用户名: 密码: 验证码:
中国近海锋面时空特征研究及现场观测分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋锋是典型的海洋中尺度现象之一,是影响海洋流场结构、海洋热量交换与物质输运和海气相互作用的重要因素,也是海洋生物化学过程中不可忽视的控制要素。海洋锋面在空间上呈狭长带状结构,锋面水文要素均具有较高的水平梯度,锋面也是海洋能量从大尺度向较小尺度的传递过程中表现最强烈的地方。海洋锋可与其他海洋中尺度现象相关联,锋面和中尺度涡旋之间联系密切,涡旋具有成锋作用,而锋面的不稳定性也可产生涡旋;锋面在垂直方向的表现即为跃层,而跃层是产生海洋内波的基础。
     在本研究中,我们基于各类卫星资料和数据处理方法并结合理论分析,关注中国近海及黑潮流域范围内海洋锋的时空变化规律和动力机制特征等相关研究;探讨中尺度现象在生态学方面的响应;分析海洋调查信息,用实测数据证实和修正得到的结果。本研究主要结论如下:
     1.东海黑潮与陆架水相互作用形成的海温锋具有显著的季节性特征,而同期水色锋的季节性变化并不明显,这说明使用水色数据来刻画海洋锋的结果更贴近于实际情况;对台湾东北海域夏季明显存在的强海温锋现象,我们认为是与黑潮次表层水涌升密切相关。
     2.投放于吕宋海峡中部的Argo经常会漂移至南海内,对进入南海Argo浮标记录的轨迹信息和温-盐剖面数据进行分析,发现在南海北部陆坡附近的上层海洋中存在着高盐的黑潮水特征,且同期的海温遥感数据也在台湾岛西南海域捕捉到暖丝的现象。对吕宋海峡西南海域进行长时间序列的ADCP潜标观测,流速剖面数据显示200m层上方海流流向以西或西北为主,而在200m层以下则是东向流占优,这种现象说明该海域内黑潮锋面入侵的形态不容忽视。
     3.在吕宋岛以西海域,中尺度涡旋和强海温锋的共同作用使得局地海温更接近于适宜海洋浮游植物生长和繁殖的区间范围,并在局部冷海域内形成高浓度叶绿素自组织核心,吕宋冷涡像是一个营养泵以维持叶绿素的形成,构成了关于叶绿素的耗散结构系统;Rossby波是与泵连接的传送带,辅助叶绿素的扩散,形成了吕宋岛以西冬季独特的叶绿素浓度分布。
The oceanic front is one of the typical ocean mesoscale phenomena, and it is an importantfactor to affect the flow field structures, heat exchanges, mass transports and ocean-atmosphereinteractions, and is also the control element for biogeochemical processes which should not beignored. Most oceanic fronts own the narrow banded spatial structures and character as a highlevel of gradient with different hydrological factors. Meanwhile, front is the place with intenseperformance for the ocean energy transfer from large scales to smaller ones. It is closelyassociated with other mesoscale phenomena in the ocean. The mesoscale eddies act on thefrontogenesis, accordingly, the frontal instability could also produce frontal eddies. The strongvertical gradient such as thermocline, halocline, and pycnocline should be considered as thefronts in vertical direction, and it is the basis of the generation of internal waves.
     Using data analysis and theoretical methods for various types of satellite-derived data andother data resources, the studies in the following sections are mainly focused on thespatio-temporal variability of the oceanic front and its dynamic mechanism, and explore theresponse of the mesoscale phenomena in marine ecology. We also use in situ CTD data andmoored ADCP observations to confirm or modify the results.
     The thermal front, formed between the Kuroshio and continental shelf water in the EastChina Sea, has a significant seasonal signal, whereas the corresponding ocean color front existswithout remarkable spatio-temporal changes. This result suggests that ocean color data seemmore suitable to depict the oceanic front because it is not affected by the solar radiation andspatial heating. As to the strong thermal front in summertime off northeastern Taiwan, weconsider that it should be closely related to the upwelling of subsurface Kuroshio waters.
     The Argo floats, which were launched in the middle of the Luzon Strait, often drift into thestrait; and the results of temperature-salinity profile data and near-surface trajectory informationshow that there exists some high salt Kuroshio water in the upper layer around the continentalslope in the northern South China Sea. The Kuroshio warm filaments southwest of Taiwan Islandare also captured by satellite-derived remote sensing SST data during the period of Argo floatsmeasurement. The Moored ADCPs with long-term observations are also deployed northwest ofLuzon Island. The current profile data indicates that the flow field is mainly west or northwest in the upper200m layers, whereas beneath this layer, the flow is eastward. This tendency impliesthat the Kuroshio frontal intrusion in this region should not be neglected.
     The winter blooms with high Chlorophyll_a concentration is positive correlated with thecooling sea surface temperature index, and this phenomenon is maintained by the Luzon ColdEddy which seems to be an important vehicle for nutrient transport from depth to euphotic zone.This seasonal bloom is similar to a dissipative structure, and the Rossby wave works as theconveyor belt, which essentially changes the face of nutrient-depleted waters at a westernoffshore area of Luzon Island.
引文
[1]巢纪平,陈显尧.2003.沿岸上升流和沿岸急流的一个半解析理论.地球物理学报,46(1):26-30.
    [2]管秉贤,袁耀初.2006.中国近海及其附近海域若干涡旋研究综述—南海和台湾移动海域.海洋学报,28(3):1-16.
    [3]官文江,何贤强,潘德炉,龚芳.2005.渤、黄、东海海洋初级生产力的遥感估算.水产学报,29(3):367-372.
    [4]郭炳火.1992.东海黑潮锋面涡、暖丝和暖环.黄渤海海洋,10(3):10-19.
    [5]郭炳火,葛人峰.1992.东海黑潮锋面涡旋在陆架水与黑潮水交换中的作用.海洋学报,19(6):1-11.
    [6]郭炳火,汤毓祥,陆赛英,孟凡,费尊乐,林葵,李保华.1995.春季东海黑潮锋面涡旋的观测与分析.海洋学报,17(1):13-23.
    [7]李立,苏纪兰,许建平.1997.南海的黑潮分离流环.热带海洋,16(2):42-57.
    [8]李燕初,李立,靖春生,蔡文理.2004.南海东北海域海面高度的时空变化特征.科学通报,49(7),702-709.
    [9]刘秦玉,刘倬腾,郑世培,徐启春,李薇.1996.黑潮在吕宋海峡的形变及动力机制.青岛海洋大学学报.26(4):413-419.
    [10]毛汉礼,任允武,万国铭.1964.应用T-S关系定量地分析浅海水团的初步研究.海洋与湖沼,6(1):1-22.
    [11]潘玉球,苏纪兰,徐端蓉.1990.1986年5~6月台湾以北水文状况的分析.黑潮调查研究论文选(一),北京:海洋出版社,125-136.
    [12]孙湘平,修树孟.1997.台湾东北海域冷涡的分析.海洋通报,16(2):1-10.
    [13]孙湘平,修树孟.2002.台湾东北海域冷水块的特征.黄渤海海洋,20(1):1-10.
    [14]王桂华,苏纪兰,齐义泉.2005.南海中尺度涡研究进展.地球科学进展,20(8):882-886.
    [15]王胄,陈庆生.1987a.南海北部之暖芯涡流—对南海暖涡之初步观测.台湾大学海洋学刊,18:92-103.
