用户名: 密码: 验证码:
具有倾斜裂纹的CTS试样三维断裂行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外对于三维复合型断裂问题的研究迄今还很不成熟,目前三维复合型裂纹的研究主要针对一些形状规则的贯穿裂纹和表面裂纹,对不规则形状三维复合型裂纹的断裂行为研究甚少,不能满足工程实际的需要。本文选用Richard设计的具有贯穿直裂纹的CTS试样,构建了两种不规则形状的三维复合型裂纹,并采用商用ANSYS软件以及修正的虚拟裂纹闭合积分方法进行了数值分析,深入研究了具有倾斜裂纹CTS试样的三维脆性断裂特性及裂纹扩展行为。
     本文首先在CTS试样二维模型的基础上,构建了具有有限厚度的三维CTS试样的计算模型。分别在I型和II型简单加载模式下,研究了试样在三维边界条件下的断裂行为,指出三维效应是导致CTS试样在纯剪切加载条件下产生复合型断裂的主要原因。CTS试样裂纹尖端离面应力约束的定量分析直观表明了三维效应的影响范围。同时,还分析了加载角度和材料常数泊松比对CTS试样断裂行为的影响。
     在三维CTS试样断裂行为研究的基础上,采用HYPERMESH软件对已有的三维CTS试样计算模型进行了改进,通过倾斜其裂纹前沿构建了具有复合型裂纹的MCTS试样,结合Richard设计的特殊加载装置,研究了贯穿斜裂纹在平面内不同加载条件下的断裂特性,揭示了导致试样产生复合型断裂的主要原因。在上述数值分析的基础上,根据Richard判据探讨了试样在不同加载条件下裂纹的初始扩展行为。通过改变裂纹前沿的倾斜角度,总结了在型和型简单加载条件下不同倾角贯穿斜裂纹的断裂规律,分析了裂纹前沿复合型应力强度因子随裂纹前沿倾角的变化情况。
     采用同样方法,对具有倾斜裂纹平面的MCTS试样建立计算分析模型,结合Richard设计的特殊加载装置,研究了具有倾斜裂纹平面的贯穿裂纹在不同加载条件下的断裂特性,揭示了导致试样产生复合型断裂的主要原因。在上述研究的基础上,根据Richard判据探讨了试样在不同加载条件下裂纹的初始扩展行为。通过改变裂纹平面的倾斜角度,分别在型和型简单加载条件下建立了裂纹前沿复合型应力强度因子与裂纹平面倾斜角度之间的变化关系,总结了其裂纹的断裂规律。
     为了对本文的数值计算进行验证,选取具有45°倾斜裂纹平面的MCTS试样,借助ANSYS软件提供的APDL参数化设计语言,并采用MVCCI方法及能量释放率与应力强度因子的等效变换关系,模拟了试样在I型及II型简单加载条件下裂纹的扩展轨迹及其扩展特征。同时,采用透明有机玻璃材料加工了带有45°倾斜裂纹平面的MCTS试样,分别在I型和II型加载条件下进行了实验,得出了试样裂纹的实际扩展情况。研究结果表明,实验中试样的裂纹开裂及扩展特征与数值模拟的裂纹开裂及扩展特征基本吻合,验证了本文的计算分析。
     本文的研究丰富了三维断裂的研究内容,为深入探讨三维复合型断裂问题做出了有益的贡献,并为解决实际工程中存在类似裂纹构件的安全性评估提供了参考依据。
Study on3D mixed-mode fracture problems at home and abroad so far is still imperfect.Some regular-shaped through cracks and surface cracks have been investigated in the currentstudy of3D mixed mode crack, while little study on the irregular-shaped cracks can not meetthe actual needs of the project. In the paper an in-depth study on the brittle fracturecharacteristics and crack propagation of CTS-specimen with inclined crack is presented. Twokinds of irregular-shaped3D mixed-mode cracks are built by improving CTS-specimendesigned by Richard. The computational analysis is based on the numerically highly effectivemodified virtual crack closure integral method and the commercially available FE-codeANSYS.
     3D model of CTS-specimen with finite thickness was built firstly on the basis of2Dmodel. Fracture behavior of specimen was investigated with3D Boundary conditions undermode-I and mode-II simple loading respectively. The presented numerical solutions showedthat3D effect was the main reason of leading CTS-specimen to produce mixed-mode fractureunder pure shear loading. The quantitative analysis on out-of-plane stress constrain near cracktip field of CTS specimen directly showed the range of3D effect. Meanwhile, the effect ofloading angles and material poisson’s ratio on3D fracture behavior was also investigated.
