用户名: 密码: 验证码:
变结构控制策略及在广义系统与Delta算子系统中设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变结构控制是现代控制技术中一种先进的非线性反馈控制,主要包括无滑模变结构控制、滑模控制和切换监督控制等控制策略。软变结构控制通过连续选择参量改变控制器结构实现状态信号变化,是一种无滑模变结构控制策略。软变结构控制具有调节精度高,响应速度快,几乎不产生系统抖振等优点。滑模控制系统在滑动模态区域,沿着预置的切换面趋近于系统平衡状态。在一定的匹配条件下,滑模控制对系统内部参数摄动和外部干扰具有完全鲁棒性,但可能引起系统抖振。变结构控制逐渐在机器人模型、航空航天、化工流程、电机电网等许多实际领域中得到推广和应用。广义系统比正常系统更具广泛形式,在于广义系统不仅考虑系统鲁棒性和稳定性,且需分析系统是否具有正则性和无脉冲性(或因果性),后者对于正常系统是无需考虑的。Delta算子系统可统一描述连续系统和离散系统,Delta算子理论广泛应用于高速信号处理和数字采样控制系统。
     本论文首先综述了变结构控制策略的起源和发展,广义系统的变结构控制和Delta算子系统的变结构控制研究现状。在此基础上,系统地研究了输入受限连续系统的软变结构控制策略、不确定离散系统基于趋近律方法的滑模控制策略、广义系统的变结构控制设计和Delta算子系统的变结构控制设计等问题。论文的主要结果概括如下:
     1.研究了控制输入受限连续系统的软变结构控制策略。给出了软变结构控制的定义和控制器的结构模式,基于隐Lyapunov函数给出了控制不受限和控制受限两种情形的软变结构控制,给出了带有状态观测器的软变结构控制系统。讨论了动态软变结构控制。给出了基于S类函数的软变结构控制,设计了基于双曲正切函数的软变结构控制器。基于sigmoid函数,给出了自主水下航行器的软变结构控制策略,仿真实验表明了软变结构控制策略的有效性。
     2.研究了不确定离散系统基于趋近律方法的滑模控制策略。分析和比较了常见离散趋近律,给出了理想趋近律定义,设计了基于扰动补偿理想趋近律的离散滑模控制。给出了基于S类变速趋近律的离散滑模控制,综合了指数趋近律和变速趋近律情形的优点。最后将滑模控制策略应用到高新企业知识员工系统。
     3.研究了输入受限连续广义系统的动态软变结构控制设计问题。描述了广义系统及其解的特征。给出了广义系统软变结构控制器的结构模式。分析了广义系统动态软变结构控制的稳定性,构造了广义系统的动态软变结构控制器,给出了广义系统动态软变结构控制的具体算法。
     4.研究了非匹配不确定离散广义系统的滑模控制设计问题。设计了具有前级状态向量的动态切换函数,使得系统保持在切换带内稳定。给出了两种带有扰动补偿的离散广义趋近律,所设计的滑模控制系统消除了不确定项必须有界的限制,不必满足匹配条件。给出了系统准滑动模态保持逐步穿越切换面的必要条件,减小了准滑动模态切换带的带宽。
     5.研究了Delta算子系统的滑模控制问题。利用线性矩阵不等式方法给出了切换面存在的充分条件,得到了滑模到达条件。设计了基于指数趋近律和基于理想趋近律方法的Delta算子系统滑模控制器,得到了Delta算子不确定系统滑模控制设计的一般方法,给出了该系统准滑动模态的渐近稳定性结果。最后设计了Delta算子系统的最优滑模控制器。
In modern control technologies, variable structure control (VSC) is an advancednonlinear control strategy, which mainly contain three kinds of control strategies:VSC precluding sliding mode, sliding mode control (SMC) and switching supervisorycontrol. Soft variable structure control (SVSC) is based on a continuous selectionstrategy to achieve variational signals by altering system structure, which is part ofVSC precluding sliding mode. It has many advantages such as high regulating rates,fast response, and scarcely any chattering. The SMC strategy make the system driftdown a specified switching plane towards the equilibrium state, if the system involvedis controlled in the sliding modes. It is complete robustness to the internal parameterperturbation and external disturbance under certain matching conditions but it maycause certain system chattering. The VSC strategy has been promoted and applied to awide variety of practical program, such as robot models, aerospace controls, chemicalprocess, electric motors and power systems et al. Singular system is much moregeneral than normal system because the controller must be designed so that the systemis not only robust and stable, but also regular and impulse-free, or causal, while thelatter two issues do not arise in the normal system. The continuous system and thediscrete system can be presented in a unified framework by Delta operator. Deltaoperator theory is widely applied in high speed signal processing and digital samplecontrol system.
     The dissertation first reviews the origin and the development of VSC strategy, aswell as the relative studies on the VSC design for singular systems and Delta operatorsystems up to now are given in detail. Due to the above reasons, the dissertationsystematically investigates the problems of the SVSC strategy for continuous systemswith input constraints, the SMC strategy for uncertain discrete systems based on reaching laws, and the VSC design for singular systems and Delta operator systems.The main results are shown as follows.
     1. The SVSC strategy for continuous systems with input constraints is presented.The definition of SVSC and the structure feature of its controller are given. SVSC forunrestricted controls and restricted controls based on implicit Lyapunov functions ispresented, as well as the SVSC system with state observer is discussed. The dynamicSVSC strategy is discussed. The SVSC strategy with S-class functions is presented.The SVSC with hyperbolic tangent functions is designed. The SVSC for autonomousunderwater vehicle (AUV) based on sigmoid functions is presented, and simulationexperiment is carried out to verify the effectiveness of the proposed strategy.
     2. The SMC strategy for uncertain discrete systems based on reaching laws ispresented. The conventional discrete reaching laws are summarized, and the definitionof ideal reaching law is given. The uncertain discrete SMC system is designed by theideal reaching law with disturbance compensator. The S-class variable rate reachinglaw is designed, and the performance of the law is better than that of the exponentialreaching law and the variable rate reaching law. Finally, a knowledge worker dynamicsystem by the SMC strategy in high technology enterprises is presented.
