用户名: 密码: 验证码:
角膜修复材料表面等离子体改性与表面性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖和氟硅丙烯酸脂广泛应用于角膜修复材料的研究,角膜修复材料的发展对材料表面特性提出了更高的要求,但壳聚糖膜表面亲水性较差,表面自由能尤其是其极性分量较低,缺乏细胞识别位点,不利于细胞在材料表面的黏附与增殖。氟硅丙烯酸树脂(FSA)是新一代高透氧性硬性角膜接触镜材料,但材料表面憎水,不利于泪液在镜片表面的铺展与润湿;且表面非极性基团与蛋白质分子间的非极性相互作用容易导致蛋白与脂质等在镜片表面的黏附,影响镜片佩戴舒适性和佩戴时间。为改善两种角膜修复材料的表面特性,本论文在对材料表面性能进行综合表征的基础上,采用低温等离子体进行表面处理和表面接枝改性,改善其表面物化特性和生物学性能。
     采用角分辨XPS对壳聚糖膜表面化学基团的空间分布进行分析表征。结果表明,壳聚糖膜随着在空气中放置时间延长,其表面极性基团-OH等逐渐转移到膜的内部;壳聚糖膜表面N元素主要以-NH_2形式存在,其分子链上的-CONH_2主要伸向壳聚糖膜内部。表面极性基团的这种空间取向是造成壳聚糖膜表面亲水性较差,表面自由能较低的主要原因。
     实验分别采用非反应性O2和N_2低温等离子体对壳聚糖膜进行表面处理。壳聚糖膜在O_2等离子体处理下,表面引入-OH、-COO、H_2N-C=O等极性基团,表面亲水性得到改善;采用O_2等离子体进行改性的最佳工艺条件为100W下处理60s,如功率过大或处理时间过长,则容易引起壳聚糖膜表面刻蚀;O2等离子体对壳聚糖膜进行表面处理未造成明显的表面形貌变化,但表面粗糙度有一定增加。采用N_2等离子体处理,也能改善壳聚糖膜表面亲水性,但效果不如O_2明显,采用100W等离子体功率和60s处理时间,其表面接触角下降为65°;N_2等离子体处理可在表面引入一定量的N元素,引入的N元素主要是以O=C-NH_2的形式存在;等离子体处理后暴露于大气中,膜表面活性自由基与空气中的氧气、水汽等进行反应,在表面引入含氧极性基团是等离子体处理样品表面极化的主要过程。
     等离子体处理在壳聚糖膜表面引入的极性基团会随着时间的推移而逐渐转移到膜的内部,这种极性基团的翻转内迁,导致了等离子体处理效果的时效性,其亲水性逐渐下降,接触角增大,表面自由能尤其是其极性分量逐渐下降,壳聚糖膜表面等离子体处理的时效性大约为10天。
     实验采用Ar等离子体诱导接枝在壳聚糖膜表面引入聚乙二醇(PEG)分子链;表面接枝层厚度约10nm;PEGMA单体浓度10%、Ar等离子体功率100W、时间60s时表面接枝量最大;采用PEGMA单体比采用具有相同分子量的PEGDA单体接枝率高;将PEGMA单体接枝到壳聚糖膜表面后,其表面水接触角下降,亲水性改善,表面自由能和粗糙度增加。表面接枝壳聚糖膜具有较好的牛血清蛋白吸附特性;细胞试验结果表明等离子体处理和表面接枝壳聚糖膜表面的细胞黏附率高于未经处理的壳聚糖膜,表面改性壳聚糖膜具有较好的表面细胞相容性。
     采用O_2、N_2和Ar等离子体对硬性透气性(RGP)FSA角膜接触镜片进行表面处理均能极大地改善镜片表面的亲水性。等离子体处理在表面引入了含O基团,其中表面Si-CH3发生分子键的断裂,形成Si-O,硅烷转变为亲水性的无机硅氧基团(Si-O),是表面亲水性改善的主要原因。在等离子体处理下,表面分子中C-O发生部分断键,生成O-C=O。N2等离子体处理能够在RGP表面引入含N基团,N元素主要是以O=C-NH_2的形式存在。等离子体处理后表面活性自由基与空气中的氧气反应形成含氧基团是表面活化的主要过程,其中表面引入的O主要是与Si结合形成Si-O。等离子体处理对RGP表面形貌的影响主要取决于等离子体功率的大小,Ar等离子体相比O2和N2等离子体对表面的刻蚀更为明显,等离子体处理工艺以100W和120s为宜。三种气氛等离子体相比较,N2相比Ar和O_2等离子体较为温和,而Ar等离子体在功率较大时,容易导致表面刻蚀,表面粗糙度增加,表面亲水性反而下降,这与等离子体中的粒子能量大小有关。
     采用Ar等离子体辅助接枝能有效地将PEGMA单体分子接枝聚合到RGP表面,所得PEGMA接枝层的厚度大约10纳米;结果表明:表面接枝量大小与单体浓度有关,采用去离子水作为溶剂,PEGMA单体浓度10%时具有最大的表面接枝量,RGP表面接枝PEG后,表面亲水性改善,RGP镜片表面溶菌酶蛋白质的吸附量减少,表面改性RGP镜片具有较好的表面细胞相容性。
     采用低温等离子体技术对壳聚糖膜和角膜接触镜材料进行表面改性,能有效改善材料表面的亲水性和生物学性能,在角膜修复材料领域具有广泛的应用前景。
Chitosan and fluorosilicone acrylates (FSA) have been widely used for cornea repair studyand application. But chitosan’s poor surface hydrophilicity and low surface free energy,together with the lack of cell-recognition sites restrict the adhesion and propagation of cell onits surface. The peculiar molecular structure of FSA makes it a promident material for makingrigid gas permeable contact lens (RGP). But the surface hydrophobicity makes the lensunwettable for the tears, and the non-polar interaction between the surface unpolar groupswith the tear protein will lead to the surface protein and lipid adsorption. The study focusedon the surface modification and characterization of chitosan membrane and RGP contact lensin order to improve surface hydrophilicity and biological properties by plasma surfacetreatment and graft polymerization.
     The surface properties of chitosan membrane were characterized by angle-resolved X-rayphotoelectron spectroscopy (XPS). The results indicated that the polar groups (-OH) onchitosan membrane migrated into the membrane bulk, which made the surface hydrophobicwith low surface free energy. The surface nitrogen mainly exists in the form of–NH_2. The-CONH_2groups on chitosan molecule also distributed into the membrane bulk.
