用户名: 密码: 验证码:
蛋白质多维色谱分离与荧光标记定量新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质基础研究将在分子、细胞和生物体等多个层次上全面揭示生命现象的本质,是后基因组时代的主要研究任务。蛋白质科学研究成果将催生一系列新的技术发展,全面改善人类的生活健康和医疗水平,并引领未来生命科学发展。目前对已经鉴定的人体蛋白质中尚缺乏关键的浓度含量信息,这将对生物标志物蛋白的发现、蛋白功能验证等研究问题造成了巨大困难。因此需要研究新的分离鉴定技术方法对已经鉴定的蛋白进行准确定量。论文围绕蛋白质组分离与定量开展了新技术新方法的研究。以多维色谱分离定量技术与荧光标记技术作为基础,探索了基十荧光标记与色谱分离的蛋白质定量新技术。在OPA、IAF荧光标记蛋白定量方面取得了突破,同时探索了末端肽段标记定量新方法。
     第一章对蛋白质分离、鉴定与定量技术进行了综述,主要包括色谱、质谱在蛋白质研究中的作用以及多维液相色谱系统在蛋白质与肽段分离中的应用。
     第二章建立了蛋白质样品酶解、在线捕集技术。首先对蛋白质的快速酶解反应器进行了探索。使用固定化酶的功能磁球作为蛋白质酶解的载体,结合芯片反应器微通道的优势,使得低浓度蛋白质的快速酶解得以实现。最低有效酶解蛋白质的浓度为5ng/μl。芯片酶解反应器的开发为蛋白质经多维液相分离后的快速酶解鉴定打下基础。随后对在线捕集分离系统进行定量评估,将整体柱应用于样品的在线捕集与除盐,使用MALDI对抗生素进行检测。使用石墨烯与氧化石墨烯作为MALDI检测的基质与富集材料。通过定量研究待测样品的各种信息,建立起可靠的在线捕集分离与检测系统。
     第三章建立了蛋白质快速荧光衍生与色谱定量新技术。基于在线捕集分离系统的研究成果,通过蛋白质快速荧光衍生,将多维液相系统应用于蛋白质定量的研究工作。使用OPA衍生方法作为蛋白质荧光标记的基准反应。同时比较了溶液衍生与固相衍生的结果,将在线固相衍牛技术应用于蛋白质荧光标记反应中。使用在线固相衍生反应,对蛋白质进行快速荧光标记,标记时间在1分钟内完成。通过固相衍生,成功对低浓度蛋白质(5ng/uL)进行荧光标记。由于OPA试剂没有本底荧光信号,因此可以避免除去多余反应原料的操作步骤,减少样品的损失。使用优化的蛋白质OPA固相衍生的反应条件,对人肝中的部分蛋白进行衍生并使用多维液相系统分离蛋白质,得到相应的荧光色谱数据。
     第四章建立了基于色谱定量与质谱定性联合工作原理的蛋白质绝对定量技术。基于多维液相系统用于蛋白质定量研究的工作基础,进一步使用质谱分析对目标蛋白进行定性。使用荧光标记的标准合成肽段作为内标,对蛋白质进行绝对定量。选择标记于蛋白质半胱氨酸位点的荧光标记试剂(IAF)。荧光标记试剂的选择原则包括:荧光量子产率、MALDI质谱鉴定的兼容性。荧光标记试剂IAF在质谱串级谱图中不产生碎片离子,对蛋白质搜库后的鉴定结果不产生干扰。将荧光探针IAF标记于蛋白质的半胱氨酸位点,使用二维液相色谱进行蛋白质分离定量、激光诱导荧光技术进行检测。标准蛋白最低定量检测限为0.34amol。通过优化二维色谱的色谱柱组合、色谱条件,对人肝部分蛋白组样品进行了绝对定量。同时对正常人的尿样蛋白组样品进行了全谱的绝对定量。
     第五章建立了蛋白质N末端肽段的定量工作。从现有的蛋白质组学技术角度考虑,肽段的色谱分离技术相对成熟,因此基于肽段色谱分离技术的蛋白质定量新方法有一定的可行性。有研究表明,蛋白质末端肽段的序列对于确定蛋白质种类具有唯一性。首先研究了区分蛋白质N末端肽段与非末端肽段的化学衍生与纯化方法。使用小分子对蛋白质分子中裸露的氨基进行封闭反应,随后使用三氟甲磺酸基官能团材料纯化N末端肽段。在获得稳定末端肽段的基础上,荧光探针分子定量标记。最后使用液相色谱分离定量末端肽段,使用激光诱导荧光检测器对末端肽段进行检测。
Biology in general and systems biology in particular increasingly requires the detection and quantification of large numbers of analytes. Since only the quantity of proteins can reflect the status and changes of a biological system, quantitative proteomic nowadays plays an important role in the comparison of biological systems. For the past decades, different techniques for this purpose have been developed. In this study, we focused on developing novel quantitative proteomics strategies based on multi-dimensional liquid chromatography, inventing OPA and IAF fluorescent labeling method for proteins quantification and establishing a new protein quantification strategy based on N-terminal peptide.
     In chapter1, the recent developments of the separation and identification techniques for proteomics analysis were reviewed. The requirements and current techniques for multi-dimensional liquid chromatography separation were introduced. The research background was demonstrated.
     In chapter2, an easily replaceable microchip enzymatic micro reactor has been fabricated based on the glass microchip with trypsin-immobilized superparamagnetic nanoparticles. Amine-functionalized magnetic nanoparticles with trypsin immobilized were packed onto the glass microchip by the application of a strong magnetic field. Complete protein digestion was achieved in a short time (10s) under the flow rate of5μL/min. These results are expected to open up a new possibility for the proteolysis analysis as well as a new application of magnetic nanoparticles. It takes less than1min under the condition of extra magnetic to form a new packing bed. This micro reactor was also successfully applied to the analysis of an RPLC fraction of the rat liver extract. Besides, an on-line sample enrichment system was evaluated and applied to trace-level bio-molecules quantification using monolithic trapping columns in capillary liquid chromatography (LC) system. The monolithic trapping column is used in front of the analytical column to increase sensitivity, enhance sample loading amount and minimize the loading time. Online trapping system has the advantages of easy handling and labor saving by the column switch system. Results demonstrated high efficiency of the monolithic trapping columns for trapping analytes in online capillary LC system.
