用户名: 密码: 验证码:
低品位硫化镍矿中含镍硫化矿物同步疏水的理论与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高品位硫化镍矿资源储量的不断减少,对低品位硫化镍矿的开发显得日益重要。低品位硫化镍矿中的镍金属主要以镍黄铁矿的形式存在,但镍黄铁矿与磁黄铁矿和黄铁矿紧密共生且嵌布粒度不均,难以单体解离。为了解决低品位硫化镍矿难以浮选回收的问题,提高镍资源利用率,提出了含镍硫化矿物同步疏水的思想。为实现这一目标,首先针对低品位硫化镍矿中主要的含镍硫化矿物镍黄铁矿、磁黄铁矿和黄铁矿的基本性质从热力学、电化学和第一性原理计算的角度进行了研究,然后考察了浮选矿浆体系中存在的捕收剂、难免金属离子和矿浆调整剂对硫化矿物浮选行为和表面产物的影响。通过以上系统研究,得出了硫化矿物在矿浆中表面产物和疏水性的变化规律,形成了硫化矿物同步疏水调控机制,将之与镁硅酸盐矿物同步分散/抑制理论结合,开发出适合处理低品位硫化镍矿的强化浮选技术。本文的主要研究内容和结论如下:
     (1)硫化镍矿中主要硫化矿物的浮选行为及疏水产物
     采用热力学、浮选试验、电化学和表面XRD分析等方法研究了硫化矿物在自诱导、硫诱导和捕收剂诱导浮选时表面发生的电化学反应和表面产物,得到了不同条件下硫化矿物的同步疏水pH区间。
     根据溶液化学原理,绘制了FeS2-H2O系,FeS-H2O系,(Ni, Fe)9S8-H2O系和NiS-H2O系的Eh-pH图,分析表明,低品位硫化镍矿中的主要硫化矿物均存在适当的Eh, pH区间使矿物表面生成单质硫实现表面疏水;硫化矿物自诱导浮选的主要疏水产物为金属离子溶出后形成的缺金属硫化物和单质硫S0;硫诱导浮选的主要疏水产物为溶液中HS-被氧化吸附在矿物表面的单质硫S0;黄药类捕收剂在硫化矿物表面的主要疏水产物为双黄药;三种硫化矿物在自诱导浮选中的同步疏水区间为:4     采用基于密度泛函的第一性原理对几种镍铁硫化矿物的电子结构进行计算,得到硫化矿物的导电类型和表面活性质点并讨论其对矿物浮选行为的影响。
     能带结构分析表明:黄铁矿和针镍矿属于直接带隙p型半导体,镍黄铁矿和磁黄铁矿为金属导体。p型半导体导带电子少容易接收捕收剂的电子,因此捕收剂更容易与黄铁矿作用,而镍黄铁矿和磁黄铁矿为金属导体,与捕收剂作用能力相近;态密度和分态密度分析表明:在所研究的几种镍铁硫化矿物中铁原子的活性最强,镍原子活性次之,因此镍铁硫化矿物中铁原子优先溶出,且表面活性质点的差异导致矿物浮选行为的差异。
     (3)硫化镍矿矿浆中主要的难免金属离子及其对硫化矿物腐蚀电化学行为的影响
     通过对矿浆溶液的分析确定了硫化镍矿浮选矿浆体系中存在的主要难免金属离子,并用静电位、Tafel极化曲线、循环伏安法和交流阻抗等方法研究了其对矿物腐蚀行为的影响。
     硫化镍矿浮选矿浆中存在以Mg2+、Ni2+、Fe3+和Cu2+为主的难免金属离子,各金属离子均会增大磁黄铁矿与黄铁矿和镍黄铁矿的静电位差,增强电偶腐蚀,增大磁黄铁矿与镍黄铁矿和黄铁矿的表面差异。Mg2+使镍黄铁矿表面腐蚀速率增加,却使磁黄铁矿和黄铁矿腐蚀速率降低;Ni2+在低浓度(<5×10-4mol·L-1)下对三种硫化矿物的表面氧化有较强的抑制作用,在较高浓度(≥1×10-3mol·L-1)下抑制作用减弱;Fe3+能加速硫化矿物表面的氧化,作用较短时间就可使矿物表面生成大量疏水性物质(S0),延长作用时间会使矿物表面的疏水性物质被氧化为亲水性物质,降低矿物表面疏水性;Cu2+通过置换反应在镍黄铁矿表面形成疏水性的CuS使镍黄铁矿表面疏水性增加。
     (4)矿浆调整剂对硫化矿物疏水性的影响及硫化矿物同步疏水调控机制
     通过考察调整剂对硫化矿物表面润湿性、表面电性、捕收剂吸附量、浮选行为和腐蚀行为的影响,确定了实现硫化矿物同步疏水调控的关键因素。
     矿浆调整剂CMC和古尔胶会降低硫化矿物的疏水性和回收率;捕收剂PAX与调整剂CMC和古尔胶在硫化矿物表面发生竞争吸附,优先加入捕收剂可以减弱调整剂对硫化矿物的抑制作用,增加捕收剂在矿物表面的吸附量提高硫化矿物疏水性和回收率。
     (5)低品位硫化镍矿强化浮选技术
     将硫化矿物同步疏水机理与脉石矿物同步分散/抑制机理结合,提出了低品位硫化镍矿强化浮选技术,针对含镍0.53%,铜0.27%的低品位硫化镍矿进行工业试验,得到镍品位5.68%,铜品位3.14%的铜镍混合精矿,镍和铜的回收率分别为80.23%和88.05%,与该选厂原流程生产指标相比,在原矿镍品位和精矿镍品位相近的情况下,镍和铜的回收率分别提高了3.04%和9.92%。
With the continues decline of high-grade nickel sulphide ore reserves, the development of low-grade nickel sulfide ore becomes increasingly important. In low-grade nickel sulfide ore, nickel is mainly in the form of pentlandite, but the particle size distribution of pentlandite, pyrrhotite and pyrite embedded in close symbiosis and uneven, it is difficult to liberation. To solve the problem in the flotation of low-grade nickel sulfide ore and improve the nickel resource utilization, the synchronous hydrophobic thought was proposed. To achieve this thought, the properties of mainly nickel bearing sulfides pentlandite, pyrrhotite and pyrite were investigated using thermodynamics, electrochemistry, and first-principles calculation, then the influence of collector, inevitable metal ions and pulp regulator on the flotation behavior and surface products was identified. By the above systematic study, the synchronous hydrophobic mechanism was formed, and combined it with the synchronous dispersion/inhibition theory of magnesium silicate minerals, an enhanced low-grade nickel sulfide ore flotation technology was developed. The main contents of this paper and conclusions are as follows:
     (1) Flotation behavior and hydrophobic products of sulfide minerals
     The surface products and electrochemical reactions on nickel bearing sulfide minerals were studied by thermodynamics, flotation tests, electrochemical and surface analytics, the synchronous hydrophobic pH range was determined.