     In this study, chitosan membranes were surface modified by oxygen and nitrogen plasmarespectively. The surface hydrophilicity of chitosan membrane was greatly improved byoxygen plasma treatment. The mechanism for surface hydrophilicity improvement was thesurface oxidation after plasma treatment and exposure to air. Through this kind of surfaceoxidation, polar groups, such as–OH,-COO, H_2N-C=O were incorporated onto chitosanmembrane surface. The optimal plasma condition for chitosan surface treatment was100Wand60s. Higher plasma power or longer exposure time will bring about surface etching. Noevident morphology change was observed, but surface roughness increased slightly afterplasma treatment. Nitrogen plasma can also improve the surface hydrophilicity of chitosanmembrane. But the effect was not so evident compared with oxygen plasma. The surfacecontact angle decreased to about65°when the plasma power was100W and exposure timewas60s. Some kind of nitrogen can be incorporated onto chitosan membrane surface with theform of O=C-NH_2. The surface oxidation of chitosan membrane after exposing to air was still the main mechanism of surface activitation, which induced the improvement of surfacehydrophilicity and surface free energy.
     For the ageing effect of plasma treatment, the incorporated polar groups on chitosanmembrane surface will migrated into the membrane bulk gradually. This kind of redistributionof polar groups induced the recovery of surface hydrophobicity. The aging effect of chitosanmembrane after plasma treatment lasted for about10days before the surface contact anglereaching the value of untreated sample.
     Ar plasma induced surface graft of PEG onto chitosan membrane surface was carried out inthe study. The thickness of the grafted PEG layer was in the order of10nm indicated by XPSresults. The surface graft ratio depends on the monomer concentration and argon plasmacondition. The optimal monomer concentration was10%under the plasma power of100Wand plasma exposure time of60s. Methoxy polyethylene Glycol Monomethacrylate (PEGMA)was more favorable for surface graft of chitosan membrane than Polyethylene GlycolDimethacrylate (PEGDA) for its higher graft ratio under the same condition. The surfacehydrophilicity and surface free energy of chitosan membrane were improved by the graft ofPEGMA on membrane surface. The surface roughness was increased by the grafted PEGchain. The surface modified chitosan membrane has a good protein adsorption property. Andthe human corneal epithelial cell (HCEC) cell adhesion on chitosan membrane surface wasstrengthened.
     Oxygen, nitrogen and argon plasma were applied in the study for RGP lens surfacetreatment respectively. They all could improve the surface hydrophilicity of RGP lens. Themain reason for the improvement of surface hydrophilicity was the incorporation ofoxygen-containing groups on RGP lens surface. The chemical state of Si was changed fromsilixane (Si-CH3) into hydrophilic Si-O through the broken of Si-C bond. The formation of theinorganic Si-O was the main reason for the surface hydrophilicity improvement. Some C-Obond on RGP surface was also broken by plasma treatment, and transformed into O-C=O,which was another reason for the surface hydrophilicity improvement. Nitrogen plasma canintroduce O=C-NH_2group onto RGP lens surface. The reaction between the radicalsgenerated by plasma treatment and air oxygen was the main mechanism for surface oxidation.And the introduced oxygen was mainly in the state of Si-O. The effect of plasma treatment on surface morphology depends on the plasma power. Compared with oxygen and nitrogenplasma, argon plasma has a more strong influence on surface morphology by surface etching.The optimal condition for plasma treatment is100W and1_20s. Ar plasma with higher powerwill induced the increase of surface roughness by surface etching.
     PEGMA can be grafted successfully onto RGP surface through Ar plasma induced graftpolymerization. The thickness of the grafted PEG layer is in the order of several nanometers.The surface graft ratio depends on the monomer concentration. And the graft ratio reaches themaximum when the monomer concentration is10%with water as the solvent. After the graftof PEGMA, the surface hydrophilicity of RGP was improved, and the surface adsorption ofprotein on RGP surface was decreased greatly compared with the untreated sample. Thesurface modified RGP lens showed good cell compatibility.
引文
[1] Tognetto D., Toto L., Sanguinetti G., et a1. Lens epithelial cell reaction after implantationof different intraocular lens materials: two year results of a randomized prospective tria1[J]. Ophthalmology,2003,110:1935-1941
    [2] Erie J.C. Bandhauer M.H. Intraocular lens surfaces and their relationship to postoperativeglare [J]. J Cataract Refract Surg.,2003,29:336-341
    [3]邵春益,傅瑶,范先群.组织工程角膜和人工角膜材料研究进展[J].国际眼科纵览,2007,31(1):29-33
    [4]李沁华.角膜组织工程的研究进展[J].中国修复重建外科杂志,2004,18(3):229-231
    [5] Hu X., Liu W., Cui L., et al. Tissue engineering of nearly transparent corneal stroma [J].Tissue Eng,2005,11(11-12):1710-1717
    [6]胡晓洁,商庆新,曹谊林.角膜基质细胞-PGA生物支架复合物体外培养研究[J].眼科研究,2001,19(4):337-340
    [7]胡小洁,王敏,柴岗,等.组织工程技术构建兔角膜基质组织的实验研究[J].中华眼科杂志,2004,40(8):517-521
    [8] Orwin E.J., Hubel A. In vitro culture characteristics of corneal epithelial, endothelian andkeratocyte cells in a native collagen matrix [J]. Tissue Eng,2000,6(4):307-319
    [9] Minami Y., Sugihara H., Oono S. Reconstruction of cornea in three dimensional collagengelmatrix sulture [J]. Invest. Ophthalmol Vis Sci,1993,34(7):2316-2324
    [10]陈家祺,张胜,郭琳洁.体外培养重建角膜组织的技术探讨[J].中国实用眼科杂志,2000,19(11):815-818
    [11] Kuroyanagi Y., Yanada N., Yamashia R., et al. Tissue engineered product: allogeneiccultured dermal substitute composed of spongy collagen with fibroblasts [J]. ArtificialOrgans,2000,25(3):180
    [12] Srivastava S., Gorham S.D., Courtney J.M., et al. The attachment and growth of anestablished cell line on collagen, chemically modified collagen, and collagen compositesurface [J]. Biomaterials,1990,11(3):162-168
    [13] Zileinski B.A., Aebischer P. Chitosan as a matrix for mammalian cell encapsulation [J].Biomaterials,1994,15:1049-1056
    [14]姚子昂,韩宝芹,刘伟治,等.壳聚糖-硫酸软骨素共混膜性质的研究[J].高技术通讯,2001,12:18-23
    [15]姚子昂,吴海歌,韩宝芹,等.壳聚糖-透明质酸共混膜性质的研究[J].高技术通讯,2004,9:95-99
    [16]邓政兴,张志雄,李立华,等.聚乙烯吡咯烷酮接枝壳聚糖的生物相容性评价[J].第一军医大学学报,2004,24(6):639-641
    [17]丁勇,徐锦堂,陈建苏,等.兔角膜缘上皮细胞在体外壳聚糖共混膜上的培养及生物学鉴定[J].暨南大学学报(医学版),2005,26(2):205-209
    [18]赵晓飞.壳聚糖的改性及仿生型角膜组织工程支架的研制[D].广州,华南理工大学,2006
    [19]郭丽.壳聚糖基角膜修复材料的制备及其细胞相容性研究[D].广州,华南理工大学,2009
    [20]刘蓉.角膜接触镜的研究进展[J].大同医学专科学校学报,2002,2:42-43
    [21]黎新明.共聚物水凝胶接触镜材料的制备与性能研究[D].西安:西北工业大学,2003
    [22]蔡立彬,刘正堂,崔英德,张延霖.硅氧烷角膜接触镜材料的研究进展[J].现代化工,2006,(7):34-37
    [23] Tranoudis I., Efron N. Water properties of soft contact lens materials [J]. Contact Lens&Anterior Eye,2004,27:193–208
    [24] Nicolson P.C., Vogt J. Soft contact lens polymers: an evolution [J]. Biomaterials,2001,22:3273-3283.