     3. The problem of the dynamic SVSC design for continuous singular systemswith input constraints is presented. The singular system and its solution are described.The structure mode of SVSC controller is given. The stability of singular systemswith the dynamic SVSC is proposed. The dynamic soft variable structure controller isdesigned, and the concrete algorithm on the dynamic SVSC is given.
     4. The problem of the SMC design for mismatched uncertain discrete singularsystems is presented. The dynamic switching function with last step state is given toguarantee the stability of the control systems in switching band. Two types of discretesingular reaching laws with disturbance compensator are designed to eliminate therestriction that the system uncertainties is bounded and the satisfaction of matchingconditions compared with conventional SMC. Essential conditions of quasi-slidingmode which can cross the switching plane step by step is provided, and the switchingband of quasi-sliding mode is reduced.
     5. The problem of the SMC strategy for Delta operator systems is presented. Asufficient condition for the existence of the switching plane in terms of linear matrixinequality (LMI) is given, and the reaching condition of sliding mode is analyzed. Thedifferences and similarities of designing sliding mode controller based on the idealreaching law and the exponential reaching law. The SMC design for uncertain Deltaoperator systems with internal parameter perturbation and external disturbance isdesigned, and the asymptotic stability of quasi-sliding mode is proved. Finally, theoptimal sliding mode controller for Delta operator systems is designed.
引文
[1]万百五,韩崇昭,蔡远利.控制论—概念、方法与应用.北京:清华大学出版社,2009.
    [2]万百五.控制论创立六十年.控制理论与应用,2008,25(4):597-602.
    [3]胡剑波,庄开宇.高级变结构控制理论及应用.西安:西北工业大学出版社,2008.
    [4] Itkis Y. Control Systems of Variable Structure. New York: Wiley,1976.
    [5] Emelyanov S. V. Control of a first order delayed systems by means of an astatic regulatorand nonlinear correction. Automatic Remote Control,1959,20(8):983-991.
    [6] Emelyanov S. V. Variable Structure Control Systems. Moscow: Nauka,1967.
    [7] Utkin V. I. Variable structure systems with sliding modes. IEEE Trans. Automatic Control,1977,22(2):212-220.
    [8] Utkin V. I. Sliding Modes in Control and Optimization. New York, Springer,1992.
    [9] Adamy J, Flemming A. Soft variable-structure controls: a survey. Automatica,2004,40(11):1821-1844.
    [10]高为炳.变结构控制的理论及设计方法.北京:科学出版社,1998.
    [11]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展.控制理论与应用,2007,24(3):407-418.
    [12] Lewis F. L. A tutorial on the geometric analysis of linear time-invariant implicit systems.Automatica,1992,28(1):119-137.
    [13] Leon Pritchard F. On implicit systems of differential equations. J. Differential Equations,2003,194(2):328-363.
    [14] Luenberger D. G. Dynamic equations in descriptor form. IEEE Trans. Automatic Control,1977,22(3):312-321.
    [15] Cobb J. D. Feedback and pole placement in descriptor variable systems. Int. J. Control,1981,33(6):1135-1146.
    [16] Chyan C. J, Du N. Y, Linh V. H. On data-dependence of exponential stability and stabilityradii for linear time-varying differential-algebraic systems. J. Differential Equations,2008,245(8):2078-2102.
    [17] Krishnan H, Harris Mcclamroch N. Tracking in nonlinear differential-algebraic systemswith applications to constrained robot systems. Automatica,1994,30(12):1885-1897.
    [18] Rosenbrock H. H. Structural properties of linear dynamical systems. Int. J. Control,1974,20(2):191-202.
    [19] Brenan K. E, Campbell L, Petzold L. R. Numerical Solution of Initial Value Problems inDifferential-algebraic Equations. North-Holland: Elsevier,1989.
    [20] Hill D. J, Mareels I. Y. Stability theory for differential-algebraic model of power systems.IEEE Trans. Circuits and Systems,1990,37(11):1416-1423.
    [21] Winkler R. Stochastic differential algebraic equations of index1and applications in circuitsimulation. J. Computational and Applied Mathematics,2003,157(2):477-505.
    [22] Winkler R. Stochastic differential algebraic equations of index1and applications in circuitsimulation. J. Computational and Applied Mathematics,2004,163(2):435-463.
    [23] Luenberger D. G. Time-invariant descriptor systems. Automatica,1978,14(5):473-480.
    [24] Luenberger D. G, Arbel A. Singular dynamic Leontief systems. Econometrica,1977,45(4):991-995.
    [25] Luenberger D. G. Non-linear descriptor systems. J. Economic Dynamics and Control,1979,3(1):219-242.
    [26] Dai L. Singular Control Systems. Berlin: Spring-verlag,1989.
    [27]刘永清,温香彩.广义系统的变结构控制.广州:华南理工大学出版社,1997.
    [28]张庆灵,杨冬梅.不确定广义系统的分析与综合.沈阳:东北大学出版社,2003.
    [29] Fridman E, Shaked U. A descriptor system approach to H∞control of linear time-delaysystems. IEEE Trans. Automatic Control,2002,47(2):253-270.
    [30] Cao Y. Y, Lin Z. L. A descriptor system approach to robust stability analysis and controllersynthesis. IEEE Trans. Automatic Control,2004,49(11):2081-2084.
    [31] Han Q. L. A descriptor system approach to robust stability of uncertain neutral systemswith discrete and distributed delays. Automatica,2004,40(10):1791-1796.
    [32] Yang J, Zhong S. Xiong L. A descriptor system approach to non-fragile H∞control foruncertain fuzzy neutral systems. Fuzzy sets and Systems,2009,160(4):423-438.
    [33] Tavazoei M. S, Haeri M. Rational approximations in the simulation and implementation offractional-order dynamics: a descriptor system approach. Automatica,2010,46(1):94-100.
    [34] Middleton R. H, Goodwin G. C. Improved finite word length characteristics in digitalcontrol using delta operators. IEEE Trans. Automatic Control,1986,31(11):1015-1021.
    [35] Goodwin G. C, Lozano Leal R, Mayne D. Q, et al. Rapprochement between continuousand discrete model reference adaptive control. Automatica,1986,22(2):199-207.