    [16]王胄,陈庆生.1987b.南海北部之暖芯涡流—对南海暖涡之理论分析.台湾大学海洋学刊,18:104-113.
    [17]伍荣生.1984.论涡度拟能的变化.科学通报,22:1384-1386.
    [18]夏综万,王锺桾,郑义芳.1987.关于台湾东北海域的一个冷涡.黑潮调查研究论文集,北京:海洋出版社,228-237.
    [19]修树孟,王克訚,孙培光.2001.台湾东北海域冷涡及其变异的遥感信息研究—冷涡的季节性变化.黄渤海海洋,19(2):57-64.
    [20]袁耀初,管秉贤.2007.中国近海及其附近海域若干涡旋研究综述—东海和琉球群岛以东海域.海洋学报,29(2):1-17.
    [21]张庆华,陈水明,乔方利,董昌明.1999.台湾浅滩阻塞作用的初步研究.海洋学报,21(4):121-124.
    [22]郑义芳,郭炳火,汤毓祥,修树孟,中村保昭.1992.东海黑潮锋面涡旋的观测.黑潮调查研究论文选(四),北京:海洋出版社,23-32.
    [23] Alexander M (1992). Midlatitude atmosphere-ocean interaction during El Ni o. Part One:The North Pacific Ocean. J. Climate,5(9),944-958.
    [24] Allen J (1973). Upwelling and coastal jets in a continuously stratified ocean. J. Phys.Oceanogr.,3(3),245-257.
    [25] Antoine D, J André, and A Morel (1996). Oceanic primary production2. Estimation atglobal scale from satellite (Coastal Zone Color Scanner) chlorophyll. Global Biogeochem.Cy.,10(1),57-69.
    [26] Antoine D, and A Morel (1996). Oceanic primary production1. Adaptation of a spectrallight-photosynthesis model in view of application to satellite chlorophyll observations.Global Biogeochem. Cy.,10(1),43-55.
    [27] Babin S, J Carton, T Dickey, et al (2004). Satellite evidence of hurricane-inducedphytoplankton blooms in an oceanic desert. J. Geophys. Res.,109, C03043.
    [28] Beardsley R, T Duda, J Lynch, et al (2004). Barotropic tide in the northeast South China Sea.IEEE J. Ocean. Eng.,29(4),1075-1086.
    [29] Beardsley R, R Limeburner, H Yu, et al (1985). Discharge of the Changjiang (Yangtze River)into the East China Sea. Cont. Shelf Res.,4(1-2),57-76.
    [30] Behrenfeld M, and P Falkowski (1997a). Photosynthetic rates derived from satellite-basedchlorophyll concentration. Limnol. Oceanogr.,42(1),1-20.
    [31] Behrenfeld M, and P Falkowski (1997b). A consumer's guide to phytoplankton primaryproductivity models. Limnol. Oceanogr.,42(7),1479-1491.
    [32] Behrenfeld M, J Randerson, C McClain, et al (2001). Biospheric primary production duringan ENSO transition. Science,291(5513),2594-2597.
    [33] Belkin I, and P Cornillon (2003). SST fronts of the Pacific coastal and marginal seas. Pac.Oceanogr.,1(2),90-113.
    [34] Belkin I, and P Cornillon (2004). Surface thermal fronts of the Okhotsk Sea. Pac. Oceanogr.,2(1-2),6-19.
    [35] Belkin I, and P Cornillon (2005). Bering Sea thermal fronts from Pathfinder data: Seasonaland interannual variability. Pac. Oceanogr.,3(1),6-20.
    [36] Belkin I, P Cornillon, and K Sherman (2009). Fronts in large marine ecosystems. Prog.Oceanogr.,81(1-4),223-236.
    [37] Belkin I, and J O'Reilly (2009). An algorithm for oceanic front detection in chlorophyll andSST satellite imagery. J. Marine Syst.,78(3),319-326.
    [38] Biggs D, and F Müller-Karger (1994). Ship and satellite observations of chlorophyll stocksin interacting cyclone-anticyclone eddy pairs in the western Gulf of Mexico. J. Geophys.Res.,99(C4),7371-7384.
    [39] Bontempi P, and J Yoder (2004). Spatial variability in SeaWiFS imagery of the SouthAtlantic bight as evidenced by gradients (fronts) in chlorophyll a and water-leavingradiance. Deep-Sea Res., Part Ⅱ,51(10-11),1019-1032.
    [40] Campbell J (1995). The lognormal distribution as a model for bio-optical variability in thesea. J. Geophys. Res.,100(C7),13237-13254.
    [41] Canny J (1986). A computational approach to edge detection. IEEE Trans. Pattern Anal.Mach. Intell., PAMI-8(6),679-698.
    [42] Carr M, M Friedrichs, M Schmeltz, et al (2006). A comparison of global estimates of marineprimary production from ocean color. Deep-Sea Res., Part Ⅱ,53(5-7),714-770.
    [43] Caruso M, G Gawarkiewicz, and R Beardsley (2006). Interannual variability of theKuroshio intrusion in the South China Sea. J. Oceanogr.,62(4),559-575.
    [44] Castelao R, T Mavor, J Barth, et al (2006). Sea surface temperature fronts in the CaliforniaCurrent System from geostationary satellite observations. J. Geophys. Res.,111, C09026.
    [45] Cayula J, and P Cornillon (1992). Edge detection algorithm for SST images. J. Atmos.Oceanic Technol.,9(1),67-80.
    [46] Cayula J, and P Cornillon (1995). Multi-image edge detection for SST images. J. Atmos.Oceanic Technol.,12(4),821-829.
    [47] Cayula J, and P Cornillon (1996). Cloud detection from a sequence of SST images. RemoteSens. Environ.,55(1),80-88.
    [48] Cayula J, P Cornillon, R Holyer, et al (1991). Comparative study of two recentedge-detection algorithms designed to process sea-surface temperature fields. IEEE Trans.Geosci. Remote Sens.,29(1),175-177.
    [49] Centurioni L, P Niiler, and D Lee (2004). Observations of inflow of Philippine Sea surfacewater into the South China Sea through the Luzon Strait. J. Phys. Oceanogr.,34(1),113-121.
    [50] Centurioni L, P Niiler, and D Lee (2009). Near-surface circulation in the South China Seaduring the winter monsoon. Geophys. Res. Lett.,36, L06605.
    [51] Chao S, and T Kao (1987). Frontal instabilities of baroclinic ocean currents with applicationto the Gulf Stream. J. Phys. Oceanogr.,17(6),792-807.
    [52] Chao S, P Shaw, and S Wu (1996). Deep water ventilation in the South China Sea. Deep-SeaRes.,43(4),445-466.
    [53] Charria G, I Dadou, P Cipollini, et al (2006). Understanding the influence of Rossby waveson surface chlorophyll concentrations in the North Atlantic Ocean. J. Mar. Res.,64(1),43-71.
    [54] Charria G, F Mélin, I Dadou, et al (2003). Rossby wave and ocean color: The cells upliftinghypothesis in the South Atlantic Subtropical Convergence Zone. Geophys. Res. Lett.,30(3),1125.
    [55] Chen C, R Beardsley, and R Limeburner (1992). The structure of the Kuroshio southwest ofKyushu: velocity, transport and potential vorticity fields. Deep-Sea Res.,39(2),245-268.
    [56] Chen C, F Shiah, S Chung, et al (2006). Winter phytoplankton blooms in the shallow mixedlayer of the South China Sea enhanced by upwelling. J. Marine Syst.,59(1-2),97-110.