    [25] Soltys-Robitaille C.E., Ammon J.D.M, Valint J.P.L., et al. The relationship betweencontact lens surface charge and in-vitro protein deposition levels [J]. Biomaterials,2001,22:3257-3260
    [26] Rediske M.A., Koenig A.L., Barekzi N., et al. Polyclonal human antibodies reducebacterial attachment to soft contact lens and corneal cell surfaces [J]. Biomaterials,2002,23:4565-4572
    [27] Compa V., L pez-Alemany A., Riande E., Refojo M.F. Biological oxygen apparenttransmissibility of hydrogel contact lenses with and without organosilicon moieties[J].Biomaterials,2004,25(2):359-365
    [28] Lai Y.C., Friends G.D. Surface wettability enhancement of silicone hydrogel lenses byprocessing with polar plastic molds [J]. J Biomed Mater Resour,1997,35:349-356
    [29] Hartstein J. Extended wear contact lenses for aphakia and myopia [M]. C.V Mosby,London,1982:1-37
    [30] Soltys-Robitaille C.E., Ammon J.D.M., Valint J.P.L., Grobe G.L. The relationshipbetween contact lens surface charge and in-vitro protein deposition levels [J].Biomaterials,2001,22:3257-3260
    [31] Subbaraman L.N. Lysozyme deposition studies on silicone hydrogel contact lensmaterials [D]. Canada, University of Waterloo,2005
    [32] Lorentz H. Lipid deposition on hydrogel contact lenses [D]. Canada, University ofWaterloo,2006
    [33] Lorentz H., Jones L. Lipid deposition on hydrogel contact lenses: How history can helpus today [J]. Optometry and Vision Science,2007,84(4):286-295
    [34] Tighe B. Rigid lens materials in contact lens practice [M]. Butterworth-Heinemann,2002:153-162
    [35] Tighe B. Silicone hydrogels: Structure, properties and behaviour in silicone hydrogelscontinuous wear contact lenses [M]. Butterworth-Heinemann,2004:1-27
    [36] Refojo M.F. Mechanism of gas transport through contact lenses [J]. J Am Optom Assoc,1979,50(3):285-287
    [37] Yasuo M., Cook W.L. Lens plasma coating system [P]. U.S. Patent,078074(2006)
    [38] Badaro R.M., Koziol J.E., Peyman G.A. Methane plasma as a protective coating onintraocular lenses: An in vitro study [J]. International Ophthalmology,1989,13:357-360
    [39] Valint P.L., McGee J.A., Ammon D.M., et al. Plasma surface treatment of siliconehydrogel contact lenses with a flexible carbon coating[P]. U.S. Patent,6213604(2001)
    [40] Valint Jr., Paul L., Grobe George L., Ammon J., et al. Plasma surface treatment ofsilicone hydrogel contact lenses [P]. U.S. Patent,6193369(2001)
    [41] Fakes D.W., Davies M.C., Brown A. and Newton J.M. The surface analysis of a plasmamodified contact lens surface b y SSIMS [J]. Surf Interf Sci,1988,13:233-236
    [42] Anselme K. Osteoblast adhesion on biomaterials [J]. Biomaterials,2000,21:667-81
    [43] Kasemo B. Biological surface science [J]. Surface Science,2002,500:656-677
    [44]秦廷武,杨志明,蔡绍皙,等.组织工程中细胞与材料的黏附作用[J].中国修复重建外科杂志,1999,13(1):31-37
    [45] Tamada Y., Ikada Y. Fibroblast growth on polymer surfaces and biosynthesis of collagen[J]. J Biomed Mater Res,1994,28:783-789
    [46] Saltzman W.M., Oarsons-wringerter P., Leong K.W., Lin S. Fibroblast and hepatocytebehavior on synthetic polymer surface [J]. J Biomed Mater Res,1991,25:741-759
    [47] Schakenraad J.M., Busscher H.J., Wildevuur C.R.H., et al. The influence of substratumsurface free energy on growth and spreading of human fibroblasts in the presence andabsence of serum proteins [J]. J Biomed Mater Res,1986,20:773-784
    [48] Daw R., Candan S., Beck A.J., et al. Plasma copolymer surfaces of acrylic acid/1,7octadiene:surface characterization and the attachment of ROS17/2.8osteoblast-likecells[J]. Biomaterials,1998,19(19):1717-1725
    [49] Shelton R.M., Rasmussen A.C., Davies J.E. Protein adsorption at the interface betweencharged polymer substrate and migrating osteoblasts [J]. Biomaterials,1988,9:24-29
    [50] Van Wachem P.B., Hogt A.H., Beugeling T., et al. Adhesion of cultured humanendothelial cells onto methacrylate polymers with varying surface wettability and charge[J]. Biomaterials,1987,8:323-328
    [51] Nakahara H., Goldberg V.M., Caplan A.I. Culture-expanded periosteal-derived cellsexhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo[J].Clin Orthop Rel Res,1992,276:291-298
    [52] Fewster S.D., Coombs R.R.H., Kitson J., Zhou S. Precise ultrafine surface texturing ofimplant materials to improve cellular adhesion and biocompatibility [J]. Nanobiology,1994,3:201-210
    [53] Wan Y.Q., Wang Y., Liu Z.M., et al. Adhesion and proliferation of OCT-1osteoblast-likecells on micro-and nanoscale topography structured poly(L-lactide)[J]. Biomaterials,2005,26:4453-4459
    [54] Yang J., Bei J., Wang S. Enhanced cell affinity of poly(D,L-lactide) by combining plasmatreatment with collagen anchorage[J]. Biomaterials,2002,23:2607-2614
    [55] Webb K., Hlady V., Tresco P.A. Relative importance of surface wettability and chargedfunctional groups on NIH3T3fibroblast attachment, spreading, and cytoskeletalorganization[J]. J Biomed Mater Res,1998,41:422-30
    [56] Hallab N.J., Bundy K.J., O’Connor K., Moses R.L., et al. Evaluation of metallic andpolymeric biomaterial surface energy and surface roughness characterization for directedcell adhesion [J]. Tissue Eng,2001,7:55-71
    [57] Qiu Q., Sayer M., Kawaja M., Shen X.,et al. Attachment, morphology, and proteinexpression of rat marrow stromal cells cultured on charged substrate surface[J]. J.Biomed Mater Res,1998,42:117-127
    [58] Shen H., Hu X., Yang F.,et al. Combining oxygen plasma treatment with anchorage ofcationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide)[J].Biomaterials,2007,28:4219-4230
    [59] Evans M.D.M., Steele J.G. Polymer surface chemistry and a novel attachmentmechanism in corneal epithelial cells [J]. J Biomed Mater Res,1998,40:621-630
    [60] Dahm M., Chang B.J., Prucker O. Surface attached ultrathin polymer monolayers forcontrol of cell adhesion [J]. Annals of Thoracic Surgery,2001,71:437-440
    [61] Ishaug-Riley S.L., Okun L.E., Prado G., Applegate M.A. Human articular chondrocyteadhesion and proliferation on synthetic biodegradable polymer films [J]. Biomaterials,1999,20:2245-2256
