用户名: 密码: 验证码:
轴向运动梁动力学及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴向运动梁是一种重要的工程元件简化模型,如硬式空中加油管、平推式架桥、快速升起的野战雷达天线、高速飞行的火箭和导弹等,都可以将其简化为轴向运动梁。对轴向运动梁的动力学及振动控制研究具有重要的理论意义和工程应用价值。
     本文针对两种轴向运动梁动力学模型进行了较深入研究。一种为轴向运动悬臂梁模型,对其横向振动动力学建模、振动控制方法和试验等进行了研究;另一种为轴向运动两端自由梁模型,分析了其横向振动的动力学建模和稳定性,并研究了热效应对梁的动力学特性的影响以及金属热防护系统(MTPS)动力学建模等问题。论文的具体内容如下:
     (1)分析了端部集中质量对轴向运动悬臂梁振动模态的影响。运用D'Alembert原理建立了轴向运动悬臂梁的横向振动的动力学模型,导出了基于伽辽金法的瞬时线性化近似求解方程组。通过数值计算和试验研究了两种满足不同正交性条件的悬臂梁的振型对系统响应求解结果的影响。结果表明,在使用伽辽金法对自由端带有集中质量的轴向运动悬臂梁响应求解的过程中,当端部集中质量较小时,使用均匀悬臂梁的振型函数代替自由端含有集中质量悬臂梁的振型函数进行求解,造成的误差较小。
     (2)对轴向运动悬臂梁横向振动的力控制方法和子系统吸振方法进行了研究。采用Hamilton原理得到了跨内含有主动控制力或端部带主动振子的轴向运动悬臂梁的振动方程和边界条件,并且运用修正的伽辽金法得到了求解系统响应的近似方程。运用线性二次型调节器(LQR)方法设计了主动振子和主动力控制器,采用加权系数法选择Q,R矩阵。用数值计算仿真了两种控制方案的效果。结果表明,采用主动振子或主动力都能够有效地控制轴向运动悬臂梁的横向振动。在相同的初始条件下,主动力控制的效果比主动振子要好,但主动振子的物理可实现性要优于主动力。
     (3)设计制造了轴向运动悬臂梁试验平台,通过该平台研究了轴向运动悬臂梁的阻尼与边界条件等效建模方法。利用模态叠加法得到了轴向运动梁的横向振动方程,通过实测梁在不同长度下的第一阶固有频率,调整理论计算模型中的悬臂长度来达到对悬臂边界条件的修正。研究发现,梁的长度修正量与梁的实际悬臂长度无明确相关性。使用对数衰减率方法识别出多个长度下梁的第一阶衰减系数,通过数值拟合,建立了衰减系数与梁长度的关系。结果表明,修正后模型的横向振动响应计算结果与实测结果吻合较好,验证了模型修正的有效性。
     (4)设计制造了非接触激振装置,并分别运用速度反馈控制方法、线性二次型高斯模型(LQG)控制理论和H∞控制理论设计了三种控制器。在试验平台上对轴向运动悬臂梁横向振动控制进行了较深入研究。结果表明,当施加控制后,梁的横向振动可更快速衰减,验证了控制方法的有效性,且试验数据与数值仿真结果吻合也较好。
     (5)以高超声飞行导弹为背景,研究轴向运动两端自由梁的横向振动特性。运用Hamilton原理建立了梁截面连续变化,任意位置带有附加质量的轴向运动两端自由梁横向振动动力学模型,并且运用修正的伽辽金法得到了求解系统响应的近似方程。分别研究了轴向运动效应,质量耗损和温度效应对梁的动力学特性影响。通过Lyapunov稳定性准则得到系统的指数一致稳定判据,详细研究了集中质量的放置位置和截面形状对梁稳定性的影响。结果表明,具有正值的单位长度质量密度斜率的系统更加稳定,合适放置集中质量可以增加结构的阻尼,并且轴向运动和热效应会降低结构的刚度使得结构固有频率下降。
     (6)研究了轴向运动两端自由梁在热冲击作用下的动力学响应及控制。采用Hamilton原理建立了受热冲击和舵面控制力作用的轴向运动两端自由梁的方程,运用伽辽金法对系统响应进行近似求解。运用LQR法设计了最优控制器,采用加权系数法选择Q,R矩阵。采用数值方法研究了轴向速度为2马赫时,模型在受到热冲击下的动力学响应及控制。
     (7)研究了外部带金属热防护系统的梁式结构的动力学建模,以及热模态计算的简化方法。给出了蜂窝结构面外的等效热传导系数、比热容、密度和弹性系数的表达式,建立了包括外层蜂窝、中间防热层、内层蜂窝、应变隔离层和承力结构的完整模型。研究了外表面受高温加热情况下,结构的热力学响应及弯曲模态。提出了带金属热防护系统的结构弯曲热模态计算的简化方法,实现了带金属热防护系统的结构弯曲热模态的快速计算,并且验证了温度对结构模态有较大影响。
Axially moving beams are very important mechanism. Mechanisms, such as rigid in-flightrefuelling pipe, bridge of the bridge laying truck, rapid raising military radar antenna, flying rocketand missile, can all be modeled as axially moving beams. The studies on the dynamics and vibrationcontrol of axially moving beams are very valuable.