     In chapter3, a simple OPA method of solid-support labeling for picomoles of proteins in diluted solution was developed. A C18cartridge was used for proteins capture and subsequent labeling with OPA. The use of the solid-support reactor allows easy handling for protein enrichment and purification. The employed OPA reagents for protein assay give no self-fluorescence. The application of OPA labeling method leaved no potential interferences for the assay and extra separation step of the proteins from interferences. Using Casein as a test protein, we have labeled and detected5ng/uL casein. This method was applied to analyze the fraction from weak anion-exchange chromatography (WAX) of human liver extract.
     In chapter4, a facile proteomic quantification method, fluorescent labeling absolute quantification (FLAQ), was developed. Instead of using mass spectrometry (MS) for quantification, the FLAQ method is a chromatography-based quantification in combining with MS for identification. Multi-dimensional liquid chromatography (MDLC) with laser-induced fluorescence (LIF) detection with high accuracy and tandem MS system were employed for FLAQ. A fluorescence dye,5-iodoacetamidofluorescein, was finally chosen to label proteins on all cysteine residues. The fluorescent dye was compatible with the process of the trypsin digestion and MALD1MS identification. The limit of quantitation for the model protein was as low as0.34amol. Parts of proteins in human liver proteome were quantified and demonstrated using FLAQ.
     In chapter5, a new strategy for protein quantification was studied based on N-terminal peptide of proteins. In detail.(1) Based on N-peptide isolation, quantification information of proteins can be obtained by HPLC separation.(2) Using the functional materials and amino group blocking reactions, the terminal peptides were successfully separated and isolated.(3) Qualification and identification of proteins by the technology of N-terminal peptide location. By the new technology, protein can be quantified with high accuracy and reliability. By the development of novel technology for protein quantification, we are promising to supply the techniques for the protein science to find potential functional proteins and biomarker.
引文
[1]Quadroni, M.,James, P., Proteomics and automation, Electrophoresis,1999, 20(4-5):664-677.
    [2]Witzmann, F., Clack, J., Fultz, C.,Jarnot, B., Two-dimensional electrophoretic mapping of hepatic and renal stress proteins, Electrophoresis,1995,16(3):451-459.
    [3]Peng, J.,Gygi, S.P., Proteomics:the move to mixtures, Journal of mass spectrometry:JMS,2001,36(10):1083-1091.
    [4]Cyranoski, D., China pushes for the proteome. Nature,2010,467(7314):380.
    [5]Sun, A., Jiang, Y., Wang, X., Liu, Q., Zhong, F.. He, Q., Guan, W., Li, H., Sun, Y., Shi, L., Yu, H., Yang, D., Xu, Y., Song, Y., Tong, W., Li, D., Lin, C., Hao, Y., Geng. C., Yun, D., Zhang, X., Yuan, X., Chen, P., Zhu, Y., Li, Y., Liang, S., Zhao, X., Liu, S.,He, F., Liverbase:a comprehensive view of human liver biology, J. Proteome Res.,2010, 9(1):50-58.
    [6]Zhang, J., Xu, X., Gao, M., Yang, P.,Zhang, X., Comparison of 2-D LC and 3-D LC with post- and pre-tryptic-digestion SEC fractionation for proteome analysis of normal human liver tissue, Proteomics,2007,7(4):500-512.
    [7]Lin, S., Yao, G., Qi, D., Li, Y., Deng, C, Yang. P.,Zhang, X., Fast and efficient proteolysis by microwave-assisted protein digestion using trypsin-immobilized magnetic silica microspheres. Anal. Chem.,2008,80(10):3655-3665.
    [8]Gao, M., Zhang. J., Deng, C., Yang, P.,Zhang, X., Novel strategy of high-abundance protein depletion using multidimensional liquid chromatography, J Proteome Res,2006,5(10):2853-2860.
    [9]Gao, M.X., Zhang, P., Hong, G.F., Guan, X., Yan. G.Q., Deng, C.H.,Zhang, X.M.. Novel monolithic enzymatic microreactor based on single-enzyme nanoparticles for highly efficient proteolysis and its application in multidimensional liquid chromatography, J. Chromatogr. A,2009,1216(44):7472-7477.
    [10]Finishing the euchromatic sequence of the human genome, Nature,2004, 431(7011):931-945.
    [11]Lehmberg, E., Traina, J.A., Chakel, J.A., Chang, R.J., Parkman, M., McCaman, M.T., Murakami, P.K., Lahidji, V., Nelson, J.W., Hancock, W.S., Nestaas, E.,Pungor, E., Jr., Reversed-phase high-performance liquid chromatographic assay for the adenovirus type 5 proteome, Journal of chromatography. B, Biomedical sciences and applications,1999,732(2):411-423.
    [12]Opiteck, G.J., Ramirez, S.M., Jorgenson, J.W.,Moseley, M.A.,3rd, Comprehensive two-dimensional high-performance liquid chromatography for the isolation of overexpressed proteins and proteome mapping, Anal. Biochem.,1998, 258(2):349-361.
    [13]Tang, W., Harrata, A.K.,Lee, C.S., Two-dimensional analysis of recombinant E. coli proteins using capillary isoelectric focusing electrospray ionization mass spectrometry, Anal. Chem.,1997,69(16):3177-3182.
    [14]Jensen, P.K., Pasa-Tolic, L., Anderson, G.A., Horner, J.A., Lipton, M.S., Bruce, J.E.,Smith, R.D., Probing proteomes using capillary isoelectric focusing-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Anal. Chem., 1999,71(11):2076-2084.
    [15]Jungblut, P.R., Grabher, G.,Stoffler, G., Comprehensive detection of immunorelevant Borrelia garinii antigens by two-dimensional electrophoresis, Electrophoresis,1999,20(18):3611-3622.
    [16]Manabe, T., Capillary electrophoresis of proteins for proteomic studies, Electrophoresis,1999,20(15-16):3116-3121.