    [36] Middleton R. H, Goodwin G. C. Digital Control and Estimation: A Unified Approach. NewJersey: Prentice Hall,1990.
    [37] Neuman C. P. Transformations between delta and forward shift operator transfer functionmodels. IEEE Trans. Systems, Man and Cybernetics,1993,23(1):295-296.
    [38] Hersh M. A. The zeros and poles of delta operator systems. Int. J. Control,1993,57(3):557-575.
    [39] Chen S, Istepanian R, Wu J, et al. Comparative study on optimizing closed-loop stabilitybounds of finite-precision controller structures with shift and delta operators. Systems&Control Letters,2000,40(3):153-163.
    [40] Suchomski P. Numerically robust delta-domain solutions to discrete-time Lyapunovequations. Systems&Control Letters,2002,47(4):319-326.
    [41] Hori N, Mori A, Nikiforuk P. A new perspective for discrete-time models of a continuous-time system. IEEE Trans. Automatic Control,1992,37(7):1013-1017.
    [42] Vijayan R, Poor H, Moore J, et al. A Levinson-type algorithm for modeling fast-sampleddata. IEEE Trans. Automatic Control,1991,36(3):314-321.
    [43] Fan H, Liu X. Delta Levinson and Schur-type RLS algorithms for adaptive signalprocessing. IEEE Trans. signal processing,1994,42(7):1629-1639.
    [44] Li Q, Fan H, Karlsson E. A delta MYWE algorithm for parameter estimation of noisy ARprocesses. IEEE Trans. signal processing,1996,44(5):1300-1303.
    [45] Wahlberg B. The effects of rapid sampling in system identification. Automatica,1990,26(1):167-170.
    [46]陈宗基,高金源,张建贵. Z变换和δ变换的有限字长研究.自动化学报,1992,18(6):662-669.
    [47]李惠光,武波,李国友,等. Delta算子控制及其鲁棒控制理论基础.北京:国防工业出版社,2005.
    [48]张端金,王忠勇,吴捷.系统控制和信号处理中的Delta算子方法.控制与决策,2003,18(4):385-391.
    [49] Goodwin G. C, Middleton R. H, Poor H. V. High-speed digital signal processing andcontrol. Proc. IEEE,1992,80(2):240-259.
    [50] Chadwick M. A, Kadirkamanathan V, Billings S. A. Analysis of fast-sampled non-linearsystems: generalised frequency response function for δ-operator models. Signal Processing,2006,86(11):3246-3257.
    [51] Anderson S, Kadirkamanathan V. Modelling and identification of non-linear deterministicsystems in the delta-domain. Automatica,2007,43(11):1859-1868.
    [52]邢海龙.不确定分布参数系统与随机系统变结构控制设计及应用.博士学位论文.青岛:中国海洋大学,2007.
    [53]庄开宇.变结构控制理论若干问题研究及其应用.博士学位论文.杭州:浙江大学,2002.
    [54]张克勤.滑模变结构控制理论及其在倒立摆系统中的应用研究.博士学位论文.杭州:浙江大学,2003.
    [55]姚琼荟,黄继起,吴汉松.变结构控制系统.重庆:重庆大学出版社,1997.
    [56] Fu M, Barmish B. R. Adaptive stabilization of linear systems via switching control. IEEETrans. Automatic Control,1986,31(12):1097-1103.
    [57] Middleton R. H, Goodwin G. C, Hill D. J, et al. Design issues in adaptive control. IEEETrans. Automatic Control,1988,33(1):50-58.
    [58] Miller D. E, Davison E. J. An adaptive controller which provides Lyapunov stability. IEEETrans. Automatic Control,1989,34(6):599-609.
    [59] Narendra K. S, Balakrishnan J. Improving transient response of adaptive control systemsusing multiple models and switching. IEEE Trans. Automatic Control,1994,39(9):1861-1866.
    [60] Narendra K. S, Balakrishnan J. Adaptive control using multiple models. IEEE Trans.Automatic Control,1997,42(2):171-187.
    [61] Mosca E, Agnoloni T. Inference of candidate loop performance and data filtering forswitching supervisory control. Automatica,2001,37(4):527-534.
    [62] Mosca E, Agnoloni T. Switching supervisory control based on controller falsification andclosed-loop performance inference. J. Process Control,2002,12(4):457-466.
    [63] Vu L, Chatterjee D, Liberzon D. Input-to-state stability of switched systems and switchingadaptive control. Automatica,2007,43(4):639-646.
    [64] Tousi M. M, Karuei I, Hashtrudi Zad S, et al. Supervisory control of switching controlsystems. Systems&Control Letters,2008,57(2):132-141.
    [65] De Persis C, De Santis R, Stephen Morse A. Supervisory control with state-dependentdwell-time logic and constraints. Automatica,2004,40(2):269-275.
    [66] Kim J. S, Yoon T. W, De Persis C. Discrete-time supervisory control of input-constrainedneutral stable linear systems via state-dependent dwell-time switching. Systems&ControlLetters,2007,56(7-8):484-492.
    [67] Yoon T. W, Kim J. S, Stephen Morse A. Supervisory control using a new control-relevantswitching. Automatica,2007,43(10):1791-1798.
    [68] Cao M, Stephen Morse A. Dwell-time switching. Systems&Control Letters,2010,59(1):57-65.
    [69] Hespanda J. P, Liberzon D, Stephen Morse A. Hysteresis-based switching algorithms forsupervisory control of uncertain systems. Automatica,2003,39(2):263-272.
    [70] Baldi S, Battistelli G, Mosca E. Multi-model unfalsified adaptive switching supervisorycontrol. Automatica,2010,46(2):249-259.
    [71] Mosca E, Angeli D. Adaptive switching supervisory control of nonlinear systems with noprior knowledge of noise bounds. Automatica,2004,40(3):449-457.
    [72] Mosca E. Predictive switching supervisory control of persistently disturbed input-saturatedplants. Automatica,2005,41(1):55-67.
    [73] Namaki Shoushtari O, Khaki Sedigh A. Decentralized supervisory based switching controlfor uncertain multivariable plants with variable input-output pairing. ISA Trans,2012,51(1):132-140.