     Two dynamic configurations of axially moving beams are investigated in the article. One is anaxially moving cantilever beam, where the dynamic modeling and vibration control of the transverseoscillation of the beam are studied. The other is an axially moving free-free beam, where the dynamicmodeling and the stability of the beam are analyzed, the thermal effect on the dynamics of the beamand the dynamics of the metallic thermal protection system (MTPS) are studied as well. The mainpoints of the concrete content are as follows.
     (1) The influence of the end mass on the modes of the axially moving cantilever beam isinvestigated. Firstly, the transverse vibration equation of an axially moving cantilever beam with tipmass is formulated by the D’Alembert principle. The instant linearized equations are set up based on伽辽金法’s method subsequently. At last, two modal shapes that satisfy different orthogonallyconditions are studied in the vbrational calculation of the axially moving cantilever beam. It is foundthat the modal shapes of the uniform beam can substitute the ones of the beam with light lumpedmass in the伽辽金法’method.
     (2) Based on the theoretical analysis, the control of the transverse vibration of an axially movingcantilever beam is studied, and the control configurations for the active vibrator and the active forceare presented. Firstly, the transverse vibration equation and boundary conditions are formulated by theHamilton principle. Then, the instant linearized equations are set up based on伽辽金法’s method forthe approximation solution. The controllers for the active vibrator and the active force are designedbased on linear quadratic regulator (LQR) method subsequently, where the optimal Q and R matricesare selected by the weighting coefficient method. At last, the two control methods are simulated bynumerical examples. The results show that the two control methods can all suppress the transversevibration effectively. The control result of the active force method is better than that of the activevibrator method, but the active vibrator is more realizable than the active force in practice.
     (3) An experimental platform is designed and presented for the axially moving cantilever beam,and the damping and boundary condition of the axially moving beam are updated by experiments.The beam which slides through a prismatic joint is considered as an axially moving cantilever beam, the transverse vibration equation is given, and the discretized equations of motion of the translatingbeam with time-dependent coefficients is derived by mode superposition method. Firstly, the fixedboundary condition is modified by the adjustment of the cantilever length of the theoretical beammodel with the measured results of its first order natural frequencies under various cantilever lengths.It is found that the correction lengths to the model beam have no explicit relationship with thecantilever lengths. Secondly, the first order decay coefficients are identified by LogarithmicDecrement method and it is find that the decay coefficients of the beam decrease with the increase ofthe cantilever length. At last, the calculated responses by the modified model are fit well with theexperimental results. It verifies the effectiveness of the proposed model modification method.
     (4) A noncontact exciting equipment is designed and put forward. Based on the experimentalplatform and the exciting equipment, vibration control of the axially moving cantilever beam isstudied, where the velocity feedback control method, the linear quadratic Gaussian (LQG) controlmethod and the H∞control method are studied, respectively. According to the control methods,numerical simulation and actual experiments are implemented for the beam with constant length andvarying length, respectively. And the results show that the control methods are effective and thesimulations fit well with the experiments.
     (5) Frequency characteristics and stability of the axially moving free-free beam with high velocitywhich simulates a filying missile is investigated. Firstly, the transverse vibration equation of theaxially moving free-free beam is derived by Hamilton’s principle, where the lumped mass attached atarbitrary position of the beam is taken into account, and the cross section is consecutive variation. Theinstant linearized equations are set up based on伽辽金法’s method for the approximation solutionsubsequently. Secondly, the influence of the axially movment, the changing of the mass density, andthe temperature on the natural frequencies of the beam are investigated, respectively. At last, thesufficient conditions for uniform stability and uniform exponential stability of the beam areestablished via Lyapunov stability criteria. It is found that the damping can be increased if the lumpedmass is placed suitably, the slope of the mass per unit length of the beam influences system stabilitysignificantly, and the axially movment and temperature can decrease the stiffness of the beam whichinduces the vibration frequencies descending.
     (6) The response and control of the transverse vibration of an axially moving free-free beam withhigh velocity subjected to the thermal shock is studied. Considered the thermal shock and the controlforce, the transverse vibration equation and boundary conditions are formulated by the Hamiltonprinciple. The displacement responses are subsequently simulated, where the axially velocity is2Ma.Then the controller is designed based on LQR method, and the displacement response for the controlmethod is simulated by a numerical example. The result shows that the control method can suppress the transverse vibration effectively.