    [17]Vogeser. M., Liquid chromatography-tandem mass spectrometry--application in the clinical laboratory. Clinical chemistry and laboratory medicine:CCLM/FESCC, 2003.41(2):117-126.
    [18]Smyth. W.F.,Brooks. P.. A critical evaluation of high performance liquid chromatography-electrospray ionisation-mass spectrometry and capillary electrophoresis-electrospray-mass spectrometry for the detection and determination of small molecules of significance in clinical and forensic science. Electrophoresis,2004. 25(10-11):1413-1446.
    [19]Hu, S.,Dovichi. N.J., Capillary electrophoresis for the analysis of biopolymers, Anal. Chem.,2002,74(12):2833-2850.
    [20]Lottspeich, F., Proteome Analysis:A Pathway to the Functional Analysis of Proteins, Angewandte Chemie,1999,38(17):2476-2492.
    [21]Celis, J.E., Gromov, P., Ostergaard, M., Madsen, P., Honore, B., Dejgaard, K., Olsen, E., Vorum, H., Kristensen, D.B., Gromova, I., Haunso, A., Van Damme, J., Puype, M., Vandekerckhove, J.,Rasmussen, H.H., Human 2-D PAGE databases for proteome analysis in health and disease:http://biobase.dk/cgi-bin/celis, FEBS Lett, 1996,398(2-3):129-134.
    [22]Abbott, A., How to spot a protein in a crowd, Nature,1999,402(6763):716-717.
    [23]Lim, M.S.,Elenitoba-Johnson, K.S., Proteomics in pathology research, Lab Invest, 2004,84(10):1227-1244.
    [24]Ferguson, P.L.,Smith, R.D., Proteome analysis by mass spectrometry, Annu Rev Biophys Biomol Struct,2003,32:399-424.
    [25]Berndt, P., Hobohm, U.,Langen, H., Reliable automatic protein identification from matrix-assisted laser desorption/ionization mass spectrometric peptide fingerprints, Electrophoresis,1999,20(18):3521-3526.
    [26]Krause, E., Wenschuh, H.,Jungblut, P.R., The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins, Anal. Chem.,1999, 71(19):4160-4165.
    [27]Emmert-Buck, M.R., Bonner, R.F., Smith, P.D., Chuaqui, R.F., Zhuang, Z., Goldstein, S.R., Weiss, R.A.,Liotta, L.A., Laser capture microdissection, Science, 1996,274(5289):998-1001.
    [28]Kristensen, D.B., Imamura, K., Miyamoto, Y.,Yoshizato, K., Mass spectrometric approaches for the characterization of proteins on a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer, Electrophoresis,2000,21(2):430-439.
    [29]Mann, M., Quantitative proteomics?, Nat. Biotechnol.,1999,17(10):954-955.
    [30]de Godoy, L.M., Olsen, J.V., Cox. J., Nielsen, M.L., Hubner. N.C., Frohlich. F.. Walther, T.C.,Mann. M., Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast, Nature,2008.455(7217):1251-1254.
    [31]Cady. S.D.. Schmidt-Rohr, K., Wang. J., Soto. C.S., Degrade. W.F.,Hong,M., Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature,2010,463(7281):689-692.
    [32]Xiang, F., Ye, H., Chen, R., Fu, Q.,Li, L., N,N-dimethyl leucines as novel isobaric tandem mass tags for quantitative proteomics and peptidomics, Anal Chem, 2010.82(7):2817-2825.
    [33]Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S.,Heck, A.J., Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics, Nat. Protoc., 2009,4(4):484-494.
    [34]Forrester, M.T., Thompson, J.W., Foster, M.W., Nogueira, L., Moseley, M.A.,Stamler, J.S., Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture, Nat. Biotechnol.,2009,27(6):557-559.
    [35]Unwin, R.D., Griffiths, J.R.,Whetton, A.D., Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MS/MS, Nat. Protoc.,2010,5(9):1574-1582.
    [36]Griffin, N.M., Yu, J.Y., Long, F., Oh, P., Shore, S., Li, Y., Koziol, J.A.,Schnitzer, J.E., Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis, Nat. Biotechnol.,2010,28(1):83-U116.
    [37]Geiger, T., Cox, J., Ostasiewicz, P., Wisniewski, J.R.,Mann, M., Super-SILAC mix for quantitative proteomics of human tumor tissue, Nature methods,2010,7(5): 383-385.
    [38]Oda, Y., Huang, K., Cross, F.R., Cowburn, D.,Chait, B.T., Accurate quantitation of protein expression and site-specific phosphorylation, Proc. Natl. Acad. Sci. U. S. A., 1999,96(12):6591-6596.
    [39]Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A.,Mann, M., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics, Molecular & cellular proteomics:MCP,2002,1(5):376-386.
    [40]Ong, S.E.,Mann, M., A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC), Nat. Protoc.,2006,1(6):2650-2660.
    [41]Mann, M., Functional and quantitative proteomics using SILAC, Nat Rev Mol Cell Biol,2006,7(12):952-958.
    [42]de Hoog. C.L., Foster, L.J.,Mann. M., RNA and RNA binding proteins participate in early stages of cell spreading through spreading initiation centers. Cell.2004. 117(5):649-662.
    [43]Blagoev, B., Kratchmarova, I., Ong, S.E.. Nielsen. M., Foster, L.J.,Mann, M., A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling, Nat. Biotechnol.,2003,21(3):315-318.
    [44]Park, K.S., Mohapatra, D.P., Misonou, H.,Trimmer. J.S., Graded regulation of the Kv2.1 potassium channel by variable phosphorylation, Science,2006,313(5789): 976-979.
    [45]Ishihama, Y., Sato, T., Tabata, T., Miyamoto, N., Sagane, K., Nagasu, T.,Oda, Y., Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards, Nat. Biotechnol.,2005,23(5):617-621.
    [46]Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P.,Mann, M., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks, Cell,2006,127(3):635-648.
    [47]Kruger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C.A., Forner, F., Schmidt, S., Zanivan, S., Fassler, R.,Mann, M., SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function, Cell,2008, 134(2):353-364.