    [74] Rodriguez J. A, Romagnoli J. A, Goodwin G. C. Supervisory multiple regime control. J.Process Control,2003,13(2):177-191.
    [75] Pasamontes M, álvarez J. D, Guzmán J. D, et al. A switching control strategy applied to asolar collector field. Control Engineering Practice,2011,19(2):135-145.
    [76] Flügge Lotz I. Discontinuous Automatic Control. Princeton: Princeton Press,1953.
    [77] Flügge Lotz I, Taylor C. F. Synthesis of a nonlinear control system. IRE Trans. AutomaticControl,1956,1(1):3-9.
    [78] Mc Donald D. Multiple mode operation of servomechanisms. Review of ScientificInstruments,1952,23(1):22-30.
    [79] Emelyanov S. V, Fedotova A. I. Producing astaticism in servo systems with a variablestructure. Automatic Remote Control,1962,23(10):1223-1235.
    [80] Utkin V. I. Variable structure systems: present and future. Automatic Remote Control,1983,44(9):1105-1120.
    [81] Filippov A. F. Differential equations with discontinuous right-hand side. MatematicheskiiSbornik,1960,51(1):99-128.
    [82] Emelyanov S. V, Kostyleva N. E. Design of variable structure systems with discontinuousswitching function. Engineering Cybernetics,1964,2(1):156-160.
    [83] Flügge Lotz I. Discontinuous and Optimal Control. New York: McGraw-Hill,1968.
    [84] Dorling C. M, Zinober A. S. I. Two approaches to hyper plane design in multivariablestructure control systems. Int. J. Control,1986,44(l):922-926.
    [85] Zinober A. S. I. Variable Structure and Lyapunov Control. New York: Springer,1994.
    [86] Ghezawi O. M,Zinober A. S. I, Billings S. A. Analysis and design of variable structuresystems using a geometric approach. Int. J. Control,1983,38(3):657-671.
    [87] Ghezawi O. M,Zinober A. S. I, Owens D. H. et al. Computation of the zeros and zerodirections of linear multivariable systems. Int. J. Control,1982,36(5):833-843.
    [88] Young K. K. D, Kokotovic P. V, Utkin V. I. A singular perturbation analysis of high-gainfeedback systems. IEEE Trans. Automatic Control,1977,22(6):931-938.
    [89] Slotine J. J, Sastry S. S. Tracking control of non-linear systems using sliding surfaces withapplication to robot manipulators. Int. J. Control,1983,38(2):465-492.
    [90] Kim S, Han J. The design of sliding mode controller with mismatched uncertainties.Automatica,1997,31(2):303-307.
    [91] Zohdy. M. A, Fadali M. S, Liu J. Variable structure control using system decomposition.IEEE Trans. Automatic Control,1992,37(10):1514-1517.
    [92] Hung J. Y, Gao W, Hung J. C. Variable structure control: a survey. IEEE Trans. IndustrialElectronics,1993,40(1):2-22.
    [93] Gao W, Hung J. C. Variable structure control of nonlinear systems: a new approach. IEEETrans. Industrial Electronics,1993,40(1):45-55.
    [94]高为炳.离散时间系统的变结构控制.自动化学报,1995,21(2):154-161.
    [95] Gao W, Wang Y, Homaifa A. Discrete-time variable structure control systems. IEEE Trans.Industrial Electronics,1995,42(2):117-122.
    [96] Kiendl H, Schneider G. Synthese nichtlinearer regler für die regelstrecke const/s2aufgrundineinandergeschachter abgeschlossener gebiete beschr nkter Stellgr βe. Regelungstechnikund Prozeβdatenverarbeitung,1972,20(7):289-296.
    [97] Becker C. Beschreibung strukturvariabler regelungssysteme als eine spezielle klassebilinearer systeme. Regelungstechnik,1977,25(11):364-366.
    [98] Becker C. Synthese strukturvariabler regelungssysteme mit hilfe minimaler isochronen.Regelungstechnik,1978,26(5):162-169.
    [99] Franke D. Strukturvariabler regelung ohne gleitzust nde. Regelungstechnik,1982,30(8):271-276.
    [100] Franke D. Aussch pfung von stellgr βenbeschr nkungen mittels weicher strukturvariablerregelung. Regelungstechnik,1982,30(10):348-355.
    [101] Wredenhagen G. F, Bélanger P. R. Piecewise-linear LQ control for systems with inputconstraints. Automatica,1994,30(3):403-416.
    [102] Benzaouia A, Baddou A. Piecewise linear constrained control for continuous-time systems.IEEE Trans. Automatic Control,1999,44(7):1477-1481.
    [103] De Doná J. A, Moheimani S. O, Goodwin G. C, et al. Robust hybrid control incorporatingover-saturation. Systems&Control Letters,1999,38(3):179–185.
    [104] Furuta K. Sliding mode control of a discrete system. Systems&Control Letters,1990,14(2):145-152.
    [105] Golo G, Milosavlijevi. Robust discrete-time chattering free sliding mode control.Systems&Control Letters,2001,41(1):19-28.
    [106] Mondal S, Mahanta C. Composite nonlinear feedback based discrete integral sliding modecontroller for uncertain systems. Commun. Nonlinear Sci,2012,17(3):1320-1331.
    [107]胡跃明,周其节.带有滞后影响的控制系统的变结构控制.自动化学报,1991,7(5):587-591.
    [108]高存臣,袁付顺,肖会敏.时滞变结构控制系统.北京:科学出版社,2004.
    [109]唐功友,吕彬彬,董瑞.具有控制时滞的离散系统的无抖振滑模控制.控制理论与应用,2008,12(6):1045-1048.
    [110] Gouaisbaut F, Dambrine M, Richard J. P. Robust control of delay systems: a sliding modecontrol design via LMI. Systems&Control Letters,2002,23(4):219-230.
    [111] Zheng F, Cheng M, Gao W. B. Variable structure control of stochastic systems. Systems&Control Letters,1994,22(3):209-222.
    [112]邓飞其,冯昭枢,刘永清.随机系统的变结构控制.自动化学报,1997,23(2):267-270.
    [113] Niu Y. G, Ho D. W. C. Robust observer design for It stochastic time-delay systems viasliding mode control. Systems&Control Letters,2006,55(10):781-793.