     On the basis of fracture studies on3D CTS-specimen, MCTS-specimen with mixed-modecrack was built thought inclining crack front of CTS-specimen by model deformationtechnology of HYPERMESH software. Fracture characteristic of oblique through crack wasinvestigated under in-plane different loading conditions which were achieved by specialloading device designed by Richard. The main factors which leaded to mixed-mode fracture ofspecimen were revealed. On the basis of these numerical analyses, initial crack expansionbehavior of MCTS-specimen was analyzed according to Richard criterion under differentloading conditions. By changing the inclined angle of crack front, the fracture law of obliquethrough cracks with different inclined angles was summarized under mode-and mode-simple loading, and the change of complex stress intensity factor along crack front with thevariation of inclined angle was discussed.
     Calculation model of MCTS-specimen with inclined crack plane was built by applying the same method. Combining with special loading device designed by Richard, fracturecharacteristic of through crack with inclined crack plane was investigated under in-planedifferent loading conditions. The main factors which leaded to mixed-mode fracture ofspecimen were revealed. On the basis of these studies, initial crack expansion behavior ofMCTS-specimen was analyzed according to Richard criterion under different loadingconditions. By changing the inclined angle of crack plane, the relationship between complexstress intensity factor along crack front and inclined angle of crack plane was set up undermode-I and mode-II simple loading respectively, and summarizing the fracture law of thecrack.
     In order to verify the presented numerical calculation, MCTS-specimen with45inclined crack plane and APDL programming language of ANSYS software were applied.Computational simulation of crack propagation path and feature in the specimen whichsubjected to mode-I and mode-II loading respectively was completed by the aid of MVCCImethod and equivalent transformation relations between energy release rate and stress intensityfactor. Meanwhile the experiment of MCTS-specimen with45inclined crack plane whichwas made using transparent plexiglass material was presented under mode-I and mode-IIloading respectively. The actual expansion of the crack was obtained. The results showed thatexperimental findings of cracking and crack expansion characteristics were in good agreementwith simulated results of cracking and crack expansion characteristics, which verified thecomputational analyses of this article.
     The presented study enriches the contents of3D fracture investigation, makes contributionfor further research on3D mixed-mode fracture, and provides reference for assess safety ofcomponents with similar crack in practical engineering.
引文
[1] Irwin GR. Analysis of stresses and strains near the end of a crack traversing a plate.Journal of Applied Mechanics.1957,24:361-364P
    [2] Griffth AA. The Phenomena of Rupture and Flow in Solids. Phil. Trans. R. Soc. Lond,1921, A221:163-197P
    [3] H. M. Westergaard. Bearing pressure and cracks.1939,6:49-53P
    [4] F. Erdogan. Stress intensity factor.1983,50:992-1002P
    [5] Murakami Y. Stress Intensity Factors Handbook. Oxford, Pergamon Press,1987
