用户名: 密码: 验证码:
鼻咽癌组织及细胞的拉曼光谱检测与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌(Nasopharyngeal Carcinoma, NPC)是危害人类健康和生命的头颈部癌症之一,其发病率居耳鼻喉科恶性肿瘤之首。长期以来鼻咽癌诊断漏诊率较高,早期特别是Ⅰ期诊断率不高,而早期诊断后进行有效治疗是提高鼻咽癌患者生存率和降低死亡率的关键因素之一。本文利用拉曼光谱技术针对鼻咽癌组织、鼻咽正常组织及三种不同种类的鼻咽癌细胞开展一系列的拉曼光谱测量与分析,探讨鼻咽组织癌变过程中生化物质组成的变化,进而寻求实现鼻咽癌早期诊断的新方法,并在此基础上结合当今技术发展及临床需求,开展活体生物组织拉曼光谱测量装置的研究。
     本文首先简要介绍了拉曼光谱的基本原理;综述了拉曼光谱技术在生物医学中的研究进展,并针对拉曼光谱数据处理方法进行了较为详细的分析与讨论。
     其次,利用显微拉曼光谱仪及一套自行研制的快速拉曼光谱检测系统针对鼻咽癌组织、鼻咽正常组织及鼻咽癌细胞开展拉曼光谱测量与分析,分析鼻咽组织癌变过程中生化物质组成的变化,并主要通过主成分分析和判别分析构建判别算法,对鼻咽癌变组织与鼻咽正常组织以及三种不同种类的细胞进行判别,探讨正常组织与癌变组织以及不同细胞间的差别。
     最后,利用一台半导体激光器、光栅光谱仪、CCD探测器及鼻咽内窥镜,设计、组装了一套可能应用于生物组织活体测量的拉曼光谱快速检测系统,并在小鼠模型上进行尝试。初步结果表明,该系统可在短时间内(3-5s)获得活体组织的高质量拉曼光谱信号,具有较高的应用潜力。
     研究结果表明,拉曼光谱技术在区分鼻咽正常组织和鼻咽癌变组织以及不同种类的鼻咽细胞等方面具有巨大的潜力,所构建的快速拉曼光谱检测系统可用于活体组织测量。本文研究结果将为拉曼光谱在鼻咽癌早期检测进而拓展拉曼光谱在生物医学中的应用提供重要的实验和理论依据。
Nasopharyngeal malignancies remain one of the major causes of cancer associated death and have high incidence rates in East Asia, particularly in South China. Presently, routine white-light endoscopy and histological examination are the primary methods for clinical identification of nasopharyngeal carcinoma (NPC). Due to the anatomical position of NPC, it is not easy to diagnosis this lesion early, only about10%and20%of the diagnosed lesions are stage Ⅰ and Ⅱ diseases. Almost two thirds of the diagnosed nasopharyngeal carcinoma are at an advanced stage (stage Ⅲ). Due to the fact that the therapeutic outcome is highly related to the stage of the disease, early identification of malignant nasopharyngeal carcinoma is crucial to improving the survival rate of patients.
     Recent development of spectral techniques may significantly expand our ability to diagnose this tumor rapidly and accurately. Among the optical approaches currently under investigation for in vivo endoscopic applications, Raman spectroscopy is a very promising technique. Raman spectroscopy is a non-destructive, inelastic light scattering technique in which the scattered photon is shifted to another wavelength with respect to the incident excitation light, depending on the specific vibrational modes of molecules in tissue and cells. Thus Raman spectroscopy reveals specific biochemical information and biomolecular structures of tissue, providing the unique opportunity to distinguish between different pathological tissue types at the molecular level.
     In this paper Raman spectroscopy was used to detect the signals of normal nasopharyngeal tissue and nasopharyngeal carcinoma tissue as well as three different nasopharyngeal cell lines such as C666, CNE2and NP69. According to the differences of Raman spectroscopy characterization, we are intent to search for a new method which can diagnose nasopharyngeal carcinoma at its early stage. Combined with the new fiber and LD technologies, new instrument of Raman system for in vivo tissue detection was also studied.
     In the first part of this paper, fundamental theory of Raman spectroscopy was introduced and a brief review of Raman applications in biomedical field was summarized. Then, Raman spectra of nasopharyngeal carcinoma tissue and normal tissue as well as three different cell lines were acquired using a micro-Raman system and a home-made rapid Raman system, respectively. The differences of Raman spectroscopy characterization were analyzed by comparing their spectroscopic intensity and tentative assigned to biochemical components. For further understanding the differences between two different tissues, PCA and LDA was adopted which yielded a diagnostic sensitivity and specificity over than80%.