    [114] Xing H, Gao. C. C, Li D. Sliding mode variable structure control for parameter uncertainstochastic systems with time-varying delay. J. Math. Anal. Appl,2009,355(2):689-699.
    [115] Niu Y. G, Ho D. W. C. Stabilization of discrete-time stochastic systems via sliding modetechnique. J. Franklin Institute,2012,349(4):1497-1508.
    [116] Xing H. L, Gao. C. C, Tang G. Y. Variable structure sliding mode control for a class ofuncertain distributed parameter systems with time-varying delays. Int. J. Control,2009,82(2):287-297.
    [117] Falahpoor M, Ataei M, Kiyoumarsi A. A chattering-free sliding mode control design foruncertain chaotic systems. Chaos, Solitons&Fractals,2009,42(3):1755-1765.
    [118] Roopaei M, Ranjbar Sahraei B, Lin T. C. Adaptive sliding mode control in a novel class ofchaotic systems. Commun. Nonlinear Sci,2010,15(12):4158-4170.
    [119] Yahyazadeh M, Ranjbar Noei A, Ghaderi R. Synchronization of chaotic systems withknown and unknown parameters using a modified active sliding mode control. ISA Trans,2011,50(2):262-267.
    [120] Yin C, Zhong S, Chen W. Design of sliding mode controller for a class of fractional-orderchaotic systems. Commun. Nonlinear Sci,2012,17(1):356-366.
    [121] Chai Y, Chen L. Projective lag synchronization of spatiotemporal chaos via active slidingmode control. Commun. Nonlinear Sci,2012,17(8):3390-3398.
    [122] Wu L. G, Ho D. W. C, Li C. W. Sliding mode control of switched hybrid systems withstochastic perturbation. Systems&Control Letters,2011,60(8):531-539.
    [123]肖会敏,赵林,王春花.不确定时滞切换系统的鲁棒滑模控制.控制理论与应用,2011,28(11):1621-1626.
    [124] David Young K, zgüner ü. Sliding-mode design for robust linear optimal control.Automatica,1997,33(7):1313-1323.
    [125] Tang G. Y, Dong R, Gao H. W. Optimal sliding mode control for nonlinear systems withtime-delay. Nonlinear Analysis: Hybrid Systems,2008,2(3):891-899.
    [126]唐功友,逄海萍,孙慧影.不确定时滞系统的全局鲁棒最优滑模控制.控制理论与应用,2009,26(8):850-854.
    [127] Bartolini G, Ferrara A. Utkin V. I. Adaptive sliding mode control in discrete-time systems.Automatica,1995,31(5):769-773.
    [128] Chen X. Adaptive sliding mode control for discrete-time multi-input multi-output systems.Automatica,2006,42(3):427-435.
    [129] Xia Y, Zhu Z, Li C, et al. Robust adaptive sliding mode control for uncertain discrete-timesystems with time delay. J. Franklin Institute,2010,347(1):339-357.
    [130] Huang L. R, Mao X. R. SMC design for robust H∞control of uncertain stochastic delaysystems. Automatica,2010,46(2):405-412.
    [131] Casta os F, Fridman L. Dynamic switching surfaces for output sliding mode control: AnH∞approach. Automatica,2011,47(9):1957-1961.
    [132] Palm R. Robust control by fuzzy sliding mode. Automatica,1994,30(9):1429-1437.
    [133] Roopaei M, Zolghadri Jahromi M. Chattering-free fuzzy sliding mode control in MIMOuncertain systems. Nonlinear Analysis: Theory Methods&Applications,2009,71(10):4430-4437.
    [134] Nekoukar V, Erfanian A. Adaptive fuzzy terminal sliding mode control for a class ofMIMO uncertain nonlinear systems. Fuzzy Sets and Systems,2011,179(1):34-49.
    [135] Da F. P. Decentralized sliding mode adaptive controller design based on fuzzy neuralnetworks for interconnected uncertain nonlinear systems. IEEE Trans. Neural Networks,2000,11(6):1471-1480.
    [136] Yu S, Yu X, Man Z. A fuzzy neural network approximator with fast terminal sliding modeand its applications. Fuzzy Sets and Systems,2004,148(3):469-486.
    [137] Hung L. C. Chung H. Y. Decoupled control using neural network-based sliding-modecontroller for nonlinear systems. Expert Syst. Appl,2007,32(4):1168-1182.
    [138]梁霄,王林山,刘云龙.时滞反应扩散Hopfield神经网络的滑动模控制.控制理论与应用,2012,29(1):47-52.
    [139] Lens H, Adamy J, Domont Yankulva D. A fast nonlinear control method for linear systemswith input saturation. Automatica,2011,47(4):857-860.
    [140]杨明,徐殿国,贵献国.控制系统Anti-Windup设计综述.电机与控制学报,2006,10(6):622-626,631.
    [141]张鹏,李颖晖,赵鹍.变饱和柔性变结构控制系统设计.系统仿真学报,2008,20(14):3790-3794.
    [142] Bubnicki Z. Modern Control Theory. Berlin: Springer-Verlag,2005.
    [143] Patel T. R, Kumar K. D, Behdiman K. Variable structure control for satellite attitudestabilization in elliptic orbits using solar radiation pressure. Acta Astronautica,2009,64(2):359-373.
    [144] Varma S, Kumar K. D. Fault tolerant satellite attitude control using solar radiation pressurebased on nonlinear adaptive sliding mode. Acta Astronautica,2010,66(3-4):486-500.
    [145] Li Y, Jing Z, Hu S. Dynamic optimal sliding-mode control for six-DOF follow-up robusttracking of active satellite. Acta Astronautica,2011,69(7-8):559-570.
    [146] Wang J, Sun Z.6-DOF robust adaptive terminal sliding mode control for spacecraftformation flying. Acta Astronautica,2012,73(4):76-87.
    [147] Camacho O, Smith C. A. Sliding mode control: an approach to regulate nonlinear chemicalprocesses. ISA Trans,2000,39(2):205-218.
    [148] Chen C. T, Peng S. T. Design of a sliding mode control system for chemical processes. J.Process Control,2005,15(5):515-530.