    [62] Van Wachem P.B., Beugelling T., Feijen J., et al. Interaction of cultured humanendothelial cells with polymeric surface of different wettabilities [J]. Biomaterials,1985,6:403-408
    [63] Van Wachem P.B., Hoget A.H., Beugeling T., et al. Adhesion of cultured humanendothelial cells onto methacrylate polymers with varying surface wettability andcharge[J]. Biomaterials,1987,8:323-328
    [64] Lee J.H., Lee S.K., Khang G., et al. The effect of fluid sheer stress on endothelial celladhesiveness to polymer surface with wettability gradient [J]. J Colloid and Interf Sci,2000,230:84-90
    [65] Tziampazis E., Kohn J., Moghe P.V. PEG-varient biomaterials as selectively adhesiveprotein templates model surface for controlled cell adhesion and migration [J].Biomaterials,2000,21:511-520
    [66]李艺,程镕时.蛋白质在固体表面吸附的研究进展[J].高分子通报,2007,3:41-49
    [67] Boyan B.D., Hummert T.W., Dean D.D., et al. Role of material surface in regulating boneand cartilage cell response [J]. Biomaterials,1996,17:137-146
    [68] Hallab N.J., Bundy K.J., O’Connor, et al. Evaluation of metallic and polymericbiomaterial surface energy and surface roughness characterization for directed celladhesion [J]. Tissue Eng,2001,7:55-71
    [69] Baier R.E. Surface properties determine bioadhesive outcomes: Methods and results [J].J Biomed Mater Res,1984,18:337-355
    [70] Healy K.E., Thomas C.H., Rezania A., et al. Kinetics of bone cell organization andmineralization on materials with patterned surfaces chemistry [J]. Biomaterials,1996,17:195-208
    [71] Thomas C.H., McFarland C.D., RezaniaA., et al. The role of vitronectin in theattachment and spatial distribution of bone-derived cells on materials with patternedsurface chemistry [J]. J Biomed Mater Res,1997,37:81-93
    [72] Lampin M., Warocquier R., Legris C., Degrange M., et al. Correlation between substrumroughness and wettability. Cell adhesion and cell migration [J]. J Biomed Mater Res,1997,36:99-108
    [73] Hallab N.J, Bundy K.J., O’ Connor K., Moses R.L., et al. Evaluation of metallic andpolymeric biomaterial surface energy and surface roughness characterization for directedcell adhesion [J]. Tissue Eng,2001,7:55-71
    [74] Deligianni D.D., Katsala N.D., Koutsoukos P.G., Missirlis Y.F. Effect of surfaceroughness of hydroxyapatite on human bone marrow cell adhesion, proliferation,differentiation and detachment strength [J]. Biomaterials,2001,22:87-96
    [75] Campbell C.E., Von Recum A.F. Microtopography and soft tissue response [J]. J InvestSurg,1989,2:51-74
    [76] Lee J.H., Khang G., Lee H.B. Cell behavior on polymer surfaces with different functionalgroups [J]. Biomaterials,1994,15:705-711
    [77] Shelton R.M., Rasmussen C., Davies J.E. Protein adsorption at the interface betweencharged polymer substrata and migrating osteoblasts [J]. Biomaterials,1988,9:24-29
    [78] Baldwin S.P., Saltzman W.M. Polymer for Tissue Engineering [J]. Treands in PolymerScience,1996,4:177-182
    [79]高长有,马列.医用高分子材料,化学工业出版社[M].2006年6月:179-180
    [80]马祖伟.聚乳酸软骨组织工程支架制备、改性及其细胞相容性研究[D].杭州,浙江大学,2003
    [81] Giroux T.A., Cooper S.L. Surface characterization of plasma-derived polyurethanes [J]. JAppl Polym Sci,1991,43:145-155
    [82] Griesser H.J., Chatelier R.C., Gengenbach T.R., et al. Growth of human cells on plasmapolymers: Putatibe role of amine and amide groups [J]. J Biomater Sci Polym Edn,1994,5:531-554
    [83] Wang X.H., Li D.P., Wang W.J., et al. Covalent immobilization of chitosan and heparinon PLGA surface [J]. International Journal of Biological Macromolecules,2003,33:95-100
    [84] Chen H., Chen Y., Sheardown H., et al. Immobilization of heparin on a silicone surfacethrough a heterobifunctional PEG spacer [J]. Biomaterials,2005,26:7418-7424
    [85] Zou X.P., Kang E.T., Neoh K.G. Plasma-induced graft polymerization of poly(ethyleneglycol) methyl ether methacrylate on poly(tetrafluoroethylene) films for reduction inprotein adsorption[J]. Surf&Coating Technol,2002,149:119-128
    [86] Wang P., Tan K.L., Kang E.T. et al. Surface functionalization of low density polyethylene films with grafted poly(ethylene glycol) derivatives[J]. J Mater Chem,2001,11:2951-2957
    [87] Cheo S.H.Y., Wang P., Tan K.L., et al. Surface modification of natural rubber latex filmsvia grafting of poly(ethyleneglycol) for reduction in protein adsorption and plateletadhesion[J]. J Mater Sci: Mater in Med,2001,12:377-384
    [88] Zhang F., Kang E.T., Neoh K.G., et al, Surface modification of stainless steel by graftingof poly(ethylene glycol) for reduction in protein adsorption[J]. Biomaterials,2001,22:1541-1548
    [89] Liu F., Du C.H., Zhu B.K., et al. Surface immobilization of polymer brushes onto porouspoly(vinylidene fluoride) membrane by electron beam to improve the hydrophilicity andfouling resistance[J]. Polymer,2007,48:2910-2918
    [90] Chen Y., Kang E.T., Neoh K.G., et al. Surface modification of polyaniline film bygrafting of poly(ethylene glycol) for reduction in protein adsorption and plateletadhesion[J]. Synthetic Metals,2000,110:47-55
    [91] Wang P., Tan K.L., Kang E.T., et al. Synthesis, characterization and anti-foulingproperties of poly(ethylene glycol) grafted poly(vinylidene fluoride) copolymermembranes[J]. J Mater Sci,2001,11:783-789
    [92] Wang P., Tan K.L., Kang E.T. Surface modification of poly(tetrafluoroethylene) films viagrafting of poly(ethylene glycol) for reduction in protein adsorption[J]. J Biomater Sci,Polym Edn,2000,11(2):169-186
    [93] Chan C.-M., Ko T.-M., Hiraoka H. Polymer surface modification by plasmas and photos[J]. Surf Sci Reports,1996,24:1-54
    [94]陈杰瑢著.低温等离子体化学及其应用[M].科学出版社.2001年第一版:1-19
    [95]卢玲.聚羟基烷酸酯PHBV的表面改性与表面仿生研究[D].广州,华南理工大学,2006
    [96] Qiu Y., Hwang Y.J., Zhang C., et al. Atmospheric pressure helium plus oxygen plasmatreatment of ultrahigh modulus polyethylene fibers [J]. J Adhes Sci Technol,2002,16(4):449-457