     In the end, an endoscopy based rapid Raman detection system was designed and built which is suitable for in vivo measurement. Raman spectra of SCC rat skin tissue were measured and the results have shown the system is reliable and can acquire high quality Raman signals which has a great potential application for in vivo human tissue measurement. All the preliminary results have suggest great potential for using Raman spectroscopy to improve the diagnosis of nasopharyngeal cancer. It provides solid support for us to develop endoscopic Raman instrument for in vivo clinical applications.
引文
1. William I Wei and Jonathan ST Sham. Nasopharyngeal carcinoma. The Lancet.2005, 365(9476):2041-2054.
    2.郭翔,闵华庆.鼻咽癌研究回顾与展望.国外医学.肿瘤学分册,2000,27(01):11-14.
    3.殷蔚伯,谷铣之.肿瘤放射治疗学.北京:中国协和医科大学出版社,2002:237-573.
    4.潘建基.鼻咽癌放射治疗的进展.实用肿瘤杂志,2001,16(1):5-7.
    5.洪明晃.闵华庆.鼻咽癌的治疗决策.实用肿瘤杂志,2001,16(001):7-10.
    6.马骏,麦海强,洪明晃等.中晚期鼻咽癌新辅助化疗联合放疗前瞻性临床试验的长期结果.癌症,2001,20(5):505-510.
    7.黄腾波,汪慧民,李景廉等.鼻咽癌优化筛查方案—鼻咽癌的早期检出.癌症,1997,16(4):245-247.
    8.洪明晃.鼻咽癌的筛查问题.实用肿瘤杂志,2004,19(4):275-276.
    9.肖绍文,王长胜.鼻咽癌早发现生存率高4倍.保健时报8月17日,2006.
    10.张友会.现代肿瘤学.北京:中国协和医科大学联合出版社,1993:153-181.
    11. B Rigas, S Morgello, I S Goldman et al. Human colorectal cancers display abnormal Fourier-transform infrared spectra. Proc.Natl.Acad.Sci. USA,1990,87(20): 8140-8144.
    12. Jianan Y. Qu, Po Wing, Zhijian Huang et al. Preliminary study of in vivo autofluorescence of nasopharyngeal carcinoma and normal tissue. Lasers in Surgery and Medicine,2000,26(5):432-440.
    13. Hanpeng Chang, Yue Wen, Siu Lung Lee et al. Light induced autofluorescence for detection of nasopharyngeal carcinoma in vivo. Proc. SPIE,2001,4432:186-195.
    14. Hanpeng Chang, Jianan Y. Qu, Powing Yuen et al. Light-induced autofluorescence spectroscopy for detection of nasopharyngeal carcinoma in vivo. Applied Spectroscopy,2002,56(10):1361-1367.
    15.周川钊,李步洪,谢树森等.鼻咽癌药物荧光成像定位仪的光学设计.光电子.激光,2002,13(3):639-642.
    16.高泽红,丁建华,林钧坤等.人体血清可见喇曼光谱与DNA紫外共振喇曼光谱的检测.中国激光医学杂志,1999,8(4):207—210.
    17.郭萍,谢琪.癌症患者血清的激光喇曼光谱.光谱学与光谱分析,2000,20(6):844—846.
    18. Annika M. K. Enejder, Tae-Woong Koo, Jeankun Oh et al. Blood analysis by Raman spectroscopy. Optics Letters,2002,27(22):2004-2006.
    19. James L. Lambert, Christine C.Pelletier, Mark Borchert et al. Glucose determination in human aqueous humor with Raman spectroscopy. Journal of Biomedical Optics, 2005,10:031110.
    20. M. J. Goetz Jr, G.L. Cote, R. Erckens et al. Application of a multivariate technique to Raman spectra for quantification of body chemicals. IEEE Transactions on Biomedical Engineering,1995,42(7):728-731.
    21. Martin G. Shim, Louis-Michel Wong Kee Song, Norman E. Marcon et al. In vivo near-infrared Raman spectroscopy:demonstration of feasibility during clinical gastrointestinal endoscopy. Photochemistry and Photobiology,2000,72(1):146-150.
    22. Hendrik P. Buschman, Eric T. Marple, Michael L. Wach et al. In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Analytical Chemistry.2000,72(16):3771-3775.
    23. David P. Lau, Zhiwei Huang, Harvey Lui et al. Raman spectroscopy for optical diagnosis in normal and cancerous tissue of the nasopharynx-preliminary findings. Lasers in Surgery and Medicine,2003,32(3):210-214.
    24.姚辉璐,王桂文,何碧娟等.单个红细胞的拉曼光谱研究.济南大学学报,2005,19(4):328-330.