    [149] Datatreya Reddy G, Park Y, Bandyopadhyay B, et al. Discrete-time output feedback slidingmode control for spatial control of a large PHWR. Automatica,2009,45(9):2159-2163.
    [150] Garcia G. W, Dorado F, Bordons C. Real-time implementation of a sliding mode controllerfor air supply on a PEM fuel cell. J. Process Control,2010,20(3):325-336.
    [151] Perruquetti W, Barbot J. P. Sliding Mode Control in Engineering. New York: MarcelDekker Inc,2002.
    [152] Castillo Toledo B, Di Gennaro S, Loukianov A. G, et al. Discrete time sliding mode controlwith application to induction motors. Automatica,2008,44(12):3036-3045.
    [153] Juan F. V, Gerard L. Variable structure control for power systems stabilization. ElectricalPower&Energy Systems,2010,32(2):101-107.
    [154] Cristi R, Papoulias F, Healey A. Adaptive sliding mode control of autonomous underwatervehicles in the dive plane. IEEE J. Oceanic Engineering,1990,15(3):152-160.
    [155] Letizia C. M, Leo T, Orlando G. Experimental testing of a discrete-time sliding modecontroller for trajectory tracking of a wheeled mobile robot in the presence of skiddingeffects. J. Robotic Systems,2002,19(4):177-188.
    [156] Yu S, Yu X, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulatorswith terminal sliding mode. Automatica,2005,41(11),1957-1964.
    [157] Guo H, Liu Y, Liu G, et al. Cascade control of a hydraulically driven6-DOF parallel robotmanipulator based on a sliding mode. Control Engineering Practice,2008,16(9):1055-1068.
    [158] Lian R. Design of an enhanced adaptive self-organizing fuzzy sliding-mode controller forrobotic systems. Expert Systems with Applications,2012,39(1):1545-1554.
    [159] Pisano A, Usai E. Sliding mode control: a survey with applications in math. Math. Compu.Simul,2011,81(5):954-979.
    [160] Saleh Tavazoei M, Haeri M. Synchronization of chaotic fractional-order systems via activesliding mode controller. Physical A,2008,387(1):57-70.
    [161] Dadras S, Reza Momeni H. Fractional terminal sliding mode control design for a class ofdynamical systems with uncertainty. Commun. Nonlinear Sci,2012,17(1):367-377.
    [162] Yip E, Sincovec R. Solvability, controllability and observability of continuous descriptorsystems. IEEE Trans. Automatic Control,1981,26(3):702-707.
    [163] Cobb D. Controllability, observability, and duality in singular systems. IEEE Trans.Automatic Control,1984,29(12):1076-1082.
    [164] Yan Z. Geometric analysis of impulse controllability for descriptor system. Systems&Control Letters,2007,56(1):1-6.
    [165] Yamada T, Luenberger D. G. Generic controllability theorems for descriptor systems. IEEETrans. Automatic Control,1985,30(2):144-152.
    [166] Yamada T, Luenberger D. G. Algorithm to verify generic causality and controllability ofdescriptor systems. IEEE Trans. Automatic Control,1985,30(9):874-880.
    [167] Ishihara J, Terra M. H. Impulse controllability and observability of rectangular descriptorsystems. IEEE Trans. Automatic Control,2001,46(6):991-994.
    [168] Hou M. Controllability and elimination of impulsive in descriptor systems. IEEE Trans.Automatic Control,2004,49(10):1723-1727.
    [169] Wei J., W. Song. Controllability of singular systems with control delay. Automatica,2001,37(11):1873-1877.
    [170]邹云,杨成梧.能控广义系统与不能控广义系统集之间的距离.自动化学报,1991,17(2):220-224.
    [171] Hou M, Muller P. C. Causable observability of descriptor systems. IEEE Trans. AutomaticControl,1999,44(1):158-163.
    [172] Cobb D. Descriptor variable systems and optimal state regulation. IEEE Trans. AutomaticControl,1983,28(5):601-611.
    [173] Lovass Nagy V, Powers D. L, Schilling R. J. On regularizing descriptor systems by output.IEEE Trans. Automatic Control,1994,39(7):1507-1509.
    [174] Wang D, Bao P. Robust impulse control of uncertain singular systems by decentralizedoutput feedback. IEEE Trans. Automatic Control,2000,45(1):795-800.
    [175] Dai L. Observers for discrete singular system. IEEE Trans. Automatic Control,1988,33(2):187-191.
    [176] Muller P. C, Hou M. On the observer design for descriptor system. IEEE Trans. AutomaticControl,1991,40(1):133-136.
    [177] Paraskevopoulos P. N, Koumboulis F, Tzierakis K, et al. Observer design for generalizedstate space systems with unknown input. Systems Control&Letters,1992,18(4):309-321.
    [178] Darouach M, Boutayeb M. Design of observers for descriptor systems. IEEE Trans.Automatic Control,1995,40(7):1323-1327.
    [179] Darouach M, Zasadzinski M, Hayar M. Reduced-order observer design for descriptorsystems with unknown inputs. IEEE Trans. on Automatic Control,1996,41(7):1068-1072.
    [180]张国山,柴天佑,顾兴源.一般动态系统降阶观测器的设计及参数化表示.控制理论与应用,1997,14(4):584-588.
    [181]吴爱国.广义线性系统的脉冲消除与观测器设计.博士学位论文.哈尔滨:哈尔滨工业大学,2008.
    [182]胡跃明,周其节,刘永清.广义系统的变结构控制.控制理论与应用,1993,10(5):567-571.
    [183] Wang J, Tsang K. M. Second-order sliding mode controllers for nonlinear singularperturbation systems. ISA Trans,2005,44(1):117-129.
    [184] Xu S, Lam J. Robust stability and stabilization of discrete singular systems: an equivalentcharacterization. IEEE Trans. Automatic Control,2004,40(4):568-573.
    [185] Xia Y, Zhang J. H, Boukas E. K. Control for discrete singular hybrid systems. Automatica,2008,44(10):2635-2641.
    [186] Gao L, Wu Y. A design scheme of variable structure-infinity control for uncertain singularMarkov switched systems based on linear matrix inequality method. Nonlinear Analysis:Hybrid Systems,2007,3(1):306-316.