     (7) Dynamic modeling of the beam with MTPS is investigated, and the simplified method forcalculation of thermal modes is studied. Firstly, the effective thermal conductivities, specific heatcapacity, density and elastic coefficient of metallic honeycombs are presented. Then a completemodel including outer honeycombs, middle thermal protection layer, inner honeycombs, isolation andload-carrying structure are modeling, and the thermodynamical response and the bending modes aresubsequently studied. At last, the simplified model for bending modes calculation is investigated, andthe results show that it is effective in the fast calculation of the modes of the structure with MTPS.Also it’s verified that the influence of the high temperature on structure’s modes is notable.
引文
[1] C. D. Mote, Jr.A Study of Band Saw Vibrations [J]. Journal of the Franklin Institute,1965,279(6):430~445.
    [2] C. D. Mote, Jr. Dynamic stability of axially moving materials[J].Shock and Vibration Digest,1972,4(1):2~11.
    [3] A. Simpson. Transverse Modes and Frequencies of Beams Translating between Fixed EndSupports [J].Journal Mechanical Engineering Science,1973,15(3):159~163.
    [4] K. W. Buffinton, T. R. Kane.Dynamics of a beam over supports [J]. International Journal ofSolids Structure,1985,21(7):617~643.
    [5] K. W. Buffinton, T. R. Kane. Extrusion of a beam from rotating base [J]. Journal of Guidance,1989,12(2):140~146.
    [6] S. S.Tadikonda, H. Baruh. Dynamic and control of a translating beam with prismatic joint [J].Journal of Dynamic Systems, Measurement and Control,1992,114:422~427.
    [7] B.O.Al-Bedoor, Y.A.Khulief. An Approximate Analytical Solution of Beam Vibrations duringAxial Motion [J]. Journal of Sound and Vibration,1996,192(1):159~171.
    [8] R. F. Fung, P. Y. Lu, C. C. Tseng. Non-Linearly Dynamic Modeling of an Axially Moving Beamwith a Tip Mass [J]. Journal of Sound and Vibration,1998,218(4):559~571.
    [9] Zhu W. D., Ni J., Huang J. Active Control of Translating Media with Arbitrarily Varying Length[J]. Journal of Vibration and Acoustics,2001,123(6):347~358.
    [10] F. Gosselin, M.P. Paidoussis, A.K. Misra. Stability of a deploying/extruding beam in dense fluid[J]. Journal of Sound and Vibration,2007,299:123~142.
    [11]B. O. AL-B EDOOR,Y. A. K HULIEF.An Approximate Analytical Solution of Beam Vibrations duringAxial Motion [J]. Journal of Sound and Vibration,1996,192(1):159~171.
    [12] R.-F. F UNG, P.-Y. LU,C.-C. T SENG. Non-Linearly Dynamic Modeling of an Axially Moving Beamwith a Tip Mass [J]. Journal of Sound and Vibration,1998,218(4):559~571.
    [13] S.Y U&&K SEL, M.GU&&RGO&&ZE.On the flexural vibrations of elastic manipulators with prismatic joints [J].Computers&Structures,1997,62(5):897~908.
    [14] M.GU&&R GO&&ZE, S.YU&&KSEL.Transverse Vibrations of a Flexible Beam Sliding Though a Prismatic Join[J]. Journal of Sound and Vibration,1999,223(3):467~482.
    [15]H. R. O&&z,M. PAKDEM&IR L&I. Vibrations of an Axially Moving Beam with Time-Dependent Velocity[J]. Journal of Sound and vibration,1999,227(2):239~257.
    [16] F. Pellicano and F. Vestroni.Complex Dynamics of High-Speed Axially Moving Systems [J].Journal of Sound and Vibration,2002,258(1):31~44.
    [17] Gregor Cepon, Miha Boltezar. Computing the dynamic response of an axially movingcontinuum [J]. Journal of Sound and Vibration,2007,300:316~329.
    [18] R. Fotouhi. Dynamic analysis of very flexible beams [J]. Journal of Sound and Vibration,2007,305:521~533.
    [19]杨晓东,傅景礼.伽辽金法截断方法在轴向运动梁问题中的应用[J].商丘师范学院学报,2005,21(5):9~13.
    [20] S.H. Chen, J.L. Huang, K.Y. Sze. Multidimensional Lindstedt–Poincaré method for nonlinearvibration of axially moving beams [J]. Journal of Sound and Vibration,2007,306:1~11.