    [57] Chen C-T (2009). Chemical and physical fronts in the Bohai, Yellow and East China seas. J.Marine Syst.,78(3),394-410.
    [58] Chen C-T, and M Huang (1996). A mid-depth front separating the South China Sea Waterand the Philippine Sea Water. J. Oceanogr.,52(1),17-25.
    [59] Chen C-T, C Liu, W Chuang, et al (2003). Enhanced buoyancy and hence upwelling ofsubsurface Kuroshio waters after a typhoon in the southern East China Sea. J. Marine Syst.,42(1-2),65-79.
    [60] Chen C-T, and S Wang (1998). Influence of intermediate water in the western OkinawaTrough by the outflow from the South China Sea. J. Geophys. Res.,103(C6),12683-12688.
    [61] Chen G, Y Hou, X Chu, et al (2009). The variability of eddy kinetic energy in the SouthChina Sea deduced from satellite altimeter data. Chin. J. Oceanol. Limnol.,27(4),943-954.
    [62] Chen X, X Wang, and J Guo (2006). Seasonal variability of the sea surface salinity in theEast China Sea during1990-2002. J. Geophys. Res.,111(C5), C05008.
    [63] Chen Y, H Chen, I Lin, et al (2007). Effects of cold eddy on phytoplankton production andassemblages in Luzon Strait bordering the South China Sea. J. Oceanogr.,63(4),671-683.
    [64] Cheng X, and Y Qi (2010). Variations of eddy kinetic energy in the South China Sea. J.Oceanogr.,66(1),85-94.
    [65] Chern C, and J Wang (1990). On the Kuroshio branch current north of Taiwan. ActaOceanogr. Taiwan.,25,55-64.
    [66] Chern C, and J Wang (1992). On the seasonal variation of the Kuroshio intrusion onto theEast China Sea. Acta Oceanogr. Taiwan.,29,1-17.
    [67] Chern C, and J Wang (1998). A numerical study of the summertime flow around the LuzonStrait. J. Oceanogr.,54(1),53-64.
    [68] Chern C, and J Wang (2003). Numerical study of the upper-layer circulation in the SouthChina Sea. J. Oceanogr.,59(1),11-24.
    [69] Chern C, J Wang and D P Wang (1990). The exchange of Kuroshio and East China Sea shelfwater. J. Geophys. Res.,95(C9),16017-16023.
    [70] Chu P, Y Chen, and A Kuninaka (2005). Seasonal variability of the Yellow Sea/East ChinaSea surface fluxes and thermohaline structure. Adv. Atmos. Sci.,22(1),1-20.
    [71] Chu P, N Edmons, and C Fan (1999). Dynamical mechanisms for the South China Seaseasonal circulation and thermohaline variabilities. J. Phys. Oceanogr.,29(11),2971-2989.
    [72] Chu P, and R Li (2000). South China Sea isopycnal-surface circulation. J. Phys. Oceanogr.,30(9),2419-2438.
    [73] Chuang W, H Li, T Tang, et al (1993). Observations of the countercurrent on the inshoreside of the Kuroshio northeast of Taiwan. J. Oceanogr.,49(5),581-592.
    [74] Chuang W, and W Liang (1994). Seasonal variability of intrusion of the Kuroshio wateracross the continental shelf northeast of Taiwan. J. Oceanogr.,50(5),531-542.
    [75] Chuang W, and C Wu (1991). Slope-current fluctuations northeast of Taiwan, winter1990. J.Oceanogr.,47(5),185-193.
    [76] Cipollini P, D Cromwell, P Challenor, et al (2001). Rossby waves detected in global oceancolour data. Geophys. Res. Lett.,28(2),323-326.
    [77] Cromwell T, and J Reid Jr (1956). A study of oceanic fronts. Tellus,8(1),94-101.
    [78] Dandonneau Y, A Vega, H Loisel, et al (2003). Oceanic Rossby waves acting as a 'hay rake'for ecosystem floating by-products. Science,302,1548-1551.
    [79] Davis A, and X Yan (2004). Hurricane forcing on chlorophyll-a concentration off thenortheast coast of the U.S.. Geophys. Res. Lett.,31, L17304.
    [80] Dong S, J Sprintall, and S Gille (2006). Location of the Antarctic polar front from AMSR-Esatellite sea surface temperature measurement. J. Phys. Oceanogr.,36(11),2075-2089.
    [81] Donnelly W, J Carswell, R McIntosh, et al (1999). Revised ocean backscatter models at Cand Ku band under high-wind conditions. J. Geophys. Res.,104(C5),11485-11497.
    [82] Ducet N, P Le Traon, and G Reverdin (2000). Global high-resolution mapping of oceancirculation from TOPEX/Poseidon and ERS-1/2. J. Geophys. Res.,105(C8),19477-19498.
    [83] Falkowski P, R Barber, and V Smetacek (1998). Biogeochemical controls and feedbacks onocean primary production. Science,281(5374),200-206.
    [84] Falkowski P, D Ziemann, Z Kolber, et al (1991). Role of eddy pumping in enhancingprimary production in the ocean. Nature,352,55-58.
    [85] Fang W, G Fang, P Shi, et al (2002). Seasonal structures of upper layer circulation in thesouthern South China Sea from in situ observations. J. Geophys. Res.,107,3202.
    [86] Fang Y, G Fang, and K Yu (1996). ADI barotropic ocean model for simulation of Kuroshiointrusion into China southeastern waters. Chin. J. Oceanol. Limnol.,14(4),357-366.
    [87] Farris A, and M Wimbush (1996). Wind-induced Kuroshio intrusion into the South ChinaSea. J. Oceanogr.,52(6),771-784.
    [88] Field C, M Behrenfeld, J Randerson, et al (1998). Primary production of the biosphere:integrating terrestrial and oceanic components. Science,281(5374),237-240.
    [89] Gan J, H Li, E Curchitser, et al (2006). Modeling South China Sea circulation: Response toseasonal forcing regimes. J. Geophys. Res.,111, C06034.
    [90] Garrett C, and E Horne (1978). Frontal circulation due to cabbeling and double diffusion. J.Geophys. Res.,83(C9),4651-4656.
    [91] Garrett C, and J Loder (1981). Dynamical aspects of shallow sea fronts. Phil. Trans. R. Soc.Lond. A,302(1472),563-581.
    [92] Gawarkiewicz G, J Haney, and M Caruso (1994). Summertime synoptic variability of frontalsystems in the northern Bering Sea. J. Geophys. Res.,99(C4),7617-7625.
    [93] Godshall F (1968). Intertropical convergence zone and mean cloud amount in the tropicalPacific Ocean. Mon. Weather Rev.,96(3),172-175.
    [94] Gong G, F Shiah, K Liu, et al (2000). Spatial and temporal variation of chlorophyll a,primary productivity and chemical hydrography in the southern East China Sea. Cont. ShelfRes.,20(4-5),411-436.
    [95] Gong G, Y Wen, B Wang, et al (2003). Seasonal variation of chlorophyll_a concentration,primary production and environmental conditions in the subtropical East China Sea.Deep-Sea Res., Part Ⅱ,50(6-7),1219-1236.
    [96] Gordon H, and W McCluney (1975). Estimation of the depth of sunlight penetration in thesea for remote sensing. Appl. Opt.,14(2),413-416.