    [187] Wu L. G, Ho D. W. C. Sliding mode control of singular stochastic hybrid systems.Automatica,2010,46(4):779-783.
    [188] Wu L, Zheng W. X. Passivity-based sliding mode control of uncertain singular time-delaysystems. Automatica,2009,45(9):2120-2127.
    [189]郭继峰,高存臣.离散多时滞广义不确定系统的变结构控制.系统科学与数学,2009,29(12):1679-1688.
    [190] Ebert W. Optimal filtered predictive control-a delta operator approach. Systems&ControlLetters,2001,42(1):69-80.
    [191] Yang H, Shi P, Zhang J, et al. Robust H∞control for a class of discrete time fuzzy systemsvia delta operator approach. Information Sciences,2012,184(1):230-245.
    [192] Guo X. G, Yang G. H. Non-fragile H∞filter design for delta operator formulated systemswith circular region pole constraints: an LMI optimization approach. Acta AutomaticaSinica,2009,35(9):1209-1215.
    [193] Guo X. G, Yang G. H. H∞filter design for delta operator formulated systems with lowsensitivity to filter coefficient variations. IET Control Theory A,2011,15(5):1677-1688.
    [194]王武,郭祥贵,冉华军,等. Delta算子描述系统的非脆弱H∞滤波器控制.控制理论与应用,2008,25(6):1072-1076.
    [195] Lin R. Q, Yang F. W, Chen Q. G. Design of robust non-fragile H∞controller based on Deltaoperator theory. J. Control Theory&Applications,2007,5(4):404-408.
    [196]张端金,王忠勇,吴捷. Delta算子不确定系统多目标鲁棒H∞控制.控制与决策,2003,18(2):164-168.
    [197]姚郁,张瑞. Delta算子不确定系统扩展参数依赖H∞控制.控制与决策,2009,24(2):293-296.
    [198]张端金,杨成梧,吴捷. Delta算子系统的鲁棒性能分析.自动化学报,2000,26(6):848-852.
    [199]胡刚,任俊超,谢湘生. Delta算子不确定系统的最优保性能控制.电机与控制学报,2003,7(2):139-142.
    [200]刘晓华,刘浩.一类Delta算子不确定时滞系统保性能滤波.控制与决策,2007,22(3):322-325.
    [201]纪志成,赵维一,谢林柏. δ算子下的网络控制系统最优控制方法.控制与决策,2006,21(12):1349-1353,1359.
    [202]徐勇,陈增强,袁著祉. Delta算子系统全程滑模变结构控制.控制与决策,2005,20(6):686-693.
    [203] Yang H, Xia Y, Shi P. Observer-based sliding mode control for a class of discrete systemsvia delta operator approach. J. Franklin Institute,2010,347(7):1199-1213.
    [204] Xia Y, Fu M, Yang H, et al. Robustness sliding mode control for uncertain time-delaysystems based on delta operator. IEEE Trans. Industrial Electronics,2009,56(9):3646-3655.
    [205] Su J. P, Lee T. E, Yu K. W. A combined hard and soft variable-structure control scheme fora class of nonlinear systems. IEEE Trans. Industrial Electronics,2009,56(9):3305-3313.
    [206]张彩虹,刘云龙,高存臣,等.基于隐Lyapunov函数的软变结构控制:一种控制策略.控制与决策,2012,27(1):71-76.
    [207]于艳君,柴凤,高宏伟,等.基于Anti-Windup控制器的永磁同步电机控制系统设计.电工技术学报,2009,24(4):66-70.
    [208]刘云龙,高存臣,任启峰,等.水下机器人基于sigmoid函数的软变结构控制.电机与控制学报,2012,16(2):90-95.
    [209] Athans M, Falb P. L. Optimal Control. New York: McGraw-Hill,1966.
    [210] Gutman P. O, Hagander P. A new design of constrained controllers for linear systems.IEEE Trans. Automatic Control,1985,30(1):22-33.
    [211] Garofalo F, Celentano G, Glielmo L. Stability robustness of interval matrices via Lyapunovquadratic forms. IEEE Trans. Automatic Control,1993,38(2),281-284.
    [212] Yuh J. Design and control of autonomous underwater robots: a survey. AutonomousRobots,2000,8(1):7-24.
    [213] Lionel L. Robust diving control of an AUV. Ocean Engineering,2009,36(1):92-104.
    [214]俞建成,李强,张艾群,等.水下机器人的神经网络自适应控制.控制理论与应用,2008,25(1):9-13.
    [215]梁霄,张均东,李巍,等.水下机器人基于T-S模型模糊神经网络控制.电机与控制学报,2010,14(7):99-104.
    [216]高存臣,刘云龙,李云艳.不确定离散变结构控制系统的趋近律方法.控制理论与应用,2009,26(7):781-785.
    [217]刘学敏,徐玉如.水下机器人运动的S面控制方法.海洋工程,2001,19(3):81-84.
    [218] Yu X. H. Discrete variable structure control systems. Int. J. Systems Science,1993,24(2):373-386.
    [219] Sarpturk S. Z, Istefanopulos Y, Kaynak O. On the stability of discrete-time sliding modecontrol systems. IEEE Trans. Automatic Control,1987,32(10):930-932.
    [220] Furuta K. Sliding mode control of a discrete system. Systems&Control Letters,1990,14(2):145-152.
    [221]胡跃明.变结构控制理论与应用.北京:科学出版社,2003.
    [222]翟长连,吴智铭.不确定离散时间系统的变结构控制设计.自动化学报,2000,26(2):184-191.
    [223] Bartoszewicz A. Discrete-time quasi-sliding-mode control strategies. IEEE Trans.Industrial Electronics,1998,45(4):633-637.
    [224]姚琼荟,宋立忠,温洪.离散变结构控制系统的比例-等速-变速控制.控制与决策,2000,15(3):329-332.
    [225] Xiao Y, Zhou J, Ge Z, et al. The reaching law for variable structure control of discrete timesystem based on attenuating control. J. Control Theory&Applications,2002,19(3):450-452.
    [226] Zheng Y, Jing Y. Approximation law for discrete-time variable structure control systems. J.Control Theory&Applications,2006,23(3):291-296.