    [21] Usik Lee, Injoon Jang. On the boundary conditions for axially moving beams [J]. Journal ofSound and Vibration,2007,306:675~690.
    [22] Usik Lee, Joohong Kim, Hyungmi Oh. Spectral analysis for the transverse vibration of an axiallymoving Timoshenko beam [J]. Journal of Sound and Vibration,2004,271(3-5):685~703.
    [23] K.Y. Sze, S.H. Chen, J.L. Huang. The incremental harmonic balance method for nonlinearvibration of axially moving beams [J]. Journal of Sound and Vibration,2005,281(3-5):611~626.
    [24] Yang Xiao-dong, Chen Li-qun. Determination of the nature frequencies of axially moving beamsby the method of multiple scales [J]. Journal of Shanghai University,2007,11(3):251~254.
    [25]杨晓东,陈立群.粘弹性轴向运动梁的非线性动力学行为[J].力学季刊,2005,26(1):157~162.
    [26] Usik Lee, Hyungmi Oh. Dynamics of an axially moving viscoelastic beam subject to axialtension [J]. International Journal of Solids and Structures,2005,42:2381~2398.
    [27] Li-Qun Chen, Xiao-Dong Yang. Stability in parametric resonance of axially moving viscoelasticbeams with time-dependent speed [J]. Journal of Sound and Vibration,2005,284:879~891.
    [28] Li-QunChen, Xiao-Dong Yang. Vibration and stability of an axially moving viscoelastic beamwith hybrid supports [J]. European Journal ofMechanicsA/Solids,2006,25:996~1008.
    [29]杨晓东,陈立群.变速度轴向运动粘弹性梁的动态稳定性[J].应用数学和力学,2005,26(8):905~910.
    [30]李晓军,陈立群.轴向运动简支—固支梁的横向振动和稳定性[J].机械强度,2006,28(5):654~657.
    [31] Huajiang Ouyang, Minjie Wang. A dynamic model for a rotating beam subjected to axiallymoving forces [J]. Journal of Sound and Vibration,2007,308(3-5):674~68.
    [32] Li-Qun Chen, Wei-Jia Zhao. A conserved quantity and the stability of axially moving nonlinearbeams [J]. Journal of Sound and Vibration,2005,286:663~668.
    [33] Yang Xiao-dong, Chen Li-Qun. NON-LINEAR FORCED VIBRATIONOF AXIALLYMOVING VISCOELASTIC BEAMS [J]. Acta Mechanica Solida Sinica,2006,19(4):365~373.
    [34] K.Y. Szea, S.H. Chen, J.L. Huang. The incremental harmonic balance method for nonlinearvibration of axially moving beams [J]. Journal of Sound and Vibration,2005,281:611~626.
    [35] You-Qi Tang, Li-QunChen, Xiao-DongYang. Nonlinear vibrations of axially movingTimoshenko beams under weak and strong external excitations [J]. Journal of Sound andVibration,2009,320:1078~1099.
    [36]王渡,陈立群.轴向变速运动黏弹性梁稳定性渐近分析和数值验证[J].固体力学学报,2009,30(2):136~141.
    [37]杨晓东,唐有绮,戈新生.轴向运动Timoshenko梁固有频率的求解方法研究[J].2009,31(2):208~210.
    [38]丁虎,陈立群.轴向运动梁横向受迫振动多尺度分析及DQM验证[J].振动工程学报,2009,22(3):298~304.
    [39]丁虎,陈立群.轴向运动黏弹性梁横向非线性受迫振动[J].振动与冲击,2009,28(12):128~131.
    [40] Jer-Rong Chang, Wei-Jr Lin, Chun-Jung Huang, et al. Vibration and stability of an axiallymoving Rayleigh beam [J].Applied Mathematical Modeling,2010,34:1482~1497.
    [41] Xiao-Dong Yang, C.W. Lim, K.M. Liew. Vibration and Stability of an Axially Moving Beam onElastic Foundation [J].Advances in Structural Engineering,2010,13(2):241~247.
    [42] Li-Qun Chen, Hu Ding. Steady-State Transverse Response in Coupled Planar Vibration ofAxially Moving Viscoelastic Beams [J].Journal of Vibration and Acoustics,2010,132(1):011009-(1~9).
    [43] Xiao-Dong Yang, You-Qi Tang, Li-Qun Chen, el at. Dynamic stability of axially acceleratingTimoshenko beam: Averaging method [J].European Journal of Mechanics A/Solids,2010,29:81~90.
    [44] Li-Qun Chen, You-QiTang, C.W.Lim. Dynamic stability in parametric resonance of axiallyaccelerating viscoelastic Timoshenko beams [J].Journal of Sound and Vibration,2010,329:547~565.