    [97] Gregg W, and M Conkright (2001). Global seasonal climatologies of ocean chlorophyll:Blending in situ and satellite data for the Coastal Zone Color Scanner era. J. Geophys. Res.,106(C2),2499-2515.
    [98] Gregg W, M Conkright, P Ginoux, et al (2003). Ocean primary production and climate:Global decadal changes. Geophys. Res. Lett.,30(15),1809.
    [99] Gregg W, M Conkright, J O'Reilly, et al (2002). NOAA-NASA coastal zone color scannerreanalysis effort. Appl. Opt.,41(9),1615-1628.
    [100] Guan B (1986). Evidence for a counter-wind current in winter off the southeast coast ofChina. Chin. J. Oceanol. Limnol.,4(4),319-332.
    [101] He L, Y Li, H Zhou, et al (2010). Variability of cross-shelf penetrating fronts in the EastChina Sea. Deep-Sea Res., Part Ⅱ,57(19-20),1820-1826.
    [102] Hellerman S, and M Rosenstein (1983). Normal monthly wind stress over the world oceanwith error estimates. J. Phys. Oceanogr.,13(7),1093-1104.
    [103] Hetland R, Y Hsueh, R Leben, et al (1999). A Loop Current-induced jet along the edge ofthe West Florida Shelf. Geophys. Res. Lett.,26(15),2239-2242.
    [104] Hickox R, I Belkin, P Cornillon, et al (2000). Climatology and seasonal variability ofocean fronts in the East China, Yellow and Bohai Seas from satellite SST data. Geophys.Res. Lett.,27(18),2945-2948.
    [105] Ho C, N Kuo, Q Zheng, et al (2000a). Dynamically active areas in the South China Seadetected from TOPEX/POSEIDON satellite altimeter data. Remote Sens. Environ.,71(3),320-328.
    [106] Ho C, Q Zheng, N Kuo, et al (2004). Observation of the Kuroshio intrusion region in theSouth China Sea from AVHRR data. Int. J. Remote Sens.,25(21),4583-4591.
    [107] Ho C, Q Zheng, Y Soong, et al (2000b). Seasonal variability of sea surface height in theSouth China Sea observed with TOPEX/Poseidon altimeter data. J. Geophys. Res.,105(C6),13981-13990.
    [108] Hsueh Y (2000). The Kuroshio in the East China Sea. J. Marine Syst.,24(1-2),131-139.
    [109] Hsueh Y, C Chern, and J Wang (1993). Blocking of the Kuroshio by the continental shelfnortheast of Taiwan. J. Geophys. Res.,98(C7),12351-12359.
    [110] Hsueh Y, and R Kenney (1972). Steady coastal upwelling in a continuously stratified ocean.J. Phys. Oceanogr.,2(1),27-33.
    [111] Hsueh Y, H Lie, and H Ichikawa (1996). On the branching of the Kuroshio west of Kyushu.J. Geophys. Res.,101(C2),3851-3857.
    [112] Hsueh Y, J Schultz, and W Holland (1997). The Kuroshio flow-through in the East ChinaSea: A numerical model. Prog. Oceanogr.,39(2),79-108.
    [113] Hsueh Y, J Wang, and C Chern (1992). The intrusion of the Kuroshio across the continentalshelf northeast of Taiwan. J. Geophys. Res.,97(C9),14323-14330.
    [114] Hu J, H Kawamura, H Hong, et al (2001).3~6months variation of sea surface height in theSouth China Sea and its adjacent ocean. J. Oceanogr.,57(1),69-78.
    [115] Hu J, H Kawamura, H Hong, et al (2000). A review on the currents in the South China Sea:seasonal circulation, South China Sea Warm Current and Kuroshio intrusion. J. Oceanogr.,56(6),607-624.
    [116] Huh O (1982). Spring season flow of the Tsushima Current and its separation from theKuroshio: satellite evidence. J. Geophys. Res.,87(C12),9687-9693.
    [117] Hurlburt H, and J Thompson (1980). A numerical study of Loop Current intrusions andeddy shedding. J. Phys. Oceanogr.,10(10),1611-1651.
    [118] Hwang C, and S Chen (2000). Circulations and eddies over the South China Sea derivedfrom TOPEX/Poseidon altimetry. J. Geophys. Res.,105(C10),23943-23965.
    [119] Ichikawa H, and R Beardsley (1993). Temporal and spatial variability of volume transportof the Kuroshio in the East China Sea. Deep-Sea Res.,40(3),583-605.
    [120] Ichikawa H, and R Beardsley (2002). The current system in the Yellow and East ChinaSeas. J. Oceanogr.,58(1),77-92.
    [121] Ichikawa H, and M Chaen (2000). Seasonal variation of heat and freshwater transports bythe Kuroshio in the East China Sea. J. Marine Syst.,24(1-2),119-129.
    [122] Isern-Fontanet J, E García-Ladona, and J Font (2003). Identification of marine eddies fromaltimetric maps. J. Atmos. Oceanic Technol.,20(5),772-778.
    [123] Ishikawa Y, T Awaji, and K Akitomo (1997). Global surface circulation and its kineticenergy distribution derived from drifting buoys. J. Oceanogr.,53(5),489-516.
    [124] Isobe A (2008). Recent advances in ocean-circulation research on the Yellow Sea and EastChina Sea shelves. J. Oceanogr.,64(4),569-584.
    [125] Isobe A, E Fujiwara, P Chang, et al (2004). Intrusion of less saline shelf water into theKuroshio subsurface layer in the East China Sea. J. Oceanogr.,60(5),853-863.
    [126] Jacobs S (1964). On stratified flow over bottom topography. J. Mar. Res.,22(2),223-235.
    [127] James C, M Wimbush, and H Ichikawa (1999). Kuroshio meanders in the East China Sea.J. Phys. Oceanogr.,29(2),259-272.
    [128] James I (1978). A note on the circulation induced by a shallow-sea front. Estuar. Coast.Marine Sci.,7(2),197-202.
    [129] James I (1984). A three-dimensional numerical shelf-sea front model with variable eddyviscosity and diffusivity. Cont. Shelf Res.,3(1),69-98.
    [130] Jia Y, and Q Liu (2004). Eddy shedding from the Kuroshio bend at Luzon Strait. J.Oceanogr.,60(6),1063-1069.
    [131] Kachel N, G Hunt, S Salo, et al (2002). Characteristics and variability of the inner front ofthe southeastern Bering Sea. Deep-Sea Res., Part Ⅱ,49(26),5889-5909.
    [132] Kahru M, B H kansson, and O Rud (1995). Distributions of the sea-surface temperaturefronts in the Baltic Sea as derived from satellite imagery. Cont. Shelf Res.,15(6),663-679.
    [133] Kameda T, and J Ishizaka (2005). Size-fractionated primary production estimated by atwo-phytoplankton community model applicable to ocean color remote sensing. J.Oceanogr.,61(4),663-672.
    [134] Kao T (1980). The dynamics of oceanic fronts. Part One: The Gulf Stream. J. Phys.Oceanogr.,10(4),483-492.
    [135] Kawamiya M, and A Oschlies (2001). Formation of a basin-scale surface chlorophyllpattern by Rossby waves. Geophys. Res. Lett.,28(21),4139-4142.
    [136] Kawamura H, K Mizuno, and Y Toba (1986). Formation process of a warm-core ring in theKuroshio-Oyashio frontal zone—December1981-October1982. Deep-Sea Res.,33(11-12),1617-1640.