    [6]吴大方,高镇同.三维裂纹混合型应力强度因子的测定.北京航空航天大学学报.1996,22(3):316-320页
    [7]李鸿琦,李林安,佟景伟.用光弹性方法研究厚壁压力容器内表面裂纹的应力强度因子.实验力学.1993,8(4):336-341页
    [8]周爱细,黄建龙,郎福元.计算断裂力学进展.甘肃工业大学学报.1998,24(1):111-116页
    [9]冒小萍,郎福元,柯显信.断裂力学的数值计算方法的研究现状与展望.商丘师范学院学报.2004,20(2):20-25页
    [10]黄玲珍,聂毓琴,孟广伟.计算断裂力学研究的现状与进展.吉林工业大学学报.1995,25(1):120-124页
    [11] Cisilino A P, Aliabadi M H. Three-dimensional BEM analysis for fatigue crack growthin welded components. International Journal of pressure Vessels and Piping.1997
    [12]崔海涛,温卫东.随机有限元及其工程应用.南京航空航天大学学报.2000,32(1):91-98页
    [13] SouKeh-jian, NapierierJAL. A two-dimensional linear variation displacementdiscontinuity method for three-layered elastic media.International Journal of RockMechanics and Mining Science.1999,36(4):719-729P
    [14]卢海星,黄醒春.弹性体裂纹扩展的数值模拟.上海交通大学学报.2001,35(4):634-637页
    [15]李卧龙,王元汗,陈晚波.无网格法在断裂力学中的应用.岩石力学与工程学报.2001,20(4):462-466页
    [16] T. Belyschko, P. Krysl, Y. Kronganz. A free dimensional explicit element free Glerkinmethod. Int. J. Numer. Meth. Fluids..1997,24:1253-1270P
    [17]张敦福,朱维申,李术才.三维裂纹应力强度因子数值计算.岩石力学与工程学报.2006,25(增2):3835-3840页
    [18]张国瑞.有限元法.北京:机械工业出版社,1992
    [19] Kassir M, Sih G. Mechanics of Fracture2-Three Dimensional Crack Problems.Noordhoff. Leyden
    [20]杨庆生,杨卫.断裂过程的有限元模拟.计算力学学报.1997,14(4):407-412页
    [21] Barsoum R S. On the use parametic finite element in linear fracture mechanics. Int. J.Num. Mech. Eng.1976
    [22]曹宗杰,闻邦椿,王志超.一种计算三维裂纹应力强度因子的新方法.力学季刊.2001,22(4):401-407页
    [23]林云,何文军,丁皓江.三维裂纹体应力强度因子的计算.计算结构力学及其应用.1996,13(3):347-352页
    [24]王永伟,林哲.表面裂纹的三维模拟及应力强度因子计算.中国海洋平台.2006,21(3):23-26页
    [25]王锋,黄其青,殷之平.三维裂纹应力强度因子的有限元计算分析.航空计算技术,2006,36(3):125-127页
    [26]林晓斌,Roderick A.Smith.应用三维有限单元法计算应力强度因子.中国机械工程.1998,9(11):39-42页
    [27]瞿伟廉,鲁丽君,李明.带三维穿透裂纹结构的有限元实体建模方法.武汉理工大学学报.2008,31(1):87-90页
    [28] Xie D, Biggers Jr. S B. Progressive crack growth analysis using interface elementbased on the virtual crack closure technique. Finite Elements in Analysis and Design.2006,42:977-984P
    [29] Xie D, Biggers Jr. S B. Progressive crack growth analysis using interface elementbased on the virtual crack closure technique. Finite Elements in Analysis and Design.2006,42:977-984P
    [30]解德.断裂力学中的数值计算方法及工程应用.第一版.北京:科学出版社,2009:19-26页
    [31]董玉文,余天堂,任青文.直接计算应力强度因子的扩展有限元法.计算力学学报.2008,25(1):72-77页
    [32]范天佑.断裂理论基础.北京:科学出版社,2003
    [33] F.–G. Buchholz, H. Grebner, U. Strathmeier. Numerical Investigations of CrackClosure Integral and J-Integral Calculations for a Thermally Stressed Specimen.International Journal of Solids Structure.1986,22(7):709-719P
    [34] F.-G. Buchholz, Finite Element Analysis of a3D Mixed-Mode Fracture Problem byVirtual Crack Closure Integral Methods. Fracture Mechanics,1994,7-12P
    [35] Rybicki EF, Kanninen MF. A finite element calculation of stress intensity factors by amodified crack closure integral. Engineering Fracture Mechanics.1977,9:931-938P
    [36] F.-G. Buchholz. Improved Formulae for the FE-Calculation of the Strain EnergyRelease Rate by the Modified Crack Closure Integral Method. Accuracy, Reliabilityand Training in FEM Technology.1984,650-659P
    [37] Krishnamurthy T, Ramamurthy T S, Vijayakumar K, Dattaguru B. Modified CrackClosure Integral Method for Higher Order Finite Elements. In Finite Elements inComputational Mechanics, Pergamon Press, Oxford,1985,891-900P