    [48]Graumann, J., Hubner, N.C., Kim, J.B., Ko, K., Moser, M., Kumar, C., Cox, J., Scholer, H.,Mann, M., Stable isotope labeling by amino acids in cell culture (SILAC) and proteome quantitation of mouse embryonic stem cells to a depth of 5,111 proteins, Molecular & cellular proteomics:MCP,2008,7(4):672-683.
    [49]Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H.,Aebersold, R., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nat. Biotechnol.,1999,17(10):994-999.
    [50]Shiio, Y.,Aebersold, R., Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry, Nat. Protoc.,2006,1(1):139-145.
    [51]Shiio, Y., Donohoe, S., Yi, E.C., Goodlett, D.R., Aebersold, R.,Eisenman, R.N., Quantitative proteomic analysis of Myc oncoprotein function, The EMBO journal, 2002,21(19):5088-5096.
    [52]Shiio, Y., Eisenman, R.N., Yi, E.C., Donohoe, S., Goodlett, D.R.,Aebersold, R., Quantitative proteomic analysis of chromatin-associated factors, J. Am. Soc. Mass Spectrom.,2003,14(7):696-703.
    [53]Jin. J., Meredith. G.E., Chen, L., Zhou. Y., Xu, J., Shie. F.S., Lockhart, P.,Zhang. J., Quantitative proteomic analysis of mitochondrial proteins:relevance to Lewy body formation and Parkinson's disease. Brain Res Mul Brain Res.2005.134(1):119-138.
    [54]Shiio, Y., Suh, K.S., Lee. H., Yuspa. S.H., Eisenman, R.N.,Aebersold, R., Quantitative proteomic analysis of myc-induced apoptosis:a direct role for Myc induction of the mitochondrial chloride ion channel. mtCLIC/CLIC4, The Journal of biological chemistry,2006,281(5):2750-2756.
    [55]von Haller, P.D., Yi, E., Donohoe, S., Vaughn, K., Keller, A., Nesvizhskii, A.I., Eng, J., Li, X.J., Goodlett, D.R., Aebersold. R.,Watts. J.D., The application of new software tools to quantitative protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry:H. Evaluation of tandem mass spectrometry methodologies for large-scale protein analysis, and the application of statistical tools for data analysis and interpretation, Molecular & cellular proteomics:MCP,2003, 2(7):428-442.
    [56]Prahalad, A.K.,Hock, J.M., Proteomic characteristics of ex vivo-enriched adult human bone marrow mononuclear cells in continuous perfusion cultures, J. Proteome Res.,2009,8(4):2079-2089.
    [57]Fu, C., Hu, J., Liu, T., Ago, T., Sadoshima, J.,Li, H., Quantitative analysis of redox-sensitive proteome with DIGE and ICAT, J. Proteome Res.,2008,7(9): 3789-3802.
    [58]Fu, Y.J., Xiong, S., Lovell, M.A.,Lynn, B.C., Quantitative proteomic analysis of mitochondria in aging PS-1 transgenic mice, Cell Mol Neurobiol,2009,29(5): 649-664.
    [59]MacLellan, D.L., Steen, H., Adam, R.M., Garlick, M., Zurakowski, D., Gygi, S.P., Freeman, M.R.,Solomon, K.R., A quantitative proteomic analysis of growth factor-induced compositional changes in lipid rafts of human smooth muscle cells, Proteomics,2005,5(18):4733-4742.
    [60]Hagglund, P., Bunkenborg, J., Maeda, K.,Svensson, B., Identification of thioredoxin disulfide targets using a quantitative proteomics approach based on isotope-coded affinity tags, J. Proteome Res.,2008,7(12):5270-5276.
    [61]Ross, P.L., Huang, Y.L.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S.. Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A.,Pappin, D.J., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics.2004.3(12):1154-1169.
    [62]Hardt, M., Witkowska. H.E., Webb, S., Thomas, L.R., Dixon, S.E.. Hall. S.C.,Fisher, S.J., Assessing the effects of diurnal variation on the composition of human parotid saliva:quantitative analysis of native peptides using iTRAQ reagents. Anal. Chem.,2005,77(15):4947-4954.
    [63]Bouchal, P., Roumeliotis, T., Hrstka, R., Nenutil. R., Vojtesek, B.,Garbis. S.D., Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis, J. Proteome Res., 2009,8(1):362-373.
    [64]Zhang, Y., Wolf-Yadlin, A., Ross, P.L., Pappin, D.J., Rush, J., Lauffenburger, D.A., White, F.M., Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules, Molecular & cellular proteomics:MCP,2005,4(9):1240-1250.
    [65]Yang, F., Wu, S., Stenoien, D.L., Zhao, R., Monroe, M.E., Gritsenko, M.A., Purvine, S.O., Polpitiya, A.D., Tolic, N., Zhang, Q., Norbeck, A.D., Orton, D.J., Moore, R.J., Tang, K., Anderson, G.A., Pasa-Tolic, L., Camp, D.G.,2nd,Smith, R.D., Combined pulsed-Q dissociation and electron transfer dissociation for identification and quantification of iTRAQ-labeled phosphopeptides, Anal. Chem.,2009,81(10): 4137-4143.
    [66]Bantscheff, M., Boesche, M., Eberhard, D., Matthieson, T., Sweetman, G.,Kuster, B., Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer, Molecular & cellular proteomics:MCP,2008,7(9):1702-1713.
    [67]Griffin, T.J., Xie, H., Bandhakavi, S., Popko, J., Mohan, A., Carlis, J.V.,Higgins, L., iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer, J. Proteome Res.,2007,6(11):4200-4209.
    [68]Sakai, J., Kojima, S., Yanagi, K.,Kanaoka, M.,18O-labeling quantitative proteomics using an ion trap mass spectrometer, Proteomics,2005,5(1):16-23.
    [69]Korbel, S., Schumann, M., Bittorf, T.,Krause, E., Relative quantification of erythropoietin receptor-dependent phosphoproteins using in-gel 18O-labeling and tandem mass spectrometry, Rapid communications in mass spectrometry:RCM,2005, 19(16):2259-2271.