    [137] Kazmin A, and M Rienecker (1996). Variability and frontogenesis in the large-scaleoceanic frontal zones. J. Geophys. Res.,101(C1),907-921.
    [138] Killworth P, P Cipollini, B Uz, et al (2004). Physical and biological mechanisms forplanetary waves observed in sea-surface chlorophyll. J. Geophys. Res.,109, C07002.
    [139] Kim K, Y Cho, D Kang, et al (2005). The origin of the Tsushima Current based on oxygenisotope measurement. Geophys. Res. Lett.,32, L03602.
    [140] Kostianoy A, A Ginzburg, M Frankignoulle, et al (2004). Fronts in the Southern IndianOcean as inferred from satellite sea surface temperature data. J. Marine Syst.,45(1-2),55-73.
    [141] Kouketsu S, and I Yasuda (2008). Unstable frontal waves along the Kuroshio Extensionwith low-potential vorticity intermediate Oyashio water. J. Phys. Oceanogr.,38(10),2308-2321.
    [142] Kouketsu S, I Yasuda, and Y Hiroe (2005). Observation of frontal waves and associatedsalinity minimum formation along the Kuroshio Extension. J. Geophys. Res.,110, C08011.
    [143] Kouketsu S, I Yasuda, and Y Hiroe (2007). Three-dimensional structure of frontal wavesand associated salinity minimum formation along the Kuroshio Extension. J. Phys.Oceanogr.,37(3),644-656.
    [144] Lagerloef G, G Mitchum, R Lukas, et al (1999). Tropical Pacific near-surface currentsestimated from altimeter, wind, and drifter data. J. Geophys. Res.,104(C10),23313-23326.
    [145] Lagerloef G, C Swift, and D Le Vine (1995). Sea surface salinity: The next remote sensingchallenge. Oceanography,8(2),44-50.
    [146] Large W, and S Pond (1981). Open ocean momentum flux measurements in moderate tostrong winds. J. Phys. Oceanogr.,11(3),324-336.
    [147] Lee H, and S Chao (2003). A climatological description of circulation in and around theEast China Sea. Deep-Sea Res., Part Ⅱ,50(6-7),1065-1084.
    [148] Lee J, and T Matsuno (2007). Intrusion of Kuroshio water onto the continental shelf of theEast China Sea. J. Oceanogr.,63(2),309-325.
    [149] Lee T, and L Atkinson (1983). Low-frequency current and temperature variability fromGulf Stream frontal eddies and atmospheric forcing along the southeast U.S. outercontinental shelf. J. Geophys. Res.,88(C8),4541-4567.
    [150] Lee T, L Atkinson, and R Legeckis (1981). Observations of a Gulf Stream frontal eddy onthe Georgia continental shelf, April1977. Deep-Sea Res.,28(4),347-378.
    [151] Lee T, W Johns, C Liu, et al (2001). Mean transport and seasonal cycle of the Kuroshioeast of Taiwan with comparison to the Florida Current. J. Geophys. Res.,106(C10),22143-22158.
    [152] Lee Z, K Du, and R Arnone (2005). A model for the diffuse attenuation coefficient ofdownwelling irradiance. J. Geophys. Res.,110, C02016.
    [153] Legeckis R (1978). A survey of worldwide sea surface temperature fronts detected byenvironmental satellites. J. Geophys. Res.,83(C9),4501-4522.
    [154] Le Traon P, and G Dibarboure (1999). Mesoscale mapping capabilities of multiple-satellitealtimeter missions. J. Atmos. Oceanic Technol.,16(9),1208-1223.
    [155] Li L, W Nowlin Jr, and J Su (1998). Anticyclonic rings from the Kuroshio in the SouthChina Sea. Deep-Sea Res.,45(9),1469-1482.
    [156] Li L, and T Pohlmann (2002). The South China Sea warm-core ring94S and its influenceon the distribution of chemical tracers. Ocean Dyn.,52(3),116-122.
    [157] Li L, and T Qu (2006). Thermohaline circulation in the deep South China Sea basininferred from oxygen distributions. J. Geophys. Res.,111, C05017.
    [158] Liang W, Y Yang, T Tang, et al (2008). Kuroshio in the Luzon Strait. J. Geophys. Res.,113,C08048.
    [159] Lie H, and C Cho (1994). On the origin of the Tsushima Warm Current. J. Geophys. Res.,99(C12),25081-25091.
    [160] Lie H, and C Cho (2002). Recent advances in understanding the circulation andhydrography of the East China Sea. Fish. Oceanogr.,11(6),318-328.
    [161] Lin C, C Shyu, and W Shih (1992). The Kuroshio fronts and cold eddies off northeasternTaiwan observed by NOAA-AVHRR imageries. Terr. Atmos. Ocean. Sci.,3(3),225-242.
    [162] Liu K, G Gong, S Lin, et al (1992). The year-round upwelling at the shelf break near thenorthern tip of Taiwan as evidenced by chemical hydrography. Terr. Atmos. Ocean. Sci.,3(3),243-276.
    [163] Liu Q, A Kaneko, and J Su (2008). Recent progress in studies of the South China Seacirculation. J. Oceanogr.,64(5),753-762.
    [164] Liu Z, and J Gan (2012). Variability of the Kuroshio in the East China Sea derived fromsatellite altimetry data. Deep-Sea Res.,59,25-36.
    [165] Liu Z, H Yang, and Q Liu (2001). Regional dynamics of seasonal variability in the SouthChina Sea. J. Phys. Oceanogr.,31(1),272-284.
    [166] Longhurst A, S Sathyendranath, T Platt, et al (1995). An estimate of global primaryproduction in the ocean from satellite radiometer data. J. Plankton Res.,17(6),1245-1271.
    [167] Luther M, and J Bane Jr (1985). Mixed instabilities in the Gulf Stream over the continentalslope. J. Phys. Oceanogr.,15(1),3-23.
    [168] Mara ón E, P Holligan, M Varela, et al (2000). Basin-scale variability of phytoplanktonbiomass, production and growth in the Atlantic Ocean. Deep-Sea Res.,47(5),825-857.
    [169] Marra J, R Houghton, and C Garside (1990). Phytoplankton growth at the shelf-break frontin the Middle Atlantic Bight. J. Mar. Res.,48(4),851-868.
    [170] Masujima M, I Yasuda, Y Hiroe, et al (2003). Transport of Oyashio water across theSubarctic Front into the Mixed Water Region and formation of NPIW. J. Oceanogr.,59(6),855-869.
    [171] Mavor T, and J Bisagni (2001). Seasonal variability of sea-surface temperature fronts onGeorges Bank. Deep-Sea Res., Part Ⅱ,48(1-3),215-243.
    [172] McGillicuddy D, and A Robinson (1997). Eddy-induced nutrient supply and newproduction in the Sargasso Sea. Deep-Sea Res.,44(8),1427-1450.
    [173] McGillicuddy D, A Robinson, D Siegel, et al (1998). Influence of mesoscale eddies on newproduction in the Sargasso Sea. Nature,394,263-266.
    [174] Merkine L (1975). Steady finite-amplitude baroclinic flow over long topography in arotating stratified atmosphere. J. Atmos. Sci.,32(10),1881-1893.
    [175] Metzger E, and H Hurlburt (1996). Coupled dynamics of the South China Sea, the SuluSea, and the Pacific Ocean. J. Geophys. Res.,101(C5),12331-12352.