    [45]李山虎,杨靖波,黄清华,等.轴向运动悬臂梁的独立模态振动控制-Ⅰ近似理论分析[J].应用力学学报,2002,19(1):35~38.
    [46] Yang KJ, Hong KS, Matsuno F. Boundary control of a translating tensioned beam with varyingspeed [J]. ASME TRANSACTIONS ON MECHATRONICS,2005,10(5):594~597.
    [47] Liu KF, Huang T. Vibration control of an axially-moving cantilever beam using piezoelectricactuators[C]. Proceedings of the11th World Congress in Mechanism and Machine Science,Tianjin, China,2004,1(5):535~539.
    [48] Y.K. Wang, C.D. Mote Jr. Active and Passive Vibration Control of an Axially Moving Beam bySmart Hybrid Bearings[J].Journal of Sound and Vibration,1996,195(4):575~584.
    [49] R.F. Fung, J.W. Wu, S.L. Wu. Exponential Stabilization of an Axially Moving String by LinearBoundary Feedback [J]. Automatica,1999,35(1):177~181.
    [50] D.L.Trumper, M.C.Weng, R. J.Ritter. Magnetic Suspension and Vibration Control of Beams forNon-contact Processing[C]. Proceedings of the1999IEEE, International Conference on ControlApplications,1999:551~557.
    [51] Y.G. Li, C. D. Rahn. Adaptive Vibration Isolation for Axially Moving Beams [J].MECHATRONICS,2000,5(4):419~428.
    [52] W. D. Zhu,B. Z. Guo, C. D. Mote, Jr. Stabilization of a Translating Tensioned Beam Through aPointwise Control Force [J].Transactions of the ASME,2000,122:322~331.
    [53] W. D., Zhu, Ni, J., and J., Huang. Active Control of Translating Media with Arbitrarily VaryingLength [J]. Journal of Vibration and Acoustics,2001,123(1):347~358.
    [54]杨靖波.含间隙轴向运动悬臂梁和旋转梁非线性动力学与振动主动控制的研究,博士学位论文[D].北京:北京大学,2004.
    [55] He, X. Q., Ng, T. Y., Sivashanker, S., et.al. Active control of FGM plates with integratedpiezoelectric sensors and actuators [J]. International Journal of Solids and Structures,2001,38:1641~1655.
    [56] Shafic S. Oueini, Ali H. Nayfeh, Jon R. Pratt. A nonlinear vibration absorber for flexiblestructures [J]. Nonlinear Dynamics,1998,15:259~282.
    [57] Dongchang sun,Liyong Tong, Satya N.Atluri. Effects of piezoelectric sensor actuator debondingon vibration control of smart beams [J]. International journal of Solids and Structures,2001,38:9033~9051.
    [58] Wu SY. Method for multiple mode shunt damping of structural vibration using a single PZTtransducer [J]. Smart Structures and Materials1998: Passive Damping and Isolation,1998,3327:159~168.
    [59] Narayanan S, Balamurugan V. Finite element modelling of piezolaminated smart structures foractive vibration control with distributed sensors and actuators [J]. Journal of Sound andVibration,2003,262:529~562.
    [60] Trindade MA, Benjeddou A, Ohayon R. Piezoelectric active vibration control of dampedsandwich beams [J]. Journal of Sound and Vibration,2001,246(4):653~677.
    [61] Cheng HM, Ewe MTS, Chiu GTC, et.al. Modeling and control of piezoelectric cantilever beammicro-mirror and micro-laser arrays to reduce image banding in electrophotographic processes[J]. Journal of Micromechanics and Microengineering,2001,11(5):487~498.
    [62] Ray MC, Baz A. Control of nonlinear vibration of beams using active constrained layer damping[J]. Journal of Vibration and Control,2001,7(4):539~549.
    [63] Andreaus U, Dell'Isola F, Porfiri M. Piezoelectric passive distributed controllers for beamflexural vibrations [J]. Journal of Vibration and Control,2004,10(5):625~659.
    [64] Kojima, H., Nagaya, K. Nonlinear Forced Vibration of a Beam with a Mass Subjected toAlternating Electromagnetic Force [J]. Bulletin of JSME,1985,28(237):468~474.
    [65] Lu, Q. S., To, C. W. S., Huang, K. L. Dynamic Stability and Bifurcation of an Alternating Loadand Magnetic Field Excited Magneto-Elastic Beam[J]. Journal of Sound and Vibration,1995,181(5):873~891.
    [66] Shih, Y. S., Wu, G. Y., Chen, J. S. Transient Vibrations of a Simply Supported Beam with AxialLoads and Transverse Magnetic Fields [J]. Mech. Struct,1998,26:115~130.