    [70]Malmstrom, J., Beck, M., Schmidt, A., Lange, V., Deutsch, E.W.,Aebersold, R., Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature,2009.460(7256):762-765.
    [71]DeSouza, L.V., Romaschin, A.D., Colgan, T.J.,Siu, K.W.M., Absolute Quantification of Potential Cancer Markers in Clinical Tissue Homogenates Using Multiple Reaction Monitoring on a Hybrid Triple Quadrupole/Linear Ion Trap Tandem Mass Spectrometer, Anal. Chem.,2009,81(9):3462-3470.
    [72]Glen, A., Gan. C.S., Hamdy, F.C., Eaton, C.L., Cross, S.S., Catto, J.W.F., Wright, P.C.,Rehman, I., iTRAQ-Facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression, J. Proteome Res.,2008,7(3): 897-907.
    [73]Keshamouni, V.G., Michailidis, G., Grasso, C.S., Anthwal, S., Strahler, J.R., Walker, A., Arenberg, D.A., Reddy, R.C., Akulapalli, S., Thannickal, V.J., Standiford, T.J., Andrews, P.C.,Omenn, G.S., Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype, J Proteome Res,2006,5(5): 1143-1154.
    [74]Kuzyk, M.A., Ohlund, L.B., Elliott, M.H., Smith, D., Qian, H., Delaney, A., Hunter, C.L.,Borchers, C.H., A comparison of MS/MS-based, stable-isotope-labeled, quantitation performance on ESI-quadrupole TOF and MALDI-TOF/TOF mass spectrometers, Proteomics,2009,9(12):3328-3340.
    [75]DeSouza, L.V., Taylor, A.M., Li, W., Minkoff, M.S., Romaschin, A.D., Colgan, T.J.,Siu, K.W.M., Multiple reaction monitoring of mTRAQ-labeled peptides enables absolute quantification of endogenous levels of a potential cancer marker in cancerous and normal endometrial tissues, J. Proteome Res.,2008,7(8):3525-3534.
    [76]Bronstrup, M., Absolute quantification strategies in proteomics based on mass spectrometry, Expert Rev. Proteomics,2004,1(4):503-512.
    [77]Kirkpatrick, D.S., Gerber, S.A.,Gygi, S.P., The absolute quantification strategy:a general procedure for the quantification of proteins and post-translational modifications, Methods,2005,35(3):265-273.
    [78]Kuhn, E., Wu, J., Karl, J., Liao, H., Zolg, W.,Guild, B., Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and C-13-labeled peptide standards, Proteomics,2004,4(4):1175-1186.
    [79]Domon, B.,Aebersold, R., Options and considerations when selecting a quantitative proteomics strategy, Nat. Biotechnol.,2010,28(7):710-721.
    [80]Wang, H.,Hanash. S., Multi-dimensional liquid phase based separations in proteomics, J Chromatogr B Analyt Technol Biomed Life Sci,2003.787(1):11-18.
    [81]Sun. Y., Sun, J., Liu,J., Yin. S.. Chen. Y., Zhang. P., Pu. X.,He. Z., Rapid and sensitive hydrophilic interaction chromatography/tandem mass spectrometry method for the determination of glycyl-sarcosine in cell homogenates. J Chromatogr B Analyt Technol Biomed Life Sci,2009,877(7):649-652.
    [82]Picariello, G., Ferranti, P., Mamone, G., Roepstorff, P.,Addeo, F., Identification of N-linked glycoproteins in human milk by hydrophilic interaction liquid chromatography and mass spectrometry, Proteomics,2008.8(18):3833-3847.
    [83]Calvano, C.D., Zambonin, C.G.,Jensen, O.N., Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry, Journal of proteomics,2008,71(3):304-317.
    [84]Horie, K., Ikegami, T., Hosoya, K., Saad, N., Fiehn, O.,Tanaka, N., Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography, Journal of chromatography. A,2007, 1164(1-2):198-205.
    [85]Washburn, M.P., Wolters, D.,Yates, J.R.,3rd, Large-scale analysis of the yeast proteome by multidimensional protein identification technology, Nat. Biotechnol., 2001,19(3):242-247.
    [86]Bedani, F., Kok, W.T.,Janssen, H.G., A theoretical basis for parameter selection and instrument design in comprehensive size-exclusion chromatography x liquid chromatography, Journal of chromatography. A,2006,1133(1-2):126-134.
    [87]Hu, L., Zhou, H., Li, Y., Sun, S., Guo, L., Ye, M., Tian, X., Gu, J., Yang, S.,Zou, H., Profiling of endogenous serum phosphorylated peptides by titanium (IV) immobilized mesoporous silica particles enrichment and MALD1-TOFMS detection, Anal. Chem.,2009,81(1):94-104.
    [88]Nielsen. P.A., Olsen, J.V., Podtelejnikov, A.V.. Andersen, J.R., Mann, M.,Wisniewski, J.R., Proteomic mapping of brain plasma membrane proteins, Molecular & cellular proteomics:MCP,2005,4(4):402-408.
    [89]Gilar, M., Olivova, P., Daly, A.E.,Gebler, J.C., Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions, J. Sep. Sci.,2005,28(14):1694-1703.
    [90]Gilar, M., Olivova, P., Daly, A.E.,Gebler, J.C., Orthogonality of separation in two-dimensional liquid chromatography, Anal. Chem.,2005,77(19):6426-6434.
    [91]Kovacs, J.M., Mant, C.T.,Hodges, R.S., Determination of intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides in the absence of nearest-neighbor or conformational effects, Biopolymers.2006,84(3):283-297.
    [92]Dowell, J.A., Frost, D.C., Zhang, J.,Li, L., Comparison of two-dimensional fractionation techniques for shotgun proteomics. Anal. Chem.,2008.80(17): 6715-6723.
    [93]Delmotte, N., Lasaosa, M., Tholey, A., Heinzle, E.,Huber, C.G., Two-dimensional reversed-phase x ion-pair reversed-phase HPLC:an alternative approach to high-resolution peptide separation for shotgun proteome analysis, J. Proteome Res.,2007,6(11):4363-4373.