    [97] Qiu Y., Hwang Y.J., Zhang C., et al. The effect of atmospheric pressure helium plasmatreatment on the surface and mechanical properties of ultrahigh-modulus polyethylenefibers [J]. J Adhes Sci Technol,2002,16(1):99-107
    [98] Ohl A., Schleinitz W., Meyer-Sievers A., Becker A., et al. Design of an UHV reactorsystem for plasma surface treatment of polymer materials [J]. Surf&Coating Technol,1999,116-119:1006-1010
    [99] Sioshansi P., Tobin E.J. Surface treatment of biomaterials by ion beam processes [J]. Surf&Coating Technol,1996,83(1-3):175-182
    [100] Weikart C.M., Matsuzawa Y., Winterton L., Yasuda H. Evaluation of plasma polymercoated contact lenses by electrochemical impedance spectroscopy[J]. J Biomed MaterRes,2001,54:597-607
    [101] Hsiue G.H., Lee S.D., Chang P.C.T., Kao C.Y. Surface characterization and biologicalproperties study of silicone rubber membrane grafted with phospholipids as biomaterialvia plasma induced graft copolymerization[J]. J Biomed Mater Res,1998,42,134-147
    [102] Ih-Houng Loh Sc.D. Plasma surface modification in biomedical applications. ASTTechnical Journal
    [103] Jansen B., Schareina S., et al. Development of polymers with anti-infections properties
    [M]. Applied Bioactive Polymeric Materials. New York: Plenum Press,1988:97
    [104] Wang Y., Lu L., Zheng Y., et al. Improvement in hydrophilicity of PHBV films byplasma treatment[J]. J Biomed Mater Res, Part A,2006,76(3):589-595
    [105] Ohl A., Schr der K. Plasma-induced chemical micropatterning for cell culturingapplications: a brief review[J]. Surf&Coatings Technol,1999,116–119:820-830
    [106] Shakesheff K., Cannizzaro S., Langer R. Creating biomimetic micro-environments withsynthetic polymer-peptide hybrid molecules [J]. J Biomater Sci Polym Edn,1998,9(5):507-518
    [107] Durrani A.A., Hayword J.A., Chapman D. Biomembrnanes as models for polymersurfaces: II. The syntheses of reactive species for covalent coupling of phosphorylcholine to polymer surfaces [J]. Biomaterials,1986,7(2):121-125
    [108] Hayward J.A., Durrani A.A., Lu Y., et al. Biomembranes as models for polymersurfaces: IV. ESCA analyses of a phosphorylcholine surface covalentiy bound tohydroxylated substrates[J]. Biomaterials,1986,7:252-258
    [109] Ishihara K., Fukumoto K., Iwasaki., et al. Modification of polysulfone withphospholipid polymer for improvement of the blood compatibility. Part1. Surfacecharacterization [J]. Biomaterials,1999,20:1545-1549
    [110] Xu J.M., Shan B., Shen J., et al. Ozone-induced grafting phosphorylcholine polymeronto silicone film grafting2-methacryloyloxyethyl phosphorylcholine onto siliconefilm to improve hemocompatibility[J]. Colloid Surf B,2003,30:215-223
    [111] Sibarani J., Takai M., Ishihara K. Surface modification on microfluidic devices with2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable proteinadsorption [J]. Colloid Surf B,2007,54:88-93
    [112] Feng W., Brash J.L., Zhu S. Non-biofouling materials prepared by atom transfer radicalpolymerization grafting of2-methacryloloxyethyl phosphorylcholine: Separate effectsof graft density and chain length on protein repulsion[J].Biomaterials,2006,27:847-855
    [113] Goba T., Konno T., Takai M., et al. Biomimetic phosphorylcholine polymer graftingfrom polydimethylsiloxane surface using photo-induced polymerization [J].Biomaterials,2006,(27):5151-5160
    [114] Goba T., Konno T., Taka M., et al. Photoinduced phospholipid polymer grafting onParylene film: Advanced lubrication and antibiofouling properties [J]. Colloid Surf B2007,54:67-73
    [115] Zhu A.P., Wang S.Q., Yuan Y.L., Shen J. Cell adhesion behavior of chitosan surfacemodified by bonding2-methacryloyloxyethyl[J]. J Biomater Sci Polym Edn,2002,13(5):501-510
    [116] Ma Z., Gao C., Ji J., Shen J. Protein immobilization on the surface of poly-L-lactic acidfilms for improvement of cellular interactions[J]. European Polymer Journal,2002,38:2279-2284
    [117] Kobayashi H., Kato M., Taguchi T., et al. Collagen immobilized PVA hydrogel-hydroxyapatite composites prepared by kneading methods as a material for peripheralcuff of artificial cornea [J]. Mater Sci and Eng C,2004,24:729-735
    [118]柯渔.聚羟基烷酸酯酰胺化表面构建及细胞相容性研究[D].广州,华南理工大学,2008
    [119] Lorentz H., Rogers R., Jones L. The impact of lipid on contact angle wettability [J].Optomery and Vision Science,2007,84(10):946-953
    [120] Evans M.D.M., Steele J.G. Polymer surface chemistry and a novel attachmentmechanism in corneal epithelial cells [J]. J Biomed Mater Res,1998,40:621-630
    [121] Dahm M., Chang B.J., Prucker O. Surface attached ultrathin polymer monolayers forcontrol of cell adhesion [J]. Annals of Thoracic Surgery,2001,71:437-440
    [122] Ishaug-Riley S.L., Okun L.E., Prado G., Applegate M.A. Human articular chondrocyteadhesion and proliferation on synthetic biodegradable polymer films[J]. Biomaterials,1999,20:2245-2256
    [123] Van Wachem P.B., Beugelling T., Feijen J., et al. Interaction of cultured humanendothelial cells with polymeric surface of different wettabilities [J]. Biomaterials,1985,6:403-408
    [124] Van Wachem P.B., Hoget A.H., Beugeling T., et al. Adhesion of cultured humanendothelial cells onto methacrylate polymers with varying surface wettability andcharge[J]. Biomaterials,1987,8:323-328
    [125] Lee J.H., Lee S.K., Khang G., et al. The effect of fluid sheer stress on endothelial celladhesiveness to polymer surface with wettability gradient [J]. J Colloid Interf Sci,2000,230:84-90
    [126] Tziampazis E., Kohn J., Moghe P.V. PEG-varient biomaterials as selectively adhesiveprotein templates model surface for controlled cell adhesion and migration[J].Biomaterials,2000,21:511-520
    [127] Francis S.J.K, Matthew H.W.T. Application of chitosan-based polysaccharidebiomaterials in cartilage tissue engineering: a review [J]. Biomaterials,2000,21:2589-2598
    [128] Lahiji A., Sohrabi A., Hungerford D.S., et al. Chitosan supports the expression ofextracellular matrix proteins in human osteoblasts and chondrocytes [J]. J BiomedMater Res,2000,51:586-595