    [227]瞿少成,王永骥.基于扰动动态补偿的离散滑模变结构控制.控制与决策,2004,19(3):311-315.
    [228]宋立忠,陈少昌,李红江.离散时间系统的变结构控制设计.电机与控制学报,2001,5(4):284-287.
    [229]李文林.离散时间系统变结构控制趋近律问题.控制与决策,2004,19(11):1267-1270.
    [230] Hui S, Zak S. On discrete-time variable structure sliding mode control. Systems&ControlLetters,1999,38(4-5),283-288.
    [231]米阳,李文林,井元伟,等.线性多变量离散系统全程滑模变结构控制.控制与决策,2003,18(4):460-463,467.
    [232]宋立忠,鄢圣茂,杨立秋.不确定系统鲁棒自适应离散变结构控制.自动化学报,2011,37(8):1024-1028.
    [233]周靖林,姜会霞,雷飞.离散变结构控制系统的广义变速趋近律.电机与控制学报,2005,9(6):625-629.
    [234]许飞,马皓,何湘宁.基于离散变速趋近律控制的电流源逆变器.中国电机工程学报,2007,27(3):98-102.
    [235]李忠娟,张新政,李晓昱.一种改进的离散时间系统变结构控制.电机与控制学报,2005,9(1):90-92,98.
    [236]朱齐丹,汪瞳.一种离散时间系统变结构控制的新方法.控制与决策,2009,24(8):1209-1213.
    [237]任启峰,高存臣,王品.基于衰减控制的离散时间系统的变结构控制.系统仿真学报,2008,20(4):1056-1059.
    [238]米阳,李文林,井元伟.基于幂次趋近律的一类离散时间系统的变结构控制.控制与决策,23(6):643-646.
    [239]孙彪,孙秀霞,陈琳,等.基于幂次函数离散滑模控制算法.控制与决策,2011,26(2):285-288.
    [240]孙彪,孙秀霞.基于幂次函数的预测滑模控制算法.信息与控制,2011,40(1):39-44.
    [241]刘云龙,高存臣,赵林,等.离散变结构控制基于扰动动态补偿的理想趋近律.计算机应用,2011,31(7):2011-2014.
    [242]刘涛,刘贺平,屈微.基于离散时变趋近律的准滑模控制.控制与决策,2010,25(5):797-800.
    [243]刘涛,刘贺平.基于扰动补偿趋近律的准滑模控制.控制理论与应用,2010,27(9):1185-1189.
    [244]周德文,高存臣,李自强.一种离散变结构控制趋近律.控制与决策,2008,23(3):306-309.
    [245]朱齐丹,汪瞳.一种改进的离散时间系统变结构控制设计方法.自动化学报,2010,36(6):885-889.
    [246]刘涛,刘贺平.一种基于死区离散趋近律的准滑模控制.自动化学报,2011,37(6):760-766.
    [247]宋立忠,陈少昌,姚琼荟.不确定系统离散变结构控制及在位置伺服系统中的应用.控制理论与应用,2003,959-962.
    [248]张月玲,党选举.基于死区迟滞函数的永磁同步直线电机滑模控制.中国电机工程学报,2011,31(3):67-74.
    [249]宋立忠,李槐树,姚琼荟.基于趋近律方法的离散时间系统变结构控制.控制理论与应用,2008,25(3):525-528.
    [250]梁镇.新技术企业知识员工成长评价机制研究.博士学位论文.天津:天津大学,2009.
    [251] Druck. P. F. The Landmarks of Tomorrow. New York: Harper&Row,1959.
    [252] Flood P, Turner T. Causes and consequences of psychological contract among knowledgeworkers in the high technology and services Industries. Int. J. Human ResourceManagement,2001,12(7):1152-1165.
    [253] Lord R. L, Farrington P. Age-related differences in the motivation of knowledge workers.Engineering Management J,2006,18(3):20-26.
    [254] Jones E. C, Chung C. A. Methodology for measuring engineering knowledge workerproductivity. Engineering Management J,2006,18(1):32-38.
    [255] Horwitzf F. M, Chan T. H. Human resource strategies for managing knowledge workers:an Afro-Asian comparative analysis. Int. J. Human Resource Management,2006,17(5):775-811.
    [256] Hiltrop J. M. The quest for the best: human resource practices to attract and retain talent.European Management J,1999,17(4):422-430.
    [257] Bordoloi S. K, Hirofumi M. Human resource planning in knowledge-intensive operations:a model for learning with stochastic turnover. European J. Operational Research,2001,130(1):169-189.
    [258]张生太,段兴民.企业高级人才队伍动态稳定模型及决策研究.管理科学学报,2004,7(2):63-68
    [259]黄攸立,彭海燕.高科技企业知识员工动态稳定控制方法研究.管理学报,2009,6(6):794-798.
    [260] Liu Y, Zhang C, Gao C. Dynamic soft variable structure control of singular systems.Commun. Nonlinear Sci,2012,17(8):3345-3352.
    [261]刘云龙,高存臣,赵林.广义系统的动态软变结构控制.系统工程与电子技术,2011,33(12):78-82.
    [262] Xu S. Y, Lam J. Robust Control and Filtering of Singular Systems. Berlin: Springer,2006.
    [263]杨冬梅,张庆灵,姚波,等.广义系统.北京:科学出版社,2004.
    [264]刘云龙,高存臣,丛心尉.基于扰动补偿趋近律的非匹配离散广义准滑模控制.系统科学与数学,2011,31(6):720-730.
    [265]郭继峰.滞后广义系统的变结构控制.博士学位论文.青岛:中国海洋大学,2006.
    [266]张彩虹,刘云龙,高存臣,等. Delta算子不确定系统的滑模变结构控制.控制与决策,2012,27(2):237-242.
    [267] Boyd S, Ghaoui L. E, Feron E, et al. Linear Matrix Iinequalities in Systems and ControlTheory. Philadelphia: Society for Industrial and Applied Mathematics,1994.
    [268] Won W, Lee K. S. Identification of a multivariable delta operator stochastic state-spacemodel with distributed time delays: application to a rapid thermal processor. Computers&Chemical Engineering,2012,40(11):223-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700