    [94]Nakamura, T., Kuromitsu, J.,Oda, Y., Evaluation of comprehensive multidimensional separations using reversed-phase, reversed-phase liquid chromatography/mass spectrometry for shotgun proteomics, J. Proteome Res.,2008, 7(3):1007-1011.
    [95]Wei, J., Sun, J., Yu, W., Jones, A., Oeller, P., Keller, M., Woodnutt, G.,Short, J.M., Global proteome discovery using an online three-dimensional LC-MS/MS, J. Proteome Res.,2005,4(3):801-808.
    [96]Zhang, J., Xu, X.Q., Gao, M.X., Yang, P.Y.,Zhang, X.M., Comparison of 2-D LC and 3-D LC with post- and pre-tryptic-digestion SEC fractionation for proteome analysis of normal human liver tissue, Proteomics,2007,7(4):500-512.
    [97]Wagner, K., Miliotis, T., Marko-Varga, G., Bischoff, R.,Unger, K.K., An automated on-line multidimensional HPLC system for protein and peptide mapping with integrated sample preparation, Anal. Chem.,2002,74(4):809-820.
    [98]Liu, C.,Zhang, X., Multidimensional capillary array liquid chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for high-throughput proteomic analysis, Journal of chromatography. A,2007,1139(2): 191-198.
    [99]Gu, X., Deng, C., Yan, G.,Zhang, X., Capillary array reversed-phase liquid chromatography-based multidimensional separation system coupled with MALDI-TOF-TOF-MS detection for high-throughput proteome analysis, J. Proteome Res.,2006,5(11):3186-3196.
    [100]Link, A.J., Eng, J., Schieltz, D.M., Carmack, E., Mize, G.J., Morris, D.R., Garvik, B.M.,Yates, J.R.,3rd, Direct analysis of protein complexes using mass spectrometry, Nat. Biotechnol.,1999.17(7):676-682.
    [101]Blonder, J., Conrads, T,P., Yu. L.R., Terunuma, A., Janini, G.M., Issaq, H.J., Vogel, J.C.,Veenstra. T.D., A detergent- and cyanogen bromide-free method for integral membrane proteomics:application to Halobacterium purple membranes and the human epidermal membrane proteome, Proteomics,2004,4(1):31-45.
    [102]Blonder, J., Hale. M,L., Lucas, D.A., Schaefer. C.F., Yu, L.R., Conrads, T.P., Issaq, H.J., Stiles, B.C.,Veenstra. T.D., Proteomic analysis of detergent-resistant membrane rafts, Electrophoresis,2004,25(9):1307-1318.
    [103]Harry, J.L., Wilkins, M.R., Herbert, B.R., Packer, N.H., Gooley, A.A.,Williams, K.L., Proteomics:capacity versus utility, Electrophoresis,2000,21(6):1071-1081.
    [104]Fournier, M.L., Gilmore. J.M., Martin-Brown, S.A.,Washbum, M.P., Multidimensional separations-based shotgun proteomics, Chem. Rev.,2007,107(8): 3654-3686.
    [105]Taylor, P., Nielsen, P.A., Trelle, M.B., Horning, O.B., Andersen, M.B., Vorm, O., Moran, M.F.,Kislinger, T., Automated 2D peptide separation on a 1D nano-LC-MS system, J. Proteome Res.,2009,8(3):1610-1616.
    [106]Bauer, S.H., Wiechers, M.F., Bruns, K., Przybylski, M.,Stuermer, C.A., Isolation and identification of the plasma membrane-associated intracellular protein reggie-2 from goldfish brain by chromatography and Fourier-transform ion cyclotron resonance mass spectrometry, Anal. Biochem.,2001,298(1):25-31.
    [107]Hirano, T., Kikuchi, K., Urano, Y.,Nagano, T., Improvement and biological applications of fluorescent probes for zinc, ZnAFs, J. Am. Chem. Soc,2002,124(23): 6555-6562.
    [108]Pearce, D.A., Jotterand, N., Carrico, I.S.,Imperiali, B., Derivatives of 8-hydroxy-2-methylquinoline are powerful prototypes for zinc sensors in biological systems, J. Am. Chem. Soc.,2001.123(21):5160-5161.
    [109]Adamczyk, M., Chan, C.M., Fino, J.R.,Mattingly, P.G., Synthesis of 5- and 6-hydroxymethylfluorescein phosphoramidites, The Journal of organic chemistry. 2000,65(2):596-601.
    [110]Chen, C.A., Yeh, R.H.,Lawrence, D.S., Design and synthesis of a fluorescent reporter of protein kinase activity, J. Am. Chem. Soc.,2002,124(15):3840-3841.
    [111]Sasaki, E., Kojima, H., Nishimatsu, H., Urano, Y., Kikuchi, K., Hirata, Y.,Nagano, T., Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs, J. Am. Chem. Soc.,2005,127(11):3684-3685.
    [112]Nikas, D.C., Foley, J.W.,Black, P.M., Fluorescent imaging in a glioma model in vivo, Lasers Surg Med.2001,29(1):11-17.
    [1]Wasinger, V.C., Cordwell, S.J., Cerpa-Poljak, A., Yan, J.X., Gooley, A.A., Wilkins, M.R., Duncan, M.W., Harris, R., Williams, K.L.,Humphery-Smith, I., Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium, Electrophoresis,1995,16(7):1090-1094.
    [2]Kahn, P., From genome to proteome:looking at a cell's proteins, Science,1995, 270(5235):369-370.
    [3]Aebersold, R.,Goodlett, D.R., Mass spectrometry in proteomics, Chem. Rev., 2001,101(2):269-295.
    [4]Wang, J., On-chip enzymatic assays, Electrophoresis,2002,23(5):713-718.
    [5]Parker, C.E.,Tomer, K.B., Epitope mapping by a combination of epitope excision and MALDI-MS, Methods in molecular biology,2000,146:185-201.
    [6]Kautiainen, A., Fred, C., Rydberg, P.,Tornqvist, M., A liquid chromatography tandem mass spectrometric method for in vivo dose monitoring of diepoxybutane, a metabolite of butadiene, Rapid communications in mass spectrometry:RCM,2000, 14(19):1848-1853.