    [129] Mao J., Zhao L., Yao K., et al. Study of novel chitosan-gelatin artificial skin in vitro [J].J Biomed Mater Res,64A,2003,64A:301-308
    [130] Zhu A., Chen T. Blood compatibility of surface-engineered poly (ethylene terephthalate)via carboxymethyl chitosan [J]. Colloids and Surfaces B: Biointerfaces,2006,50:120-125
    [131] Wan Y., Qu X., Lu J., et al. Characterization of surface property of poly (lactide-co-glycolide) after oxygen plasma treatment [J]. Biomaterials,2004,25:4777-4783
    [132] Sanchis M.R., Calvo O., Fenollar O.,et al. Characterization of the surface changes andthe aging effects of low-pressure nitrogen plasma treatment in a polyurethane film[J].Polymer Testing,2008,27:75-83
    [133] Wilson D.J., Williams R.L. Pond R.C. Plasma modification of PTFE surfaces. Part I:Surfaces immediately following plasma treatment [J]. Surf Interf Anal,2001,31:385-396
    [134] Chu P.K. Plasma surface treatment of artificial orthopedic and cardiovascularbiomaterials [J]. Surf&Coatings Technol,2007,201:5601-5606
    [135] Khorasani M.T., Mirzadeh H., Irani S. Plasma surface medication of poly(L-lacticacid)and poly(lactic-co-glycolicacid) films for improvement of nerve cells adhesion[J].Radiation Physics and Chemistry.2008,77:280-287
    [136] Wan Y., Yang J., Yang J., Bei J., Wang S. Cell adhesion on gaseous plasma modifiedpoly(L-lactide) surface under shear stress field[J]. Biomaterials,2003,24:3757-3764
    [137] Wanichapichart P., Sungkum R., Taweepreda W., Nisoa M. Characteristics of chitosanmembranes modified by argon plasma [J]. Surf&Coatings Technol,2009,203:2531-2535
    [138] Silva S.S., Luna S.M., Gomes M.E., et al. Plasma surface modification of chitosanmembranes: characterization and Preliminary Cell Response Studies [J]. MacromolBiosci,2008,8:568-576
    [139] Matienzo L.J., Winnacker S.K. Dry Processes for Surface Modification of a Biopolymer:Chitosan [J]. Macromol Mater Eng,2002,287:871-880
    [140] Wu S. Calculation of interfacial tension in polymer systems [J]. J Polym Sci Part C,1971,34:19-30
    [141] Hallab N.J., Bundy K.J., O’Connor K., Moses R.L., et al. Evaluation of metallic andpolymeric biomaterial surface energy and surface roughness characterization fordirected cell adhesion[J]. Tissue Engineering,2001,7:55-71
    [142] Schakenraad J.M., Busscher H.J., Wildevuur C.R.H., Arends J. The influence ofsubstratrum surface free energy on growth and spreading of human fibroblasts in thepresence and absence of serum proteins [J]. J Biomed Mater Res,1986,20:773-784
    [143] Baier R.E. Surface properties determine bioadhesive outcomes: Methods and results [J].J Biomed Mater Res,1984,18:337-355
    [144] Harnett E.M., Alderman J., Wood T. The surface energy of various biomaterials coatedwith adhesion molecules used in cell culture [J]. Colloids and Surf B: Biointerf,2007,55:90-97
    [145] Van der Valk P., Van Pelt A.W., Busscher H.J., De Jong H.P. Interaction of fibroblastsand polymer surfaces: relationship between surface free energy and fibroblast spreading[J]. J Biomed Mater Res,1983,17(5):807-817
    [146] Sanchis M.R., Calvo O., Fenollar O., et al. Characterization of the surface changes andthe aging effects of low-pressure nitrogen plasma treatment in a polyurethane film[J].Polymer Testing,2008,27:75-83
    [147] Wagner A.J., Fairbrother D.H., Reniers F. A comparison of PE surfaces modified byplasma generated neutral nitrogen species and nitrogen ions [J]. Plasmas Polym,2003,8(2):119-134
    [148] Dhayal M., Alexander M.R., Bradley J.W. The surface chemistry resulting fromlow-pressure plasma treatment of polystyrene: the effect of residual vessel boundoxygen [J]. Appl Surf Sci,2006,252(22):7957-7963
    [149] Arpagaus C., Rossi A., Rohr P.R. Short-time plasma surface modification of HDPEpowder in a plasma downer reactor-process, wettability improvement and ageingeffects[J]. Appl Surf Sci,2005,252(5):1581-1595
    [150] CepedaJimenez C.M., TorregrosaMacia R., Martin-Martinez J.M. Surface modificationsof EVA copolymers by using RF oxidizing and non-oxidizing plasmas [J]. Surf&Coating Technol,2003,174:94-99
    [151] Drnovska H., Lapcik L., Bursikova V., et al. Surface properties of polyethylene afterlow-temperature plasma treatment [J]. Colloid Polym Sci,2003,281(11):1025-1033
    [152] Ortiz-Magan A.B., Pastor-Blas M.M., Ferrandiz-Gomez T.P., et al. Surfacemodifications produced by N2and O2RF plasma treatment on a synthetic vulcanizedstyrene–butadiene rubber[J]. Plasma Polym,2001,6(1):81-105
    [153] Ortiz-Magan A.B., Pastor-Blas M.M., Martin-Martinez J.M. Surface modifications andadhesion of vulcanized SBR rubber treated with RF plasmas of different gases[J]. JAdhes,2004,80(7):613-634
    [154] Ren Y., Wang C., Qiu Y. Aging of surface properties of ultra high modulus polyethylenefibers treated with He/O2atmospheric pressure plasma jet[J]. Surf&Coating Technol,2008,202:2670-2676
    [155] Qiu Y.X., Klee D., Pluster W., et al. Surface modification of polyurethane byplasma-induced graft polymerization of poly (ethylene glycol) methacrylate [J]. J ApplPolym Sci,1996,61:2373-2382
    [156] Behnisch J., Holl nder A., Zimmermann H. Factors influencing the hydrophobicrecovery of oxygen-plasma-treated polyethylene [J]. Surf&Coating Technol,1993,59:356-358
    [157] Lawton R.A., Price C.R., Runge A.F., et al. Air plasma treatment of submicron thickPDMS polymer films: effect of oxidation time and storage conditions [J]. Colloid SurfA,2005,253(1-3):213-215
    [158] Kim B.K., Kim K.S., Cho K., Park C.E. Retardation of the surface rearrangement of O2plasma-treated LDPE by a two-step temperature control[J]. J Adhes Sci Technol,2001,15(14):1805-1816
    [159] Nakamatsu J., Delgado-Aparicio L.F., Silva R.D., et al. Aging of plasma-treatedpoly(tetrafluoroethylene) surfaces[J]. J Adhes Sci Technol,1999,13(7):753-761
    [160] YunY.I., Kim K.S., Uhm S.J., Khatua B.B., et al. Aging behavior of oxygenplasma-treated polypropylene with different crystallinities[J]. J Adhes Sci Technol,2004,18(11):1279-1291