    [176] Metzger E, and H Hurlburt (2001). The nondeterministic nature of Kuroshio penetrationand eddy shedding in the South China Sea. J. Phys. Oceanogr.,31(7),1712-1732.
    [177] Miller P (2004). Multi-spectral front maps for automatic detection of ocean colour featuresfrom SeaWiFS. Int. J. Remote Sens.,25(7-8),1437-1442.
    [178] Miller P (2009). Composite front maps for improved visibility of dynamic sea-surfacefeatures on cloudy SeaWiFS and AVHRR data. J. Marine Syst.,78(3),327-336.
    [179] Mizobata K, and S Saitoh (2004). Variability of Bering Sea eddies and primaryproductivity along the shelf edge during1998-2000using satellite multisensor remotesensing. J. Marine Syst.,50(1-2),101-111.
    [180] Mizobata K, S Saitoh, and J Wang (2008). Interannual variability of summer biochemicalenhancement in relation to mesoscale eddies at the shelf break in the vicinity of the PribilofIslands, Bering Sea. Deep-Sea Res., Part Ⅱ,55(16-17),1717-1728.
    [181] Moore J, and M Abbott (2000). Phytoplankton chlorophyll distributions and primaryproduction in the Southern Ocean. J. Geophys. Res.,105(C12),28709-28722.
    [182] Moore J, and M Abbott (2002). Surface chlorophyll concentrations in relation to theAntarctic Polar Front: seasonal and spatial patterns from satellite observations. J. MarineSyst.,37(1-3),69-86.
    [183] Moore J, M Abbott, and J Richman (1999). Location and dynamics of the Antarctic PolarFront from satellite sea surface temperature data. J. Geophys. Res.,104(C2),3059-3073.
    [184] Morel A (1991). Light and marine photosynthesis: a spectral model with geochemical andclimatological implications. Prog. Oceanogr.,26(3),263-306.
    [185] Morel A, and J Berthon (1989). Surface pigments, algal biomass profiles, and potentialproduction of the euphotic layer: Relationships reinvestigated in view of remote-sensingapplications. Limnol. Oceanogr.,34(8),1545-1562.
    [186] Muench R, and J Schumacher (1985). On the Bering Sea ice edge front. J. Geophys. Res.,90(C2),3185-3197.
    [187] Nakamura H, H Ichikawa, A Nishina, et al (2003). Kuroshio path meander between thecontinental slope and the Tokara Strait in the East China Sea. J. Geophys. Res.,108,3360.
    [188] Nakamura H, and A Kazmin (2003). Decadal changes in the North Pacific oceanic frontalzones as revealed in ship and satellite observations. J. Geophys. Res.,108(C3),3078.
    [189] Naveira Garabato A, J Allen, H Leach, et al (2001). Mesoscale subduction at the AntarcticPolar Front driven by baroclinic instability. J. Phys. Oceanogr.,31(8),2087-2107.
    [190] North G, T Bell, R Cahalan, et al (1982). Sampling errors in the estimation of empiricalorthogonal functions. Mon. Weather Rev.,110(7),699-706.
    [191] Oey L (1986). The formation and maintenance of density fronts on the U.S. southeasterncontinental shelf during winter. J. Phys. Oceanogr.,16(6),1121-1135.
    [192] Oey L (1988). A model of Gulf Stream frontal instabilities, meanders and eddies along thecontinental slope. J. Phys. Oceanogr.,18(2),211-229.
    [193] Oey L, T Ezer, D Wang, et al (2007). Hurricane-induced motions and interaction withocean currents. Cont. Shelf Res.,27(9),1249-1263.
    [194] Oka E, and M Kawabe (1998). Characteristics of variations of water properties and densitystructure around the Kuroshio in the East China Sea. J. Oceanogr.,54(6),605-617.
    [195] Okkonen S, G Schmidt, E Cokelet, et al (2004). Satellite and hydrographic observations ofthe Bering Sea 'Green Belt'. Deep-Sea Res., Part Ⅱ,51(10-11),1033-1051.
    [196] Okubo A (1970). Horizontal dispersion of floatable particles in the vicinity of velocitysingularities such as convergences. Deep-Sea Res.,17(3),445-454.
    [197] Okuda K, I Yasuda, Y Hiroe, et al (2001). Structure of subsurface intrusion of the Oyashiowater into the Kuroshio Extension and formation process of the North Pacific IntermediateWater. J. Oceanogr.,57(2),121-140.
    [198] Olson D, G Hitchcock, A Mariano, et al (1994). Life on the edge: marine life and fronts.Oceanography,7(2),52-60.
    [199] Ondrusek M, R Bidigare, K Waters, et al (2001). A predictive model for estimating rates ofprimary production in the subtropical North Pacific Ocean. Deep-Sea Res., Part Ⅱ,48(8-9),1837-1863.
    [200] Oram J, J McWilliams, and K Stolzenbach (2008). Gradient-based edge detection andfeature classification of sea-surface images of the Southern California Bight. Remote Sens.Environ.,112(5),2397-2415.
    [201] Oschlies A, and V Gar on (1998). Eddy-induced enhancement of primary production in amodel of the North Atlantic Ocean. Nature,394,266-269.
    [202] Park K, J Chung, and K Kim (2004). Sea surface temperature fronts in the East (Japan) Seaand temporal variations. Geophys. Res. Lett.,31, L07304.
    [203] Park S, and P Chu (2006). Thermal and haline fronts in the Yellow/East China Seas:Surface and subsurface seasonality comparison. J. Oceanogr.,62(5),617-638.
    [204] Pe aflor E, C Villanoy, C Liu, et al (2007). Detection of monsoonal phytoplankton bloomsin Luzon Strait with MODIS data. Remote Sens. Environ.,109(4),443-450.
    [205] Pingree R, and D Griffiths (1978). Tidal fronts on the shelf seas around the British Isles. J.Geophys. Res.,83(C9),4615-4622.
    [206] Pingree R, P Holligan, and G Mardell (1978). The effects of vertical stability onphytoplankton distributions in the summer on the northwest European Shelf. Deep-Sea Res.,25(11),1011-1028.
    [207] Platt T, and S Sathyendranath (1993). Estimators of primary production for interpretationof remotely sensed data on ocean color. J. Geophys. Res.,98(C8),14561-14576.
    [208] Powell M, P Vickery, and T Reinhold (2003). Reduced drag coefficient for high windspeeds in tropical cyclones. Nature,422,279-283.
    [209] Price J (1981). Upper ocean response to a hurricane. J. Phys. Oceanogr.,11(2),153-175.
    [210] Price J, T Sanford, and G Forristall (1994). Forced stage response to a moving hurricane. J.Phys. Oceanogr.,24(2),233-260.
    [211] Qiu B, and N Imasato (1990). A numerical study on the formation of the Kuroshio CounterCurrent and the Kuroshio Branch Current in the East China Sea. Cont. Shelf Res.,10(2),165-184.
    [212] Qiu B, T Toda, and N Imasato (1990). On Kuroshio front fluctuations in the East ChinaSea using satellite and in situ observational data. J. Geophys. Res.,95(C10),18191-18204.
    [213] Qu T (2000). Upper-layer circulation in the South China Sea. J. Phys. Oceanogr.,30(6),1450-1460.
    [214] Qu T (2001). Role of ocean dynamics in determining the mean seasonal cycle of the SouthChina Sea surface temperature. J. Geophys. Res.,106(C4),6943-6955.