    [7]Davis, M.T., Lee, T.D., Ronk, M.,Hefta, S.A., Microscale immobilized protease reactor columns for peptide mapping by liquid chromatography/mass spectral analyses. Anal. Biochem.,1995.224(1):235-244.
    [8]Cobb, K.A.,Novotny, M., High-sensitivity peptide mapping by capillary zone electrophoresis and microcolumn liquid chromatography, using immobilized trypsin for protein digestion. Anal. Chem.,1989,61(20):2226-2231.
    [9]Lion, N., Rohner, T.C., Dayon, L., Arnaud, I.L., Damoc, E., Youhnovski, N., Wu, Z.Y., Roussel, C., Josserand, J., Jensen, H., Rossier, J.S., Przybylski, M.,Girault, H.H., Microfluidic systems in proteomics, Electrophoresis,2003,24(21):3533-3562.
    [10]Rashkovetsky, L.G., Lyubarskaya. Y.V., Foret, F., Hughes, D.E.,Karger, B.L. Automated microanalysis using magnetic beads with commercial capillary electrophoretic instrumentation. Journal of chromatography. A,1997,781(1-2): 197-204.
    [11]Rossier, J.S.,Girault, H.H., Enzyme linked immunosorbent assay on a microchip with electrochemical detection, Lab Chip,2001,1(2):153-157.
    [12]Choi, J.W., Oh, K.W., Thomas, J.H., Heineman, W.R., Halsall, H.B., Nevin, J.H., Helmicki, A.J., Henderson, H.T.,Ahn, C.H., An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities, Lab Chip,2002,2(1):27-30.
    [13]Sakai-Kato, K., Kato, M.,Toyo'oka, T., Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip, Anal. Chem.,2003,75(3): 388-393.
    [14]Ekstrom, S., Onnerfjord, P., Nilsson, J., Bengtsson, M., Laurell, T.,Marko-Varga, G., Integrated microanalytical technology enabling rapid and automated protein identification, Anal. Chem.,2000,72(2):286-293.
    [15]Wang, C., Oleschuk, R., Ouchen, F., Li, J., Thibault, P.,Harrison, D.J., Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface, Rapid communications in mass spectrometry:RCM,2000,14(15):1377-1383.
    [16]Gao, J., Xu, J., Locascio, L.E.,Lee, C.S., Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification, Anal. Chem.,2001. 73(11):2648-2655.
    [17]Cooper, J.W., Chen. J., Li. Y.,Lee, C.S., Membrane-based nanoscale proteolytic reactor enabling protein digestion, peptide separation, and protein identification using mass spectrometry. Anal. Chem.,2003.75(5):1067-1074.
    [18]Slysz, G.W.,Schriemer. D.C., Blending protein separation and peptide analysis through real-time proteolytic digestion, Anal. Chem.,2005,77(6):1572-1579.
    [19]Jin, L.J., Ferrance, J., Sanders, J.C.,Landers, J.P., A microchip-based proteolytic digestion system driven by electroosmotic pumping, Lab Chip,2003,3(1):11-18.
    [20]Krogh, T.N., Berg, T.,Hojrup, P., Protein analysis using enzymes immobilized to paramagnetic beads, Anal. Biochem.,1999,274(2):153-162.
    [21]Bilkova, Z., Slovakova, M., Minc, N., Futterer, C., Cecal, R., Horak, D., Benes, M., le Potier, I., Krenkova, J., Przybylski, M.,Viovy, J.L., Functionalized magnetic micro- and nanoparticles:optimization and application to micro-chip tryptic digestion. Electrophoresis,2006,27(9):1811-1824.
    [1]Gao, M.X., Zhang, J., Deng, C.H., Yang, P.Y.,Zhang, X.M., Novel strategy of high-abundance protein depletion using multidimensional liquid chromatography, J. Proteome Res.,2006,5(10):2853-2860.
    [2]Gao, M., Deng, C., Yu, W., Zhang, Y., Yang, P.,Zhang, X., Large scale depletion of the high-abundance proteins and analysis of middle- and low-abundance proteins in human liver proteome by multidimensional liquid chromatography, Proteomics,2008, 8(5):939-947.
    [3]Gao, M., Yu, W., Zhang. Y., Yan, G., Deng, C., Yang, P.,Zhang, X., Integrated strong cation exchange/capillary reversed-phase liquid chromatography/on-target digestion coupled with mass spectrometry for identification of intact human liver tissue proteins, Analyst,2008,133(9):1261-1267.
    [4]Washburn, M.P., Wolters, D.,Yates, J.R.,3rd, Large-scale analysis of the yeast proteome by multidimensional protein identification technology, Nat. Biotechnol., 2001,19(3):242-247.
    [5]Zhang, J., Xu, X., Gao, M., Yang, P.,Zhang, X., Comparison of 2-D LC and 3-D LC with post- and pre-tryptic-digestion SEC fractionation for proteome analysis of normal human liver tissue. Proteomics.2007.7(4):500-512.
    [6]Shi, Y. Xiang. R., Horvath. C.,Wilkins, J.A., The role of liquid chromatography in proteomics, J Chromatogr A,2004.1053(1-2):27-36.
    [7]Yi, L., Li. H., Sun, L., Liu. L., Zhang, C.Xi, Z., A highly sensitive fluorescence probe for fast thiol-quantification assay of glutathione reductase, Angew Chem Int Ed Engl,2009,48(22):4034-4037.
    [8]Ren, H., Xiao, F., Zhan, K., Kim, Y.P., Xie, H., Xia, Z.,Rao, J., A biocompatible condensation reaction for the labeling of terminal cysteine residues on proteins, Angew Chem Int Ed Engl,2009,48(51):9658-9662.
    [9]Bachovchin, D.A., Brown, S.J., Rosen, H.,Cravatt, B.F., Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes, Nat Biotechnol,2009,27(4):387-394.
    [10]Wu, S.,Dovichi, N.J., Capillary zone electrophoresis separation and laser-induced fluorescence detection of zeptomole quantities of fluorescein thiohydantoin derivatives of amino acids, Talanta,1992,39(2):173-178.