    [67] Liu, M. F., Chang, T. P. Vibration Analysis of a Magneto-Elastic Beam With General BoundaryConditions Subjected to Axial Load and External Force [J]. Journal of Sound and Vibration,2005,288(1-2):399~411.
    [68] Barun Pratiher, Santosha K. Dwivedy. Nonlinear Vibration of a Magneto-Elastic CantileverBeam with Tip Mass [J]. Journal of Vibration and Acoustics,2009,131:021011-(1~9).
    [69] Zhou Hao-miao, Zhou You-he. Numerical simulation for nonlinear dynamic and controlcharacteristics of giant magnetostrictive smart laminated beams[C].PROCEEDINGS OF THE5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS,2007,754~759.
    [70] Majewska, K, Zak, A, Ostachowicz, W. Magnetic shape memory alloys for forced vibrationcontrol of beam-like structures [J]. SMART MATERIALS&STRUCTURES,2007,16(6):2388~2397.
    [71] Niu Hongpan, Zhang Yahong, Zhang Xinong, et.al. Active vibration control of beam usingelectro-magnetic constrained layer damping [J].CHINESE JOURNAL OF AERONAUTICS,2008,21(2):115~124.
    [72] Cheah, Sze Kwan, Sodano, Henry A. Novel Eddy Current Damping Mechanism for PassiveMagnetic Bearings [J]. Journal of Vibration and Control,2008,14(11):1749~1766.
    [73] Hirunyapruk, C,Mace, B. R, Brennan, M. J. Vibration Control using an Adaptive TunedMagneto-Rheological Fluid Vibration Absorber[C]. PROCEEDINGS OF ISMA2008:INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING,2008,1(8):225~239.
    [74] Routaray, B,Nandi, A., Neogy, S. Vibration Control of a Beam Using an Eddy Current Damper[J]. ADVANCES IN VIBRATION ENGINEERING,2008,7(4):377~387.
    [75] Nandi, A., Neogy, S, Irretier, H. Vibration Control of a Structure and a Rotor Using One-sidedMagnetic Actuator and a Digital Proportional-derivative Control [J]. Journal of Vibration andControl,2009,15(2):163~181.
    [76] Trevor Williams, Michael A. Bolender, David B. Doman, et al. An Aerothermal Flexible ModeAnalysis of a Hypersonic Vehicle [J]. AIAA2006-6647,2006.
    [77] Adam J. Culler, Trevor Williams, Michael A. Bolende. Aerothermal Modeling and DynamicAnalysis of a Hypersonic Vehicle [J]. AIAA2007-6395,2007.
    [78] Michael A. Bolender, David B. Doman. Nonlinear Longitudinal Dynamical Model of anAir-Breathing Hypersonic Vehicle [J]. JOURNAL OF SPACECRAFT AND ROCKETS,2007,44(2):374~387
    [79] Steve Ryan. Vibration Challenges in the Design of NASA’s Ares Launch Vehicles[R],2009
    [80]陈文俊.气动加热对飞行器气动弹性特性的影响[J].现代防御技术,1998,26(3):20~28.
    [81]杨自春.受热复合材料层合板的非线性热振动——Part II:实验研究[J].复合材料学报,2000,17(2):119~122.
    [82]孙强,张忠平,柴桥,等.航空发动机压气机叶片振动频率与温度的关系[J].应用力学学报,2004,21(4):137~139.
    [83]刘芹,任建亭,姜节胜,等.复合材料层合板非线性热振动分析[J].动力学与控制学报,2005,3(1):78~83.
    [84]李军强.井下温度对钻柱轴向振动固有频率的影响分析[J].石油钻探技术,2006,34(3):28~31.
    [85]史晓鸣,杨炳渊.瞬态加热环境下变厚度板温度场及热模态分析[J].计算机辅助工程,2006,15:15~18.
    [86]魏锋.大型可展开天线基于热振动的稳定性研究[D],硕士学位论文.西安:西安电子科技大学,2006.
    [87]封玮,左燕生,林云生,等.热振动法标定微悬臂梁法向弹性系数[J].微细加工技术,2007,(4):54~58.
    [88]朱向哲,袁惠群,张连祥.汽轮机转子系统稳态热振动特性的研究[J].动力工程,2008,28(3):377~452.
    [89] Emil Manoacha, Pedro Ribeiro. Coupled, thermoelastic, large amplitude vibrations ofTimoshenko beams [J]. International Journal of Mechanical Sciences,2004,46(11):1589~1606.
    [90] Jurij Avsec, Maks Oblak. Thermal vibrational analysis for simply supported beam and clampedbeam [J]. Journal of Sound and vibration,2007,308(3-5):514~525.
    [91]李增文,林立军,关世义.超声速全动翼面热颤振特性分析[J].战术导弹技术,2008,(5):36~39.