    [215] Qu T (2002). Evidence for water exchange between the South China Sea and the PacificOcean through the Luzon Strait. Acta Oceanol. Sin.,21(2),175-185.
    [216] Qu T, J Girton, and J Whitehead (2006). Deepwater overflow through Luzon strait. J.Geophys. Res.,111, C01002.
    [217] Qu T, Y Kim, M Yaremchuk, et al (2004). Can Luzon Strait transport play a role inconveying the impact of ENSO to the South China Sea?. J. Climate,17(18),3644-3657.
    [218] Qu T, H Mitsudera, and T Yamagata (1999). A climatology of the circulation and watermass distribution near the Philippine coast. J. Phys. Oceanogr.,29(7),1488-1505.
    [219] Qu T, H Mitsudera, and T Yamagata (2000). Intrusion of the North Pacific waters into theSouth China Sea. J. Geophys. Res.,105(C3),6415-6424.
    [220] Qu T, Y Song, and T Yamagata (2009). An introduction to the South China Seathroughflow: Its dynamics, variability, and application for climate. Dyn. Atmos. Oceans,47(1-3),3-14.
    [221] Rivas A, and J Pisoni (2010). Identification, characteristics and seasonal evolution of sur-face thermal fronts in the Argentinean Continental Shelf. J. Marine Syst.,79(1-2),134-143.
    [222] Robinson A (1960). On two-dimensional inertial flow in a rotating stratified fluid. J. FluidMech.,9(3),321–332.
    [223] Ryan J, J Yoder, J Barth, et al (1999). Chlorophyll enhancement and mixing associatedwith meanders of the shelf break front in the Mid-Atlantic Bight. J. Geophys. Res.,104(C10),23479-23493.
    [224] Shaw P (1989). The intrusion of water masses into the sea southwest of Taiwan. J.Geophys. Res.,94(C12),18213-18226.
    [225] Shaw P (1991). The seasonal variation of the intrusion of the Philippine Sea water into theSouth China Sea. J. Geophys. Res.,96(C1),821-827.
    [226] Shaw P, and S Chao (1994). Surface circulation in the South China Sea. Deep-Sea Res.,41(11-12),1663-1683.
    [227] Shaw P, S Chao, and L Fu (1999). Sea surface height variations in the South China Seafrom satellite altimetry. Oceanol. Acta,22(1),1-17.
    [228] Shaw P, S Chao, K Liu, et al (1996). Winter upwelling off Luzon in the northeastern SouthChina Sea. J. Geophys. Res.,101(C7),16435-16448.
    [229] Shay L, P Black, A Mariano, et al (1992). Upper ocean response to hurricane Gilbert. J.Geophys. Res.,97(C12),20227-20248.
    [230] Shay L, G Goni, and P Black (2000). Effects of a warm oceanic feature on Hurricane Opal.Mon. Weather Rev.,128(5),1366-1383.
    [231] Shen S, G Leptoukh, J Acker, et al (2008). Seasonal variations of chlorophyll_a con-centration in the northern South China Sea. IEEE Geosci. Remote Sens. Lett.,5(2),315-319.
    [232] Sheremet V (2001). Hysteresis of a western boundary current leaping across a gap. J. Phys.Oceanogr.,31(5),1247-1259.
    [233] Shimada T, F Sakaida, H Kawamura, et al (2005). Application of an edge detection methodto satellite images for distinguishing sea surface temperature fronts near the Japanese coast.Remote Sens. Environ.,98(1),21-34.
    [234] Siegel D (2001). The Rossby rototiller. Nature,409,576-577.
    [235] Siegel D, D McGillicuddy, and E Fields (1999). Mesoscale eddies, satellite altimetry, andnew production in the Sargasso Sea. J. Geophys. Res.,104(C6),13359-13379.
    [236] Springer A, C McRoy, and M Flint (1996). The Bering Sea Green Belt: shelf-edgeprocesses and ecosystem production. Fish. Oceanogr.,5(3-4),205-223.
    [237] Stegmann P, and D Ullman (2004). Variability in chlorophyll and sea surface temperaturefronts in the Long Island Sound outflow region from satellite observations. J. Geophys. Res.,109, C07S03.
    [238] Sturges W, J Evans, S Welsh, et al (1993). Separation of warm-core rings in the Gulf ofMexico. J. Phys. Oceanogr.,23(2),250-268.
    [239] Sturges W, and R Leben (2000). Frequency of ring separations from the Loop Current inthe Gulf of Mexico: A revised estimate. J. Phys. Oceanogr.,30(7),1814-1819.
    [240] Su J (2004). Overview of the South China Sea circulation and its influence on the coastalphysical oceanography outside the Pearl River Estuary. Cont. Shelf Res.,24(16),1745-1760.
    [241] Sugimoto T, S Kimura, and K Miyaji (1988). Meander of the Kuroshio front and currentvariability in the East China Sea. J. Oceanogr.,44(3),125-135.
    [242] Takahashi W, and H Kawamura (2005). Detection method of the Kuroshio front using thesatellite-derived chlorophyll_a images. Remote Sens. Environ.,97(1),83-91.
    [243] Tang D, H Kawamura, M Lee, et al (2003). Seasonal and spatial distribution ofchlorophyll_a concentrations and water conditions in the Gulf of Tonkin, South China Sea.Remote Sens. Environ.,85(4),475-483.
    [244] Tang D, D Kester, I Ni, et al (2002). Upwelling in the Taiwan Strait during the summermonsoon detected by satellite and shipboard measurements. Remote Sens. Environ.,83(3),457-471.
    [245] Tang D, I Ni, D Kester, et al (1999). Remote sensing observations of winter phytoplanktonblooms southwest of the Luzon Strait in the South China Sea. Mar. Ecol. Prog. Ser.,191,43-51.
    [246] Tang D, I Ni, F Müller-Karger, et al (2004). Monthly variation of pigment concentrationsand seasonal winds in China's marginal seas. Hydrobiologia,511(1-3),1-15.
    [247] Tang T, Y Hsueh, Y Yang, et al (1999). Continental slope flow northeast of Taiwan. J. Phys.Oceanogr.,29(6),1353-1362.
    [248] Tang T, and Y Yang (1993). Low frequency current variability on the shelf break northeastof Taiwan. J. Oceanogr.,49(2),193-210.
    [249] Teague W, G Jacobs, D Ko, et al (2003). Connectivity of the Taiwan, Cheju, and Koreastraits. Cont. Shelf Res.,23(1),63-77.
    [250] Thomas A, D Townsend, and R Weatherbee (2003). Satellite-measured phytoplanktonvariability in the Gulf of Maine. Cont. Shelf Res.,23(10),971-989.
    [251] Tian J, Q Yang, X Liang, et al (2006). Observation of Luzon Strait transport. Geophys. Res.Lett.,33, L19607.
    [252] Toner M, A Kirwan Jr, A Poje, et al (2003). Chlorophyll dispersal by eddy-eddyinteractions in the Gulf of Mexico. J. Geophys. Res.,108(C4),3105.
    [253] Tseng C, C Lin, S Chen, et al (2000). Temporal and spatial variations of sea surfacetemperature in the East China Sea. Cont. Shelf Res.,20(4-5),373-387.
    [254] Ullman D, and P Cornillon (1999). Satellite-derived sea surface temperature fronts on thecontinental shelf off the northeast U.S. coast. J. Geophys. Res.,104(C10),23459-23478.