    [11]Zhao, J.Y., Dovichi, N.J., Hindsgaul, O., Gosselin, S.,Palcic, M.M., Detection of 100 molecules of product formed in a fucosyltransferase reaction, Glycobiology,1994, 4(2):239-242.
    [12]Chafer-Pericas, C., Herraez-Hernandez, R.,Campins-Falco, P., Liquid chromatographic determination of trimethylamine in water, Journal of chromatography. A,2004,1023(1):27-31.
    [13]Chafer-Pericas, C., Campins-Falco, P.,Herraez-Hernandez, R., Comparative study of the determination of trimethylamine in water and air by combining liquid chromatography and solid-phase microextraction with on-fiber derivatization, Talanta, 2006,69(3):716-723.
    [14]Herraez-Hernandez, R., Campins-Falco, P.,Sevillano-Cabeza, A., On-line derivatization into precolumns for the determination of drugs by liquid chromatography and column switching:determination of amphetamines in urine. Anal. Chem.,1996,68(5):734-739.
    [15]Meseguer Lloret, S., Molins Legua. C.Campins Falco, P., Preconcentration and dansylation of aliphatic amines using C18 solid-phase packings. Application to the screening analysis in environmental water samples. Journal of chromatographv. A. 2002.978(1-2):59-69.
    [16]Tao, Q., Gao, M.X., Hong, G.F.. Chen. Q.,Zhang. X.M., Solid-support fluorescent derivatization of picomoles of protein at low concentration with FITC, Talanta,2011,84(2):457-461.
    [17]Roth, M., Fluorescence reaction for amino acids. Anal. Chem.,1971,43(7): 880-882.
    [18]Levy, W.P., Rubinstein, M., Shively, J., Del Valle, U., Lai, C.Y., Moschera, J., Brink, L., Gerber, L., Stein, S.,Pestka, S., Amino acid sequence of a human leukocyte interferon, Proc. Natl. Acad. Sci. U. S. A.,1981,78(10):6186-6190.
    [1]Domon, B.,Aebersold, R., Options and considerations when selecting a quantitative proteomics strategy, Nat. Biotechnol.,2010,28(7):710-721.
    [2]Washburn, M.P., Wolters, D.,Yates, J.R.,3rd, Large-scale analysis of the yeast proteome by multidimensional protein identification technology, Nat. Biotechnol., 2001,19(3):242-247.
    [3]Tribl, F., Lohaus, C., Dombert, T.. Langenfeld, E., Piechura, H., Warscheid, B., Meyer, H.E.,Marcus, K., Towards multidimensional liquid chromatography separation of proteins using fluorescence and isotope-coded protein labelling for quantitative proteomics, Proteomics,2008,8(6):1204-1211.
    [4]Gao, M.X., Zhang, J., Deng, C.H., Yang, P.Y.,Zhang, X.M., Novel strategy of high-abundance protein depletion using multidimensional liquid chromatography, J. Proteome Res.,2006,5(10):2853-2860.
    [5]Gao, M., Deng, C., Yu, W., Zhang, Y., Yang, P.,Zhang, X., Large scale depletion of the high-abundance proteins and analysis of middle- and low-abundance proteins in human liver proteome by multidimensional liquid chromatography, Proteomics,2008, 8(5):939-947.
    [6]Zhang, J., Xu, X., Gao, M., Yang, P.,Zhang, X., Comparison of 2-D LC and 3-D LC with post- and pre-tryptic-digestion SEC fractionation for proteome analysis of normal human liver tissue, Proteomics,2007,7(4):500-512.
    [7]Shi, Y., Xiang, R., Horvath, C.,Wilkins, J.A., The role of liquid chromatography in proteomics. J Chromatogr A,2004,1053(1-2):27-36.
    [8]Lee, T.T.,Yeung, E.S., High-sensitivity laser-induced fluorescence detection of native proteins in capillary electrophoresis, Journal of Chromatography,1992. 595(1-2):319-325.
    [1]Kleifeld, O., Doucet, A., auf dem Keller, U., Prudova, A., Schilling, O., Kainthan, R.K., Starr, A.E., Foster, L.J., Kizhakkedathu, J.N.,Overall, C.M., Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products, Nat Biotechnol,2010,28(3):281-288.
    [2]Sonomura, K., Kuyama, H., Matsuo, E., Tsunasawa, S.,Nishimura, O., The specific isolation of C-terminal peptides of proteins through a transamination reaction and its advantage for introducing functional groups into the peptide, Rapid Commun Mass Spectrom,2009,23(5):611-618.
    [3]Yamaguchi, M., Nakayama, D., Shima, K., Kuyama, H., Ando, E., Okamura, T.A. Ueyama, N., Nakazawa, T., Norioka, S., Nishimura, O.,Tsunasawa, S., Selective isolation of N-terminal peptides from proteins and their de novo sequencing by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry without regard to unblocking or blocking of N-terminal amino acids. Rapid Commun Mass Spectrom,2008,22(20):3313-3319.
    [4]Nakazawa, T., Yamaguchi, M., Okamura. T.A., Ando. E., Nishimura, O.,Tsunasawa. S., Terminal proteomics:N- and C-terminal analyses for high-fidelity identification of proteins using MS, Proteomics,2008,8(4):673-685.
    [5]Guillaume, E., Panchaud, A., Affolter, M., Desvergnes, V.Kussmann, M., Differentially isotope-coded N-terminal protein sulphonation:combining protein identification and quantification, Proteomics.2006,6(8):2338-2349.
    [6]Yamaguchi, M., Nakazawa, T., Kuyama, H., Obama, T., Ando, E., Okamura, T.A., Ueyama, N.,Norioka, S., High-throughput method for N-terminal sequencing of proteins by MALDI mass spectrometry, Anal Chem,2005,77(2):645-651.
    [7]Kuhn, K., Thompson, A., Prinz, T., Muller, J., Baumann, C., Schmidt, G., Neumann, T.,Hamon, C., Isolation of N-terminal protein sequence tags from cyanogen bromide cleaved proteins as a novel approach to investigate hydrophobic proteins, J Proteome Res,2003,2(6):598-609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700