    [38] Sethuraman R, Maiti SK. Finite element based computation of strain energy releaserate by modified crack closure integral. Engineering Fracture Mechanics.1988,30:227-231P
    [39] Badari Narayana K, Krishnamurthy T, Dattaguru B, Ramamurthy T S, Vijay Kumar K.Modified Crack Closure Integral for Three Dimensional Crack Problems. Int. Conf. onComputational Engineering Scinece(ICES), Atlanta, USA,1988
    [40] Buchholz F.-G, Grebner H, Dreyer K. H, Krome H.2D and3D Applications of theImproved and Generalized Modified Crack Closure Integral Method. Comp Mechanics88, Vol.1, New York,1988,14.i.1-14.i.4
    [41] F.-G. Buchholz, A.Chergui, H. A. Richard. Fracture analyses and experimental resultsof crack growth under general mixed mode loading conditions. Engineering FractureMechanics.2004,71:455-468P
    [42] Shivakumar K N, Tan P W, Newman. A Virtual Crack Closure Technique forCalculating Stress Intensity Factors for Cracked Three Dimensional Bodies.International Journal of Fracture,1988,36: R43-50P
    [43] Buchholz F-G, Schulte-Frankenfeld N, Meiners B. Fracture analysis of mixed-modefailure processes in a3D-fibre/matrix composite cylinder. Proceeding of the6thInternational Conference on Composite Materials, Vol.3. London: Elsevier AppliedScience Publishers.1987,3:417-428P
    [44]樊鸿,张盛,王启智.复合型三维裂纹应力强度因子计算方法研究.四川大学学报.2009,41(4):48-52页
    [45]彭志刚,赵小兵,刘青峰,夏勇.半椭圆表面裂纹前缘应力强度因子的计算.计算机仿真.2008,25(7):332-335页
    [46]周峰峦,高怡斐.半椭圆表面裂纹应力强度因子的有限元计算分析.物理测试.2009,27(3):54-56页
    [47]谭晓明,陈跃良,段成美.三维多裂纹应力强度因子的有限元分析.机械强度.2004,26(S):195-198页
    [48]杨慧,曹平,汪亦显,黎振兹,黄尚安.斜裂纹应力强度因子的有限元计算及分析.武汉工程大学学报.2007,29(2):47-50页
    [49]伍晓慧,徐慧,王德志.单边斜裂纹的应力强度因子计算.湖南文理学院学报.2009,21(1):23-26页
    [50]邹彩凤,谢伟.工字型截面梁角裂纹的应力强度因子分析.西安科技大学学报.2009,29(5):622-625页
    [51]陈爱军,徐诚,胡小秋.带裂纹后壁圆筒应力强度因子的几种计算方法.南京理工大学学报.2002,26(4):430-433页
    [52]王永伟,林哲.表面裂纹的三维模拟及应力强度因子计算.中国海洋平台.2006,21(3):23-26页
    [53]谢伟,黄其青,Masanori Kikuchi.应用改进的虚拟裂纹闭合方法求解三维裂纹应力强度因子.机械科学与技术.2008,27(1):41-44页
    [54]谢伟,黄其青,Masanori Kikuchi.受剪切应力作用的表面裂纹应力强度因子研究.机械科学与技术.2010,29(3):391-394页
    [55] S. P. HEO, Won Ho Yang. Approximate weight function method for elliptical arcthrough cracks in mechanical joint. Engineering Fracture Mechanics.2003,70:1171-1192P
    [56] S. A. FAWAZ. Stress intensity factor solutions for partelliptical through cracks.Engineering Fracture Mechanics.1999,63:209-226P
    [57] S. A. FAWAZ. Application of the virtual crack closure technique to calculate stressintensity factors for through cracks with an elliptical crack front. Engineering FractureMechanics.1998,59(3):327-342P
    [58] G. Dhondt, A. Chergul, F.-G. Buchholz. Computational fracture analysis of differentspecimens regarding3D and mode coupling effects. Engineering Fracture Mechanics.2001,68:383-401P
    [59] A. R. Shahani, S. A. Tabatabaei. Computation of mixed mode stress intensity factors ina four-point bend specimen. Applied Mathematical Modeling.2008,32:1281-1288P
    [60] Ali O. Ayhan. Mixed mode stress intensity factors for deflected and inclined cornercracks in finite-thickness plates. International Journal Fatigue.2007,29:305-317P
    [61] Ismail. A. E., Ariffin. A. K., Abdullah. S., Ghazali. M. J., Abdulrazzaq. M. Finiteelement analysis on the stress intensity factor under combined bending and torsionloading. Key Engineering Materials.2011,(462-463):1325-1330P