    [255] Ullman D, and P Cornillon (2001). Continental shelf surface thermal fronts in winter offthe northeast US coast. Cont. Shelf Res.,21(11-12),1139-1156.
    [256] Ullman D, P Cornillon, and Z Shan (2007). On the characteristics of subtropical fronts inthe North Atlantic. J. Geophys. Res.,112, C01010.
    [257] Uz B, J Yoder, and V Osychny (2001). Pumping of nutrients to ocean surface waters by theaction of propagating planetary waves. Nature,409,597-600.
    [258] Venegas R, P Strub, E Beier, et al (2008). Satellite-derived variability in chlorophyll, windstress, sea surface height, and temperature in the northern California Current System. J.Geophys. Res.,113, C03015.
    [259] Walker N, R Leben, and S Balasubramanian (2005). Hurricane-forced upwelling andchlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res.Lett.,32, L18610.
    [260] Wang D (1984). Mutual intrusion of a gravity current and density front formation. J. Phys.Oceanogr.,14(7),1191-1199.
    [261] Wang D, Y Liu, Y Qi, et al (2001). Seasonal variability of thermal fronts in the northernSouth China Sea from satellite data. Geophys. Res. Lett.,28(20),3963-3966.
    [262] Wang D, H Xu, J Lin, et al (2008). Anticyclonic eddies in the northeastern South ChinaSea during winter2003/2004. J. Oceanogr.,64(6),925-935.
    [263] Wang G, D Chen, and J Su (2008). Winter eddy genesis in the eastern South China Sea dueto orographic wind jets. J. Phys. Oceanogr.,38(3),726-732.
    [264] Wang G, J Su, and P Chu (2003). Mesoscale eddies in the South China Sea observed withaltimeter data. Geophys. Res. Lett.,30(21),2121.
    [265] Wang G, J Su, and R Li (2005). Mesoscale eddies in the South China Sea and their impacton temperature profiles. Acta Oceanol. Sin.,24(1),39-45.
    [266] Wang G, S Xie, T Qu, et al (2011). Deep South China Sea circulation. Geophys. Res. Lett.,38, L05601.
    [267] Wang J (1986). Observation of abyssal flows in the northern South China Sea. ActaOceanogr. Taiwan.,16,36-45.
    [268] Wang J, and C Chern (1996). Some aspects on the circulation in the northern South ChinaSea. La mer,34(3),246-257.
    [269] Wang J, D Tang, Y Sui (2010). Winter phytoplankton bloom induced by subsurfaceupwelling and mixed layer entrainment southwest of Luzon Strait. J. Marine Syst.,83(3-4),141-149.
    [270] Wang L, C Koblinsky, and S Howden (2000). Mesoscale variability in the South China Seafrom the TOPEX/Poseidon altimetry data. Deep-Sea Res.,47(4),681-708.
    [271] Weiss J (1991). The dynamics of enstrophy transfer in two-dimensional hydrodynamics.Physica D: Nonlinear Phenomena,48(2-3),273-294.
    [272] White W (2000). Tropical coupled Rossby waves in the Pacific ocean-atmosphere system.J. Phys. Oceanogr.,30(6),1245-1264.
    [273] Wong G, S Chao, Y Li, et al (2000). The Kuroshio edge exchange processes (KEEP) study—an introduction to hypotheses and highlights. Cont. Shelf Res.,20(4-5),335-347.
    [274] Wong L, J Chen, and L Dong (2004). A model of the plume front of the Pearl River Estuary,China and adjacent coastal waters in the winter dry season. Cont. Shelf Res.,24(16),1779-1795.
    [275] Wu C, and C Chang (2005). Interannual variability of the South China Sea in a dataassimilation model. Geophys. Res. Lett.,32, L17611.
    [276] Xie S, Q Xie, D Wang, et al (2003). Summer upwelling in the South China Sea and its rolein regional climate variations. J. Geophys. Res.,108(C8),3261.
    [277] Xue H, and G Mellor (1993). Instability of the Gulf Stream front in the South AtlanticBight. J. Phys. Oceanogr.,23(11),2326-2350.
    [278] Yamada K, J Ishizaka, S Yoo, et al (2004). Seasonal and interannual variability of seasurface chlorophyll a concentration in the Japan/East Sea (JES). Prog. Oceanogr.,61(2-4),193-211.
    [279] Yanagi T, T Shimizu, and H Lie (1995). Detailed structure of the Kuroshio frontal eddyalong the shelf edge of the East China Sea. Cont. Shelf Res.,18(9),1039-1056.
    [280] Yang H, and Q Liu (2003). Forced Rossby wave in the northern South China Sea.Deep-Sea Res.,50(7),917-926.
    [281] Yang H, Q Liu, Z Liu, et al (2002). A general circulation model study of the dynamics ofthe upper ocean circulation of the South China Sea. J. Geophys. Res.,107,3085.
    [282] Yang Q, J Tian, and W Zhao (2010). Observation of Luzon Strait transport in summer2007.Deep-Sea Res.,57(5),670-676.
    [283] Yang Y, C Liu, J Hu, et al (1999). Taiwan Current (Kuroshio) and impinging eddies. J.Oceanogr.,55(5),609-617.
    [284] Yoder J, J O'Reilly, A Barnard, et al (2001). Variability in coastal zone color scanner(CZCS) chlorophyll imagery of ocean margin waters off the US east coast. Cont. Shelf Res.,21(11-12),1191-1218.
    [285] Yoder J, S Schollaert, and J O'Reilly (2002). Climatological phytoplankton chlorophyll andsea surface temperature patterns in continental shelf and slope waters off the northeast U.S.coast. Limnol. Oceanogr.,47(3),672-682.
    [286] You Y, C Chern, Y Yang, et al (2005). The South China Sea, a cul-de-sac of North Pacificintermediate water. J. Oceanogr.,61(3),509-527.
    [287] Yuan D (2002). A numerical study of the South China Sea deep circulation and its relationto the Luzon Strait transport. Acta Oceanol. Sin.,21(2),187-202.
    [288] Yuan D, W Han, and D Hu (2006). Surface Kuroshio path in the Luzon Strait area derivedfrom satellite remote sensing data. J. Geophys. Res.,111, L11007.
    [289] Yuan D, W Han, and D Hu (2007). Anti-cyclonic eddies northwest of Luzon in summer fallobserved by satellite altimeters. Geophys. Res. Lett.,34, L13610.
    [290] Yuan D, and Y Hsueh (2010). Dynamics of the cross-shelf circulation in the Yellow andEast China Seas in winter. Deep-Sea Res., Part Ⅱ,57(19-20),1745-1761.
    [291] Yuan D, F Qiao, and J Su (2005). Cross-shelf penetrating fronts off the southeast coast ofChina observed by MODIS. Geophys. Res. Lett.,32, L19603.
    [292] Yuan D, J Zhu, C Li, et al (2008). Cross-shelf circulation in the Yellow and East ChinaSeas indicated by MODIS satellite observations. J. Marine Syst.,70(1-2),134-149.
    [293] Yuan X, and L Talley (1996). The subarctic frontal zone in the North Pacific:Characteristics of frontal structure from climatological data and synoptic surveys. J.Geophys. Res.,101(C7),16491-16508.
    [294] Zhang D, T Lee, W Johns, et al (2001). The Kuroshio east of Taiwan: Modes of variabilityand relationship to interior ocean mesoscale eddies. J. Phys. Oceanogr.,31(4),1054-1074.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700