    [92] Xu-XiaGuo, Zhong-MinWang, YanWang,et al., Analysis of the coupled thermoelastic vibrationfor axially moving beam[J]. Journal of Sound and Vibration,2009,325:597~608.
    [93]郭旭侠,高秀兰,王江波.轴向运动耦合热弹梁的稳定性分析[J].机械设计与制造,2009,8:228~229.
    [94]王江波.轴向运动梁的热弹稳定性[J].山西建筑,2010,36(1):77~78.
    [95]王宏宏,陈怀海,崔旭利,等.热效应对导弹翼面固有振动特性的影响[J].振动、测试与诊断,2010,30(3):275~279.
    [96]冯晓斐,文红.梁热冲击响应的计算机辅助分析[D],硕士学位论文.浙江:浙江工业大学,2002.
    [97]李世荣,范亮亮. Timoshenko梁在热冲击下的瞬态动力响应[J].振动与冲击,2008,21(7):118~121.
    [98]范亮亮,李世荣.功能梯度材料梁和圆板的自由振动及热冲击[D],硕士学位论文.兰州:兰州理工大学,2007.
    [99] A.Seiff, J. R. Stalder. The simulation and measurement of aerodynamic heating at supersonicand hypersonic mach numbers[R]. NASA-TM-X-5688865N89649,1965.
    [100] Quinn, D. Robert, Gong, Leslie. Real-time aerodynamic heating and surface temperaturecalculations for hypersonic flight simulation[R]. NASA-TM-422290N28815,1990.
    [101] A. Scott Berry, J. Horvath Thomas, DiFulvio Michael, el.at.X-34Experimental Aeroheating atMach6and10[J].JOURNAL OF SPACECRAFT AND ROCKETS,1999,36(2):171~178.
    [102]雷延花,徐敏,陈士橹.高超音速飞行器气动加热计算[J].上海航天,2001,(5):10~13.
    [103]刘嘉,姚文秀,李静美,等.高超声速飞行器测热试验研究[J].流体力学实验与测量,2004,18(1):29~32.
    [104]蒋友娣.高超声速飞行器气动热和表面瞬态温度计算研究[D],硕士学位论文.上海:上海交通大学,2008.
    [105] Earl A. Thornton. Thermal Structures: Four Decades of Progress [J]. JOURNAL OF AIRCRAFT,1992,29(3):485~498.
    [106] David Olynick. Trajectory-Based Thermal Protection System Sizing for an X-33Winged VehicleConcept [J]. JOURNAL OF SPACECRAFT AND ROCKETS,1998,35(3):249~257.
    [107] M. L. Blosser, R. R. Chen, I. H. Schmidt, et al. ADVANCED METALLIC THERMALPROTECTION SYSTEM DEVELOPMENT [J]. AIAA2002-504,2002.
    [108] Max L. Blosser, INVESTIGATION OF FUNDAMENTAL MODELING AND THERMALPERFORMANCE ISSUES FOR A METALLIC THERMAL PROTECTION SYSTEM DESIGN[J]. AIAA2002-0503,2002.
    [109]范绪箕.气动加热与热防护系统[M].北京:科学出版社,2004
    [110]韩杰才,陈贵清,孟松鹤,等.新型ARMOR热防护系统[J].宇航学报,2004,25(3):350~354.
    [111]史丽萍,赫晓东,孟松鹤,等.MTPS金属蜂窝夹芯结构尺寸效应的数值分析[J].南京航空航天大学学报,2005,37(1):121~124.
    [112]苏大亮,郑晓亚,张铎.飞行器头部热防护系统热分析[J].弹箭与制导学报,2005,26(1):725~727.
    [113]解维华,张博明,杜善义.金属热防护系统设计的有限元分析[J].航空学报,2006,27(5):897~902.
    [114]闫松鹤,杜善义等.金属热防护系统纤维隔热材料的传热分析[J].吉林大学学报(工学版),2006,36(4):472~475.
    [115]闫长海,孟松鹤,陈贵清,等.金属热防护系统多层隔热材料的稳态传热分析[J].南京航空航天大学学报,2006,21(5):800~804.
    [116] Amarshi A. Bhungalia, Philip S. Beran, P. C. Chen, et al., Hypersonic Aerothermodynamics TPSDesign, Analysis and Optimization: Affordable Responsive Spacelift (ARES)[J]. AIAA2006-7124,2006.
    [117] K. N. Shukla, A. Pradeep, S. S. Suneesh. Performance Analysis of Silica-Tiles as aThermalProtection System [J]. AIAA2006-2947,2006.
    [118]徐超,张铎,高超声速飞行器热防护系统尺寸优化设计[J].中国空间科学技术,2007,27(1):65~69.