    [161] Sanchis M.R, Calvo O., Fenollar O., Garcia D., et al. Characterization of the surfacechanges and the aging effects of low-pressure nitrogen plasma treatment in apolyurethane film [J]. Polym Test,2008,27:75-83
    [162] Matienzo L.J., Winnacker S.K. Dry processes for surface modification of a biopolymer:chitosan [J]. Macromol Mater Eng,2002,287(12):871-880
    [163] Tziampazis E., Kohn J., Moghe P.V. PEG-variant biomaterials as selectively adhesiveprotein templates model surface for controlled cell adhesion and migration[J].Biomaterials,2000,21:511-520
    [164] Cheo S.H.Y., Wang P., Tan K.L., et al. Surface modification of natural rubber latex filmsvia grafting of poly(ethylene glycol) for reduction in protein adsorption and plateletadhesion[J]. J Mater Sci: Mater in Medicine,2001,12:377-384
    [165] Wang P., Tan K.L., Kang E.T., et al. Antifouling poly (vinylidene fluoride) microporousmembranes prepared via plasma-induced surface grafting of poly (ethylene glycol)[J].J Adhes Sci. and Technol,2002,16,(2):111-127
    [166] Castner D.G., Ratner B.D. Biomedical surface science: Foundations to frontiers [J]. SurfSci,2002,500:28-60
    [167] Su Y., Wang L., Yang X. A simple swelling and anchoring method for preparing denseand stable poly(ethylene oxide) layers on polystyrene surfaces[J]. Appl Surf Sci,2008,254:4606-4610
    [168] Zhang M., Li X.H., Gong Y.D., Zhao N.M., et al. Properties and biocompatibility ofchitosan films modified by blending with PEG[J]. Biomaterials,2002,23:2641-2648
    [169] Saneinejad S., Shoichet M.S. Patterened glass surfaces direct cell adhesion and processoutgrowth of primary neurons of the central nervous system[J]. J Biomed Mater Res,1998;42:13-19
    [170] Zou X.P., Kang E.T., Neoh K.G. Plasma-induced graft polymerization of poly (ethyleneglycol methyl) ether methacrylate on poly (tetrafluoroethylene) films for reduction inprotein adsorption [J]. Surf&Coating Technol,2002,149:119-128
    [171] Li Y., Liu L., Fang Y. Plasma-induced grafting of hydroxyethyl methacrylate (HEMA)onto chitosan membranes by a swelling method [J]. Polym Int,2003,52:285-290
    [172]吴峰.壳聚糖复合膜的制备及表面形貌的原子力显微镜观察[D].暨南大学硕士学位论文,2006年10月:16
    [173]张开编著.等离子体界面科学[M].中国石化出版社,1997年3月:215
    [174] Tanuma S., Powell C.J., Penn D.R. Calculations of electron inelastic mean free paths. V.Data for14organic compounds over the50-2000eV range [J]. Surf Interface Anal,1994,21,165-176
    [175] Samuels R.J. Solid state characterization of the structure of chitosan films [J]. J PolymSci, Polym Phys Edn,1981,19,1081-1105
    [176] Sharma S., Johnson R.W., Desai T.A. XPS and AFM analysis of antifouling PEGinterfaces for Micro fabricated silicon biosensors[J]. Biosensors and Bioelectronics,2004,20:227-239
    [177] Li Y., Neoh K.G., Kang E.T. Plasma protein adsorption and thrombus formation onsurface functionalized polypyrrole with and without electrical stimulation [J]. J Colloidand Interf Sci,2004,275:488-495
    [178] Nezler J.F., McGee J.A., Salamone J.C., et al. Surface treatment of medical device [P].U.S. Pat.6,958,169(2002)
    [179] Walline J.J. The contact lens and myopia progression (CLAMP) study [D]. The OhioState University,2002
    [180] Han S., Lee Y., Kim H. Polymer surface modification by plasma source ionimplantation [J]. Surf&Coating Technol,1997,93:261-264
    [181] Cui N.Y., Brown N.M.D. Modification of the surface properties of a polypropylene (PP)film using an air dielectric barrier discharge plasma [J]. Appl Surf Sci,2002,(189):31-38
    [182] Favia P., Agostino R.d. Plasma treatments and plasma deposition of polymers forbiomedical applications [J]. Surf&Coating Technol,1998,98:1102-1106
    [183] Ru L., Jie-rong C. Studies on wettability of medical poly(vinylchloride) by remoteargon plasma[J]. Appl Surf Sci,2006,252:5076-5082
    [184] Valint P.L., McGee J.A., Ammon D.M., et al. Plasma surface treatment of siliconehydrogel contact lenses with a flexible carbon coating[P]. U.S. Pat.6,213,604(2001)
    [185] Valint P.L., Ammon D.M., Grobe G.L., et al. Plasma surface treatment of siliconehydrogel contact lenses[P]. U.S. Pat.6,193,369(2001)
    [186] Yasuda H., Bumgarner M.O., Marsh H.C. et al. Ultrathin coating by plasmapolymerization applied to corneal contact lens [J]. J Biomed Mater Res,1975;9(6):629-643
    [187] Lai J., Sunderland B., Xue J., et al. Study on hydrophilicity of polymer surfacesimproved by plasma treatment [J]. Appl Surf Sci,2006,252:3375-3379
    [188] Inagaki N., Narushima K., Tsutsui Y., Ohyama Y. Surface modification and degradationof poly(lactic acid) films by Ar-plasma[J]. J Adhes Sci Tech,2002,16:1041-1054
    [189] Hansen R.H., Pascale J.V., Rentzpis P.M. Effect of atomic oxygen on polymers [J]. JPolym Sci, Part A,1965,3:2205-2214
    [190] Owens D.K. The Mechanism of corona and ultraviolet light induced self-adhesion ofpoly(ethyleneterephthalate) film[J]. J Appl Polym Sci,1975,19:3315-3326
    [191] Hansen R.H., Shonhorn H. A new technique for preparing low surface energy polymersfor adhesive bonding [J]. Polym Letters,1966,4:203-209
    [192] Shonhorn H., Hansen R.H. Surface treatment of polymers for adhesive bonding [J]. JAppl Polym Sci,1967,11(8):1461-1474
    [193] Kim C.Y. Goring D.A.I. Surface morphology of polyethylene after treatment in acorona discharge [J]. J Appl Polym Sci,1971,15:1357-1364
    [194] Choi H.S., Kim Y.S., Zhang Y., Tang S., et al. Plasma-induced graft co-polymerizationof acrylic acid onto the polyurethane surface[J]. Surf&Coating Techn,2004,182:55-64
    [195] Gupta B., Plummer C., Bisson I., et al. Plasma-induced graft polymerization of acrylicacid onto poly(ethylene terephthalate) films: characterization and human smoothmuscle cell growth on grafted films[J]. Biomaterials,2002,23:863-871
    [196] Lee S.D., Hsiue G.H., Chang P.C.T., et al. Plasma-induced grafted polymerization ofacrylic acid and subsequent grafting of collagen onto polymer film as biomaterials[J].Biomaterials,1996,17:1599-1608
    [197] Harris J.M. Poly(ethylene glycol) Chemistry, Plenum Press, New York and London,1992.