    [62]邓建刚,蒋和洋,黎在良,闫维明.三维裂纹扩展轨迹的边界元数值模拟.应用力学学报.2003,20(2):49-53页
    [63] R. Citarella, F.–G. Buchholz. Comparison of crack growth simulation by DBEM andFEM for SEN-specimens undergoing torsion or bending loading. Engineering FractureMechanics.2008,75:489-509P
    [64]黄岩松,周维垣,胡云进.应用三维无单元伽辽金法追踪裂纹扩展.水利学报.2006,37(1):63-69页
    [65] P. Krysl, T. Belytschko. The element-free Galerkin method for dynamic propagation ofarbitrary3D cracks. Int. J. Numer. Meth. Engng..1999,44:767-800P
    [66]董玉文,任青文.基于XFEM的混凝土开裂数值模拟研究.重庆交通大学学报.2009,28(1):36-40页
    [67]余天堂.裂纹扩展仿真分析.系统仿真学报.2009,21(6):1756-1759页
    [68]李录贤,王铁军.扩展有限元法(XFEM)及其应用.力学进展.2005,35(1):5-20页
    [69] Sch llmann M, Fulland M, Richard HA. Three-dimensional fatigue crack growthsimulation under complex loading with ADAPCRACK3D. Fracture mechanics:applications and challenges. ESIS Publication26. Amsterdam, CD-ROM Proceedings,section9, paper5,2000,1-8P
    [70] Sch llmann M, Fulland M, Richard HA. Development of a new software for adaptivecrack growth simulations in three-dimensional structures. Engineering FractureMechanics.2003,70:249-268P
    [71] Fulland M, Sch llmann M, Richard HA. ADAPCRACK3D-development of a programfor the simulation three-dimensional crack propagation processes. Advances incomputational engineering and sciences. Palmdale: Tech Science Press.2000,948-953P
    [72] Fulland M, Sch llmann M, Richard HA. ADAPCRACK3D-development of a programfor the simulation three-dimensional crack propagation processes. Advances incomputational engineering and sciences. Palmdale: Tech Science Press.2000,948-953P
    [73]贾学明,王启智.三维断裂分析软件FRANC3D.计算力学学报.2004,21(6):764-768页
    [74]贾超,张树壮.三维裂纹扩展仿真.系统仿真学报.2006,18(12):3399-3402页
    [75]冒小萍.应力断料中裂纹扩展的数值模拟研究.兰州理工大学硕士学位论文.2004,4:34-35页
    [76]李录贤,王铁军.扩展有限元法(XFEM)及其应用.力学进展.2005,35(1):5-20页
    [77]陶伟明,班勇婷,王慰军,杨兴旺.一种裂纹扩展的有限元仿真分析方法及其实现.力学季刊.2009,30(4):612-617页
    [78]刘莎,张芳.基于ANSYS有限元软件裂纹扩展模拟.化工装备技术.2006,27(1):54-57页
    [79]贾超,张树壮.三维裂纹扩展仿真.系统仿真学报.2006,18(12):3399-3402页
    [80]杨庆生,杨卫.断裂过程的有限元模拟.计算力学学报.1997,14(4):407-412页
    [81] F.–G. Buchholz, V. Just, H. A. Richard. Computational simulation and experimentalfindings of three-dimensional fatigue crack growth in a single-edge notched specimenunder torsion loading. Fatigue fract. Engng. Mater. Struct..2005,28:127-134P
    [82] F.–G. Buchholz, H. A. Richard. Comparison of computational crack path predictionswith experimental findings for SEN-specimens under different loadings.Computational mechanics. WCCM VI in conjunction with APCOM’04,2004
    [83] H. A. Richard. A new compact shear specimen.International Journal of Fracture.1981,17: R105-R107P
    [84] H. A. Richard, Benitz, K.. A loading device for the creation of mixed mode in fracturemechanics. International Journal Fracture.1983,22: R55-R58P
    [85]何庆芝,郦正能.工程断裂力学.北京:北京航空航天大学出版社,1993
    [86] P. F. P. de Matos, D. Nowell. The influence of the Poisson’s ratio and corner pointsingularities in three-dimensional plasticity-induced fatigue crack closure: A numericalstudy. International Journal of Fatigue.2008,30:1930-1943P
    [87] Hans A. Richard, Markus Fulland, Fritz G. Buchholz, Matthias Sch llmann.3DFracture Criteria for Structures with Cracks. Steel research.2003,74:491-497P
    [88]陈兴周,常亮,刘杰,周济芳.关于常用断裂判据.西北水力发电,2005,21(2):24-27页