    [119]杨亚政,杨嘉陵,方岱宁.高超声速飞行器热防护材料与结构的研究进展[J].应用数学和力学,2008,29(1):47~56.
    [120]赵剑,谢宗蕻,张磊.高温合金热防护系统设计与分析[J].宇航学报,2008,29(5):1677~1683.
    [121]李道奎,段静波,雷勇军.金属热防护系统瞬态热分析的并联一维模型[J].国防科技大学学报,2009,31(4):126~130.
    [122] Katauhiko Ogata.Modern Control Engineering (Fourth Edition)[M](卢伯英,于海勋,等译),北京:电子工业出版社,2003:830~832
    [123] Gene F.Franklin, J. David Powell, Abbas Emami-Naeini, el, at. Feedback Control of DynamicSystems (Fifth Edition)[M], Beijing: Post Telecom Press,2007.368~370
    [124] P Stoica, Model-Selection by Cross-Validation [J]. International Journal of Control,1986,43(6):1841~1878.
    [125] A.Simpson. Transverse Modes and Frequencies of Beams Translating between fixed endsupports [J]. Journal mechanical engineering science,1973,15(3):159~164.
    [126] Rong-Fong Fung, Yung-Tien Liu, Chun-Chao Wang. Dynamic model of an electromagneticactuator for vibration control of a cantilever beam witha tip mass [J]. Journal of Sound andVibration,2005,288(4-5):957~980.
    [127] Jie Liu, Kefu Liu. A tunable electromagnetic vibration absorber: Characterization andapplication [J]. Journal of Sound and Vibration,2006,295(3-5):708~724.
    [128] Wodek K. Gawronski. Advanced Structural Dynamics and Active Control of Structures [M].New York: Springer-Verlag,2004:250.
    [129] Y. Frostig, O.T. Thomsen. On the free vibration of sandwich panels with a transversely flexibleand temperature-dependent core material [J]. Composites Science and Technology,2009,69(6):856~862.
    [130] Rugh W. J. Linear System Theory [M]. New Jersey: Prentice Hall,1996:116~117.
    [131] S. S’eror, E. Schall, M.-C. Druguet, et.al. An extension of CVDV model to Zeldovich exchangereactions for hypersonic non-equilibrium air flows [J]. Shock Waves,1998,8:285~298.
    [132] M.Dinkelmann, M. Wachter, G. Sachs. Modeling and simulation of unsteady heat transfer foraerospace craft trajectory optimization [J]. Mathematics and Computers in Simulation,2000,53:389~394.
    [133] David K. Schmidt, Jochen A. Hermann. Use of energy-state analysis on a generic air-breathinghypersonic vehicle [J]. Journal of Guidance, Control, and Dynamics,1998,21(1):71~76.
    [134]李新国,方群.有翼导弹飞行动力学[M].西安:西北工业大学出版社,2005
    [135] David E. Myers, Carl J. Martin, Max L. Blosser. Parametric Weight Comparison of AdvancedMetallic, Ceramic Tile, and Ceramic Blanket Thermal Protection Systems[R].NASA/TM-2000-210289,2000.
    [136] Robert T. Swann, Claud M. Pittman. ANALYSIS OF EFFECTIVE THERMALCONDUCTIVITIES OF HONEY COMB-CORE AND CORRUGATED-CORE SANDWICHPANELS[R]. NASA Technical note D-714,1961
    [137] Mark P Gorton, John L Shideler, Gmnroille L Webb. Static and Aerothermal tests of a Superalloyhoneycomb Prepackaged Thermal Protection System[R].NASA Technical Paper3257,1993.
    [138] DESIGN GUIDE FOR USE OF LAST-A-FOAM FR-3700FOR CRASH&FIREPROTECTION OF RADIOACTIVE MATERIAL SHIPPING CONTAINERS[R]. GeneralPlastics Mfg. Co. White Paper.
    [139]袁政禾.“Saffil”氧化铝纤维的制造、性能及应用[J].国外耐火材料,1995,(7):10~16.
    [140] Mark P Gorton, John L Shideler, Gmnroille L Webb. Static and Aerothermal tests of a Superalloyhoneycomb Prepackaged Thermal Protection System[R].NASA Technical Paper3257,1993.
    [141] Mark P. Miller. Getting started with MSC/NASTRAN: user's guide [M]. Los Angeles:MacNeal-Schwendler Corp,1993.
    [142]廖日东,左正兴,容克林.考虑高温影响的实心壁板式弹翼模态特性分析[[J].机械强度,2003,25(1):98~101.
    [143]史晓明,杨炳渊.瞬态加热环境下变厚度板温度场及热模态分析[J].计算机辅助工程,2006,15:15~18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700