    [198]刘毅,谢培英,瞿佳,褚仁远.生理盐水与护理液对亲水性隐形眼镜蛋白质沉淀洗脱效应的比较[J].眼视光学杂志,2001,3(3):160-161
    [199]刘毅,谢培英,褚仁远,瞿佳.软性角膜接触镜片上蛋白质沉淀洗脱的动态观察[J].眼视光学杂志,1999,1(2):98-100
    [200] Sofia S.J., Premnath V., Merrill E.U. Poly (ethylene oxide) grafted to silicon surfaces:grafting density and protein adsorption [J]. Macromol,1998,31:5059-5070
    [201]许朝翔.利用恒温滴定微卡计探讨聚乙二醇抗蛋白质吸附之作用机制[D].国立中央大学,台湾,2007
    [202] Hermans J. Excluded-volume theory of polymer–protein interactions based on polymerchain statistics [J]. J Chem Phys,1982,77:2193-2203
    [203] Wang P., Tan K.L., Kang E.T., Neoh K.G. Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane[J]. J Memb Sci,2002,195:103-114
    [204] Kjellander R., Florin E. Water structure and changes in thermal stability of the systempoly(ethylene oxide)-water[J]. J Chem Soc Faraday Trans,1981,177:2053-2077
    [205] Jeon S.I., Lee J.H., Andrade J. D., Gennes P.G. Protein surface interactions in thepresence of polyethylene oxide[J], J Colloid Interf Sci,1991,(142):149-158
    [206] Szlifer I. Protein adsorption on surfaces with grafted polymers: A theoretical approach[J]. Biophys J,1997,72:595-612
    [207] Szlifer I. Polymers and proteins: interactions at interfaces [J]. Curr Opin Solid StateMater Sci1997,(2):337-344
    [208] Szlifer I. Protein adsorption on tethered polymer layers: effect of polymer chainarchitecture and composition [J]. Physica A.1997,244:370-388
    [209] Feldman K., Hahner G., Spencer N. D., Harder P., et al. Probing resistance to proteinadsorption of oligo(ethylene glycol)-terminated self-assembled monolayers by scanningforce microscopy[J]. J Am Chem Soc,1999,121:10134-1014
    [210] Harder P., Grunze M., Dahint R., Whitesides G.M., et al. Molecular conformation inOligo(ethylene glycol)-terminated self-Assembled monolayers on gold and silversurfaces determines their ability to resist protein adsorption[J]. Phys Chem B,1998,102:426-436
    [211] Wang R.L.C., Kreuzer H.J. Grunze M. Molecular conformation and solvation ofOligo(ethylene glycol)-terminated self-assembled monolayers and their resistance toprotein adsorption[J]. J Phys Chem B,1997,101:9767-9773
    [212] Kane R.S., Deschatelets P., Whitesides G.M. Kosmotropes form the basis of protein-resistant surfaces [J]. Langmuir,2003,19:2388-2391
    [213] Yancey P.H., Clark M.E., Hand S.C., et al. Living with water stress: evolution ofosmolyte systems [J]. Science,1982,217:1214-1222
    [214] Pavey K.D., Olliff C.J. SPR analysis of the total reduction of protein adsorption tosurfaces coated with mixtures of long and short-chain polyethylene oxide blockcopolymers[J]. Biomaterials,1999,20:885-890
    [215] Vermette P., Meagher L. Interactions of phospholipid and poly (ethylene glycol)modified surfaces with biological systems: relation to physico-chemical properties andmechanisms [J]. Colloid Surf B: Biointerf,2003,28:153-198
    [216] Metzler V., Bienert H., Lehmann T., et al. A novel method for quantifying shapedeformation applied to biocompatibility testing [J]. ASAIO J,1999,45(4):264-271
    [217] Netson S.K., Wathah J.C., Neme A.M.L., et al. Cytotoxicity of dental casting alloyspretreated eith biologic solutions [J]. J Prosthet Dent,1999,81(5):591-596
    [218] Sun Y., Collett J., Fullwood N.J., et al. Culture of dermal fibroblasts and proteinadsorption on block conetworks of poly(butyl methacrylate-block-(2,3propandiol-1-methacrylate-statethandioldimethacrylate))[J]. Biomaterials,2007,28:661-670
    [219] Sjogren G., Sletten G., Dahl J.E. Cytotoxicity of dental alloys, mentals and ceramicsassessed by Millipore filter, agar overlay and MTT tests[J]. J Prosthet Dent,2000,84(2):229-236
    [220] Timmer M.D., Shin H., Horch R.A., et al. In vitro cytotoxicity of injectable andbiodegradable poly (propylene fumarate)-based networks: Unreacted macromers,cross-linked networks and degradation products [J]. Biomacrom,2003,4(4):1026-1033
    [221] Thonemann B., Schmalz G., Hiller K.A., et al. Responses of L929mouse fibroblasts,primary and immortalized bovine dental papilla-derived cell lines to dental resincomponents[J]. Dental Materials,2002,18(4):318-323
    [222] Morrison C., Macnair R., Macdonald C., et al. In vitro biocompatibility testing ofpolymers for orthopedic implants using cultured fibroblasts and osteoblasts [J].Biomaterials,1995,16(13):987-992
    [223] Howling G.I., Dettmar P.W., Goddard P.A., et al. The effect of chitin and chitosan on theproliferation of human skin fibroblasts and keratinocytes in vitro [J]. Biomaterials,2001,22(22):2959-2966
    [224] Yao Z.A., Han B.Q., Wu H.G., Liu W.S. The effect of molecular weight on thebiocompatibility of chitosan membrane to corneal stroma cells [J]. Chinese J BiomedEng,2005,24(4):477-481
    [225] Yao Z.A., Han B.Q., Wu H.G., Liu W.S. The effect of the degree of deacetylation ofchitosan on the biocompatibility of chitosan membrane with cornea stroma cells [J]. JBiomed Eng,2006,23(4):800-804
    [226] Yang J., Bei J., Wang S. Enhanced cell affinity of poly(D,L-lactide) by combiningplasma treatment with collagen anchorage[J]. Biomaterials,2002,23:2607-2614

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700