    25.姚辉璐,朱淼,王桂文等.单个鼻咽癌细胞的拉曼光谱分析的研究.光谱学与光谱分析,2007,27(9):1761-1764.
    26. S. Fendel, B. Schrader. Investigation of skin and skin lesions by NIR-FT-Raman spectroscopy. Fresenius' Journal of Analytical Chemistry,1998,360:609-613.
    27. Tissa R. Hata, Theresa A. Scholz, Igor V. Ermakov et al. Non-invasive Raman spectroscopy detection of carotenoids in human skin. Journal of Investigative Dermatology,2000,115(3):441-448.
    28. Peter J. Caspers, Gerald W. Lucassen, Elizabeth A. Carter et al. In vivo confocal Raman microspectroscopy of the skin:noninvasive determination of molecular concentration profiles. Journal of Investigative Dermatology,2001,16(3):434-442.
    29. M. Gniadecka, H. C. Wulf, N. Nymark Mortensen. Diagnosis of basal cell carcinoma by Raman spectroscopy. Journal of Raman Spectroscopy,1997,28:125-129.
    30. Sigurdur Sigurdsson, Peter Alshede Philipsen, Lars Kai Hansen et al. Detection of skin cancer by classification of Raman spectra. IEEE Transactions on Biomedical Engineering,2004,51(10):1784-1793.
    31. Mads Sylvest Bergholt, Wei Zheng, Kan Lin et al. Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection. Journal of Biomedical Optics,2011,16(3):037003.
    32. Hendrik P. Buschman, Eric T. Marple, Michael L. Wach et al. In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Analytical Chemistry,2000,72(16):3771-3775.
    33. C. Murali Krishna, G. D. Sockalingum, Jacob Kurien et al. Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma. Applied Spectroscopy,2004,58(9):1128-1135.
    34. Philip R. T. Jess, Daniel D. W. Smith, Michael Mazilu et al. Early detection of cervical neoplasia by Raman spectroscopy. International Journal of Cancer,2007, 121(12):2723-2728.
    35. R. R. Alfano, C. H. Liu, W. L. Sha et al. Human breast tissues studied by IR Fourier transform Raman spectroscopy. Lasers in the Life Sciences,1991,4:23-28.
    36. Christopher J. Frank, Richard L. McCreey, Douglas C. B. Redd. Raman spectroscopy of normal and diseased human breast tissues. Analytical Chemistry.1995,67(5): 777-783.
    37. A. Mizuno, H. Kitajima, K. Kawauchi et al. Near-infrared Fourier transform Raman spectroscopic study of human brain tissues and tumours. Journal of Raman Spectroscopy,1994,25(1):25-29.
    38. Hiroya Yamazaki, Shoji Kaminaka, Ehiichi Kohda et al. The diagnosis of lung cancer using 1064-nm excited near-infrared multichannel Raman spectroscopy. Radiation Medicine.2003,21(1):1-6.
    39. Urs Utzinger, Douglas L. Heintzelman, Anita Mahadevan-Jansen et al. Near-infrared Raman spectroscopy for in vivo detection of cervical precancers. Applied Spectroscopy,2001,55(8):955-959.
    40. Zhiwei Huang, Annette McWilliams, Harvey Lui et al. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. International Journal of Cancer, 2003,107(6):1047-1052.
    41. Abigail S. Haka, Zoya Volynskaya, Joseph A. Gardecki et al. Diagnosing breast cancer using Raman spectroscopy:prospective analysis. Journal of Biomedical Optics, 2009,14(5):054023.
    42.刘竟青.新型的激光拉曼光谱系统-inVia.现代仪器,2005,1:35-38.
    43. Senada Koljenovic, Tom Bakker Schut, Arnaud Vincent et al. Detection of meningioma in dura mater by Raman spectroscopy. Analytical Chemistry,2005, 77(24):7958-7965.
    44. Jipeng Yang, Jianyu Guo, Liangping Wu et al. Raman spectroscopic identification of normal and malignant human stomach cells. Chinese Optics Letters,2005,3(12): 705-707.
    45. S. K. Teh, W. Zheng, K. Y. Ho et al. Diagnostic potential of near-infrared Raman spectroscopy in the stomach:differentiating dysplasia from normal tissue. British Journal of Cancer,2008,98(2):457-465.
    46. P. Crow, N. Stone, C. A. Kendall et al. The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro. British Journal of Cancer,2003,89(1): 106-108.
    47. P. Crow, B. Barrass, C. Kendall et al. The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines. British Journal of Cancer,2005, 92(12):2166-2170.
