosis of Alzheimer's disease[J]. Information Fusion,2008,9(1):83-95.
    [77]Cantero JL, Atienza M, Cruz-Vadell A, etal. Increased synchronization and decreased neural complexity underlie thalamocortical oscillatory dynamics in mild cognitive impairment[J]. NeuroImage,2009,46(4):938-948.
    [78]Basar E, Guntekin B. A review of brain oscillations in cognitive disorders and the role of neurotransmitters[J]. Brain Research,2008,1235,15:172-193.
    [79]Mitchell DJ, McNaughton N, Flanagan D,etal. Frontal-midline theta from the perspective of hippocampal "theta" [J]. Progress in Neurobiology,2008,86(3): 156-185.
    [80]Uhlhaas PJ, Singer W. Neural Synchrony in Brain Disorders:Relevance for Cognitive Dysfunctions and Pathophysiology[J]. Neuron,2006,52(1):155-168.
    [81]Karrasch M, Laine M, Rinne JO, etal. Brain oscillatory responses to an auditory-verbal working memory task in mild cognitive impairment and Alzheimer's disease[J]. International Journal of Psychophysiology,2006,59(2): 168-178.
    [82]Karakas S., Erzengin OU, Basar E. A new strategy involving multiple cognitive paradigms demonstrates that ERP components are determined by the superposition of oscillatory signals[J]. Clin Neurophysiol,2000,111:1719-1732.
    [83]Bowen J, Teri L, Kukull W, etal. Progression to dementia in patients with isolated memory loss[J]. Lancet,1997,349:763-765.
    [84]Caplan JB, Kahana MJ, Sekuler R, etal. Task dependence of human theta:the case for multiple cognitive functions[J]. Neurocomputing,2000,32:659-665.
    [85]Collie A, Maruff P. The neuropsychology of preclinical Alzheimer's disease and mild cognitive impairment[J]. Neuroscience and Biobehavioral Reviews 2000,24: 365-374.
    [86]Jensen O, Tesche CD. Frontal theta activity in humans increases with memory load in a working memory task[J]. European Journal of Neuroscience,2002,15: 1395-1399.
    [87]Karrasch M, Laine M, Rapinoja P,etal. Effects of normal aging on event-related desynchronization/synchronization during a memory task in humans[J]. Neuroscience Letters,2004,366:18-23.
    [88]Polikar R, Topalis A, Green D, etal. Comparative multiresolution wavelet analysis of ERP spectral bands using an ensemble of classifiers approach for early diagnosis of Alzheimer's disease[J]. Computers in Biology and Medicine,2007, 37(4):542-558.
    [89]Olichney JM, Hillert DG.Clinical applications of cognitive event-related potentials in Alzheimer's disease[J]. Phys. Med. Rehabil. Clin. North Am,2004, 15:205-233.
    [90]Linden DJ. The p300:where in the brain is it produced and what does it tell us[J]? Neuroscientist,2005,11:563-576
    [91]Golob EJ, Johnson JK, Starr A. Auditory event-related potentials during target detection are abnormal in mild cognitive impairment[J]. Clin. Neurophysiol.2002, 113:151-161.
    [92]Phillips NA, Chertkow H, Leblanc MM. Functional and anatomical memory indices in patients with or at risk for Alzheimer's disease[J]. Int. Neuropsychol. Soc,2004,10:200-210.
    [93]Morup M, Hansen LK,. Herrmann CS,etal. Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG[J]. Neurolmage 2006,29:938-947.
    [94]Polikar R, Topalis A, Parikh D, etal. An ensemble based data fusion approach for early diagnosis of Alzheimer's disease[J]. Information Fusion,2008,9(1):83-95.
    [95]Yener G.G., Guntekin B, Oniz A, etal. Increased frontal phase-locking of event-related theta oscillations in Alzheimer patients treated with cholinesterase inhibitors[J]. International Journal of Psychophysiology,2007,64(1):46-52.
    [96]Cichocki A, Shishkin SL, Musha T, etal. EEG filtering based on blind source separation (BSS) for early detection of Alzheimer's disease[J]. Clin. Neurophysiol, 2005.116:729-737.
    [97]Furey ML, Pietrini P, Haxby JV. Cholinergic enhancement and increased selectivity of perceptual processing during working memory[J]. Science,2000, 290:2315-2322.
    [98]Jeong J. EEG dynamics in patients with Alzheimer's disease[J] Clin. Neurophysiol,2004,115:1490-1505.
    [99]Mega MS, Dinov ID, Porter V, etal. Metabolic patterns associated with the clinical response to galantamine therapy[J]. Arch. Neurol,2005,62:721-728.
    [100]Reeves RR, Frederick DO, Struve A, etal. The effects of donepezil on the P300 auditory and visual cognitive evoked potentials of patients with Alzheimer's disease[J] Am. J. Geriatr. Psychiatry,1999,7:349-352.
    [101]Powell CE, Perceival IC. A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems[J]. Phys.A,1979,12:2053-2071.
    [102]Inouye T, Shinosaki K, Iyama A,etal. Localization of activated areas and directional EEG patterns during mental arithmetic[J]. Clin. Neurophysiol, 1993,86:224-230.
    [103]Stam CJ, Tavy DLJ, Keunen RWM. Quantification of alphy rhythm desynchronization using the acceleration spectrum entropy of the EEG[J]. Clin Electroencephalogr,1993,24:104-109.
    [104]Inouye T, Shinosaki K, Sakamoto H,etal. Quantifcation of EEG irregularity by use of the entropy of power spectrum[J]. Electroencephalogr Clin Neurophysiol, 1991,79:204-210.
    [105]Blanco S, Figliola A, Quian Quiroga R, etal. Time-frequency analysis of electroencephalogram series(Ⅲ):wavelet packets and information cost function[J]. Phys Rev E,1998,57:932-40.
    [106]Rosso OA, Blanco S, Yordanova J, etal. Wavelet entropy:a new tool for analysis of short duration brain Electrical signals[J]. Neurosci.Methods, 2001,105:65-75.
    [107]Quian RQ, Rosso OA, Basar E, etal. Wavelet entropy in event related potentials: a new method shows ordering of EEG oscillations[J]. Biol.Cybern,2001,84: 291-299.
    [108]Baser E. EEG brain dynamics. Relation between EEG and brain evoked potentials[M]. Elsevier, Amsterdam.
    [109]Yordanova, Kolev V, Rosso OA, etal. Wavelet entropy analysis of event related potentials indicates modality independent theta dominance[J]. Neurosci Method, 2002,117:99-109.
    [110]Rosso OA. Entropy changes in brain function[J]. Int. J. Psychophysiol,2007, 64:75-80.
    [111]Emre CM, Ozgoren M, Acar SF. Continuous time wavlet entropy of auditory evoked potentials[J]. Computers in Biology and Medicine,2010,40:90-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700