    [89] Erdogan F, Sih G C. On the crack extension in plates under plane loading andtransverse shear. Journal Basic Engineering.1963,85:519-527P
    [90] Sih G C.Strain energy density factor applied to mixed mode crackproblems.International Journal Fracture.1974,10(3):305-321P
    [91] Sih G C. Some basic problems in fracture mechanics and new concepts. EngineeringFracture Mechanics.1973,5:365-377P
    [92]张淳源.论非线性断裂力学的基本平衡定律(II)非局部理论(主要结果简介).湘潭大学自然科学学报.1995,17(l):28-32页
    [93] L. P. Pook. Linear elastic fracture Mechanics for engineer: Theory and application.WIT press. Southampton.2000
    [94] M. Sch llmann, G.Kullmer, M.Fulland, H. A. Richard. A new criterion for3D crackgrowth under Mixed-Mode () loading. Proceedings of the6th InternationalConference of Biaxial/Multiaxial Fatigue and Fracture. Lisbon,2001,2:589-596P
    [95] H. A. Richard, F.-G. Buchholz, G.Kullmer.2D and3D-mixed mode fracture criteria.Key Engineering Materials.2003,251-260P
    [96] Vallejo L E. The brittle and ductile behavior of a material containing a crack undermixed-mode loading.28th US symposium on Rock Mechanics,1987
    [97]尹双增.断裂·损伤理论及应用.清华大学出版社.1992,145-148页
    [98]汤安民,张瑞平,王忠民.最大主应力与形状改变比能对断裂的影响.西安理工大学学报.1999,15(3):59-63页
    [99]汤安民,朱文艺,卢智先.韧性材料的几种断裂形式及判据讨论.机械强度.2002,24(4):566-570页
    [100]汤安民,王忠民.断裂力学判据存在的一个问题及讨论.机械强度.2001,23(2):222-224页
    [101]田常海.复合型裂纹扩展的主应力因子模型及复合型裂纹扩展.应用力学学报.2004,21(1):84-89页
    [102]蒋玉川,王启智.复合型裂纹扩展的形状改变比能准则.四川大学学报.2004,36(3):20-23页
    [103]蒋玉川,胡兴福.复合型裂纹扩展的最大塑性区尺度准则.四川大学学报.2005,37(4):11-14页
    [104]陈增涛,王铎.复合型裂纹的混合开裂准则.哈尔滨工业大学学报.1994,26(4):127-130页
    [105]栾茂田,杨新辉,杨庆.考虑三向应力效应的最大Mises应力复合断裂判据.岩土力学.2006,27(10):1647-1652页
    [106]龚俊,朗福元,王氓.基于统一强度理论的复合型裂纹断裂准则.机械强度.2003,25(3):347-351页
    [107]尹双增.探讨一种新的复合型断裂判据——塑性区最短距离rmin判据.科技情报.1982
    [108]尹双增.复合型裂纹断裂的塑性区最短距离判据法.混凝土及加筋混凝土.6-14页
    [109]许斌,江见鲸.混凝土复合型断裂判据研究.工程力学.1995,12(2):13-21页
    [110]崔德渝,吴绍富,张行.复合型裂纹的能量释放率计算与断裂判据.北京航空航天大学学报.1990,3:43-49页
    [111]郑恒祥.不同强度脆性材料的复合裂纹断裂判据.郑州大学学报.1996,28(2):50-53页
    [112]田常海,邹定强.复合型裂纹扩展的特征.北京科技大学学报.2001,23:125-127页
    [113] Knauss W G. Observations of crack propagation in anti-plate shear. InternationalJournal of Fracture.1970,6(2):183-185P
    [114] Shafique M. A. Khan, Marwan K. Khraisheh. Analysis of mixed mode crack initiationangles under various loading conditions. Engineering Fracture Mechanics.2000,67:397-419P
    [115] Richard H. A. Specimens for investigation biaxial fracture and fatigue processes.Biaxial and multiaxial Fatigue. ed. M.W. Brown and K. J. Miller. MechanicalEngineering publication, London.1989:217-229P
    [116] F.-G. Buchholz, H. A. Richard. Optimisation of the AFM-specimen with respect toadvanced fracture and fatigue investigations. Proc. of the Int. Symposium.2000:1-17P
    [117] Shivakumar K N, Tan P W, Newman. A Virtual Crack Closure Technique forCalculating Stress Intensity Factors for Cracked Three Dimensional Bodies.International Journal of Fracture,1988,36: R43-50P
    [118] Xie D, Waas A W, Shahwan. Computation of strain energy release rate for kinkingcracks based on virtual crack closure technique. Computer Modeling in Engineering&Sciences.2004,6:515-524P
    [119]谢伟,黄其青,Masanori Kikuchi.改进的三维虚拟裂纹闭合方法.西北工业大学学报.2008,26(1):116-120页
    [120] H. A. Richard. Major aspects of Mixed-Mode problems. CD-ROM Proceedings ofICF10. Honolulu,2001