    48. Luis F. Santos, Rolf Wolthuis, S. Koljenovic et al. Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region. Analytical Chemistry,2005, 77(20):6747-6752.
    49. Urs Utzinger, Rebecca R. Richards-Kortum. Fiber optic probes for biomedical optical spectroscopy. Journal of Biomedical Optics,2003,8(1):121-147.
    50. Jianhua Mo, Wei Zheng, Zhiwei Huang. Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue. Biomedical Optics Express,2010,1(1):17-30.
    51. H. W. Tang, X. B. Yang, J. Kirkham et al. Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering. Analytical Chemistry,2007,79(10):3646-3653.
    52. Shangyuan Feng, Juqiang Lin, Rong Chen et al. Gold nanoparticles based surface enhanced Raman spectroscopy study of human nasopharyngeal tissues. Applied Spectroscopy,2009,63(10):1089-1094.
    53. S. Keren, C. Zavaleta, Z. Cheng et al. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. PNAS,2008,105 (15):5844-5849.
    54. Karen E. Shafer-Peltier, Abigail S. Haka, Jason T. Motz et al. Model-based biological Raman spectral imaging. Journal of Cellular Biochemistry Supplement,2002, 39:125-137.
    55. Claudia Scalfi-Happ, Andrea Jauss, Olaf Hollricher et al. Confocal Raman microscopy for investigation of the level of differentiation in living neuroblastoma tumor cells. Proc. SPIE,2007,6630:66300T.
    56. Christoph Krafft, Daniela Codrich, Gloria Pelizzo et al. Raman and FTIR microscopic imaging of colon tissue:a comparative study. Journal of Biophotonics,2008,1(2): 154-169.
    57. M. Fleischmann, P. Hendra, A. McQuillan. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters,1974,26(2):163-166.
    58. M. Moskovits. Surface-enhanced spectroscopy. Reviews of Modern Physics,1985, 57(3):783-826.
    59. M. G.Albrecht, J. A. Creighton. Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society,1977,99(15):5215-5217.
    60. Shuming Nie, Steven R. Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science,1997,275(5303):1102-1106.
    61. Tae-Woong Koo, Selena Chan, and Andrew A. Berlin Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering. Optics Letters,2005,30(9):1024-1026.
    62. K. Kneipp, Y. Wang, H. Kneipp. Single molecule detecting using surfaced Raman scattering (SERS). Physics Review Letters,1997,78:1667-1671.
    63. H. Cho, B. Lee, G L. Liu et al. Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration. Lab on a Chip,2009,9(23): 3360-3363.
    64. Lei Sun, Kung-Bin Sung, Claire Dentinger et al. Composite organic-inorganic nanoparticles as Raman labels for tissue analysis. Nano Letters,2007,7(2):351-356.
    65.刘燕楠,邹祖全,刘燕青等.肺正常组织与癌变组织的表面增强拉曼光谱.光谱学与光谱分析,2007,7(10):2045-2048.
    66. S. Feng, R. Chen, J. Lin et al. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosensors and Bioelectronics,2010,25(11):2414-2419.
    67. S. Feng, R. Chen, J. Lin et al. Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosensors and Bioelectronics,2011,26:3167-3174.
    68. Juqiang Lin, Rong Chen, Shangyuan Feng et al. Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy. Biosonsers and Bioelectronics,2009,25(2):388-394.
    69.袁景和,肖繁荣,王桂英等.CARS显微术的基本原理及其进展.激光与光电子学进展,2004,41(7):17-23.
    70. Jixin Cheng, Andreas Volkmer, Lewis D. Book et al. An Epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity. J. Phys. Chem. B,2001,15(7):1277-1280.
    71. Jixin Cheng, Andreas Volkmer, X. Sunny Xie. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy. Journal of the Optical Society of America B,2002,19:1363-1375.
    72. Luis G Rodriguez, Stephen J. Lockett and Gary R. Holtom. Coherent anti-Stokes Raman scattering microscopy:A biological review. Cytometry A,2006, 69(8):779-791.
    73. and X. Sunney Xie. Coherent anti-Stokes Raman scattering microscopy:chemical imaging for biology and medicine. Annual Review of Analytical Chemistry,2008, 1:883-909.
    74. Conor L. Evans, Eric O. Potma, Mehron Puoris'haag et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy. PNAS,2005,102:16807-16812.
    75. Changan Xie, Mumtaz A. Dinno, Yongqing Li. Near-infrared Raman spectroscopy of single optically trapped biological cells. Optics Letters,2002,27(4):249-251.
    76. Changan Xie, Charles Goodman, Mumtaz A. Dinno et al. Real-time Raman spectroscopy of optically trapped living cells and organelles. Optics Express,2004, 12(25):6208-6214.