    [121] S. Ma, X. B. Zhang, N. Recho, J. Li. The mixed-mode investigation of the fatiguecrack in CTS metallic specimen. International journal of Fatigue.2006,28:1780-1790P
    [122] M. Sander, H. A. Richard. Finite element analysis of fatigue crack growth withinterspersed mode and mixed mode overloads. International journal of Fatigue.2005,27:905-913P
    [123] L. P. Borrego, F. V. Antunes, J. M. Costa, J. M. Ferreira. Mixed-mode fatigue crackgrowth behaviour in aluminium alloy. International Journal of Fatigue.2006,28:618-626P
    [124] R. Plank, G.Kuhn. Fatigue crack propagation under non-proportional mixed modeloading. Engineering Fracture Mechanics.1999,62:203-229P
    [125] R. Rikards, F.-G. Buchholz, H. Wang, A. K. Bledzki, A. Korjakin, H.-A. Richard.Investigation of mixed mode I/II interlaminar fracture toughness of laminatedcomposites by using a CTS type specimen. Engineering Fracture Mechanics.1998,61:325-342P
    [126] Bazant ZP, Estenssoro LF. Surface singularity and crack propagation. InternationalJournal of Solids Structure.1979,15:405-426P
    [127] Benthem JP. State of stress at the vertex of a quarter-infinite crack in half-space.International Journal of Solids Structure.1977,13:479-492P
    [128] Ghahremani F. Numerical variation method for extracting3D singularity. InternationalJournal of Solids Structure.1977,27:1371-1386P
    [129] Shivakumar KN, Raju IS. Treatment of singularities in cracked bodies. InternationalJournal of Fracture.1990,45(3):159-178P
    [130] Heyder M, Kolk K, Kuhn G. Numerical and experimental investigations of theinfluence of corner singularities on3D fatigue crack propagation. International Journalof Fatigue.2006,72:2095-2105P
    [131] F.-G. Buchholz, H. Wang, J. Lin, H. A. Richard.3D Finite Element Analysis ofDifferent Test Specimens for Investigations on Mixed-Mode, and Fracture.Computational Mechanics.1998, Section4:1-21P
    [132] Friedrich-G. Buchholz, Azzedine Chergui, Hans A. Richard. Computational FractureAnalyses by Means of Virtual Crack Closure Integral Methods.1999
    [133] Z Z Du, J W Hancock. The effect of non-singular stresses on crack-tio constraint.Journal of the Mechanics and Physics Solids,1991,39(1):17-26P
    [134] Wanlin Guo. Elastoplastic three-dimensional crack border field-.Singular structure ofthe field. Engineering Fracture Mechanics,1993,46(1):93-104P
    [135] Guo W. Elastoplastic three-dimensional crack border field-.Fracture parameters.Engineering Fracture Mechanics,1995,51(1):51-71P
    [136] Pook LP. A finite element analysis of the angle crack specimen. Mixed-mode fatigueand fracture ESIS14. London: Mechanical Engineering Publications.1993,285-302P
    [137] F.-G. Buchholz, V. Just, H. A. Richard. Computational Simulation and ExperimentalResults on3D Crack Growth in a3PB-Specimen with an Inclined Crack Plane. KeyEngineering Materials.2003,(251-252):85-90P
    [138]唐俊星,陆山.三维裂纹整体参数化模化方法.航空动力学报.2008,23(4):737-741页
    [139] Tang Jun-xing, LU Shan. A numerical technique for three-dimensional fatigue crackgrowth simulation. International Conference on Mechanical Engineering andMechanics.2007
    [140] Pook LP. On the fatigue crack paths. International Journal of Fatigue.1995,17:5-13P
    [141] Hull D. The effect of mixed mode/on crack evolution in the brittle solids.International Journal of Fatigue.1995,70:59-79P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700