    77. Min Ai, Junxian Liu, Shushi Huang et al. Application and progress of Raman tweezers in single cells. Chinese Journal of Analytical Chemistry,2009,37(5): 758-763.
    78. Anna Chiara De Luca, Giulia Rusciano, Rosanna Ciancia et al. Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers. Optics Express,2008,16(11):7943-7957.
    79. Kun Chen, Yejun Qin, Feng Zheng et al. Diagnosis of colorectal cancer using Raman spectroscopy of laser trapped single living epithelial cells. Optics Letters,2006, 31:2015-2017.
    80.王雁军,姚辉璐,王桂文等.人肝癌组织细胞的激光光镊拉曼光谱研究.光谱学与光谱分析,2009,29(7):1881-1883.
    81.王桂文,彭立新,姚辉璐等.非正常形态红细胞对拉曼光谱判别的影响.光谱学与光谱分析,2009,29(8):2117-2121.
    82. Zhuang Liu, Weibo Cai, Lina He et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature nanotechnology,2007,2:47-52.
    83. C. Zavaleta, A. de la Zerda, Z. Liu et al. Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Letters,2008, 8(9):2800-2805.
    84. Zhuang Liu, Xiaolin Li, Scott M. Tabakman et al. Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. Journal of the American Chemical Society,2008,130:13540-13541.
    85. C. Raman, K. Krishnan. A new type of secondary radiation. Nature,1928,121(3048): 501.
    86.程光熙Raman布里渊散射.北京:科学出版社,2003,69-82.
    87. http://en.wikipedia.org/wiki/Sensitivity_and_specificity.
    88.刘桂芬.医学统计学(第二版).北京:中国协和医科大学出版社,2007.
    89. Jianhua Zhao, Harvey Lui, David I. McLean et al. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Applied Spectroscopy,2007,61 (11):1225-1232.
    90. Alex Cao, Abhilash K. Pandya, Gulay K. Serhatkulu et al. A robust method for automated background subtraction of tissue fluorescence. Journal of Raman Spectroscopy.2007,38:1199-1205.
    91.许禄,邵学广.化学计量学方法(第二版).北京:科学出版社,2004.
    92.朱凤岗,康戈莉.小波分析与光谱学信号处理.山东农业大学学报(自然科学版),2004,35(1):70-74.
    93.赵凯,王宗花.小波变换及其在分析化学中的应用.北京:地质出版社,2000.
    94. K. Virkler, I. K. Lednev. Blood Species Identification for Forensic Purposes Using Raman Spectroscopy Combined with Advanced Statistical Analysis. Analytical Chemistry,2009,81(18):7773-7777.
    95. J. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-Garcia et al. Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients. Lasers in Medical Science,2007,22(4):229-236.
    96. Andrew J. Berger, Tae-Woong Koo, Irving Itzkan et al. Multicomponent blood analysis by near-infrared Raman spectroscopy. Applied Optics,1999,38(13): 2916-2926.
    97.王惠文.偏最小二乘回归方法及其应用.北京:国防工业出版社,1999.
    98.褚小立,许育鹏,陆婉珍.偏最小二乘法方法在光谱定性分析中的应用研究.现代仪器,2007,5:13-15.
    99. Yongzeng Li, Rong Chen, Haishan Zeng et al. Raman spectroscopy of Chinese human skin in vivo. Chinese Optics Letters,2007,5(2):105-107.
    100. Chad A. Lieber, Shovan K. Majumder, Dean Billheimer et al. Raman microspectroscopy for skin cancer detection in vitro. Journal of Biomedical Optics, 2008,13(2):024013.
    101. Ioan Notingher, Gavin Jell, Petronela L. Notingher et al. Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells. Journal of Molecular Structure 2005,744-747:179-185.
    102. Ioan Notingher, Lary L Hench. Raman microspectroscopy:a noninvasive tool for studies of individual living cells in vitro. Expert Review of Medical Devices,2006, 3(2):215-34.
    103. Sebastian Wachsmann-Hogiu, Tyler Weeks and Thomas Huser. Chemical analysis in vivo and in vitro by Raman spectroscopy—from single cells to humans. Current Opinion in Biotechnology,2009,20:63-73.
    104. 黄伟,潘建基,陈荣等.鼻咽癌离体组织拉曼光谱的测量.光谱学与光谱分析,2009,(29)5:1304-1307.
    105. Michael A. Short, Stephen Lam, Annette McWilliams et al. Development and preliminary results of an endoscopic Raman probe for potential in vivo diagnosis of lung cancers. Optics letters,2008,33(7):711-713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700