     According to solution chemistry, the FeS2-H2O system, FeS-H2O system,(Ni,Fe)9S8-H2system and NiS-H2O system of Eh-pH diagram were drawn, these diagrams show all investigated sulfide minerals might be hydrophobic at appropriate Eh, pH range by forming elemental sulfur; the mainly hydrophobic products in self-induced flotation are formed by the dissolution of metal ions from the surface, forming a metal-deficient sulfides and elemental sulfur S0; the main hydrophobic surface products in Na2S-induced flotation is S0which is the oxidized product of HS-,the formed S0adsorbed on the mineral surface causes the hydrophobic of sulfide minerals; in xanthate collector-induced flotation, the main hydrophobic product is dixanthogen; at different flotation system, these three sulfide minerals'synchronous hydrophobic range are different, in self-induced flotation, the pH range is4     (2) Electronic structure of nickel-iron sulfide minerals and the effect on the flotation behavior
     Using First-principles calculation to investigate the electronic structure of nickel-iron sulfide minerals, the conductivity type of sulfide minerals and surface activity particles of mineral was determined, and the implication on the flotation behavior was discussed.
     Pyrite and millerite are direct band gap p-type semiconductor, pentlandite and pyrrhotite is metal conductor. The quantity of electrons in conduction band determines the tendency of collector's adsorption, hence, the collector is likely to adsorb on pyrite, less likely to adsorb on pentlandite and pyrrhotite; density of states and partial density of states analysis showed that Fe atoms is the most active particle in nickel-iron sulfide minerals, followed by Ni atoms, this is the reason why Fe atoms dissolved preferentially from nickel-iron sulphide minerals, and the difference of surface active particle leads to the difference of flotation behavior.
     (3) Inevitable metal ions in nickel sulfide pulp and the influence on the corrosion electrochemistry of sulfide minerals
     Through the pulp solution analysis, the species of inevitable metal ions were identified, open circuit potential tests, Tafel polarization curves, cyclic voltammetry and AC impedance were used to study their influence on the corrosion behavior of sulfide minerals.
     In nickel sulfide flotation pulp, Ni2+, Fe3+, Cu2+, and Mg2+are the main inevitable metal ions, all of them will increase the difference between pyrrhotite and pyrite, pentlandite in electrostatic potential, enhancing galvanic corrosion. Mg2+will increase the corrosion rate of pentlandite, while decrease the corrosion rate of pyrrhotite and pyrite; Ni2+would inhibit the oxidation of sulfide minerals at low concentrations (<5×10-4mol·L-1), increase the Ni2+concentration, the inhibit effect reduced; Fe3+can accelerate the oxidation of sulfide mineral surfaces, mineral surface would generation of large amount of hydrophobic product (S0) in shorter time, extend the duration, the surface hydrophobic substances are further oxidized to hydrophilic products, reduce the hydrophobic of sulfide minerals; Cu2+would be in the form of CuS through displacement reaction at pentlandite surface, increase the hydrophobicity of nickel bearing sulfide mineral.
     (4) Effect of pulp regulator on the hydrophobic of sulfide minerals and the synchronous hydrophobic mechanism of sulphide minerals
     By investigating the surface wettability, surface potential, collector adsorption amount, flotation behavior and corrosion behavior of sulfide minerals in the presence of pulp regulator, the key factor of synchronous hydrophobic was determined.
     Pulp regulator(CMC, gur gum) will reduce the hydrophobicity and flotation recovery of sulfide minerals; the adsorb mechanism of collector(PAX) and pulp regulator(CMC, gur gum) on sulfide mineral surface is competitive adsorption, preferentially adding collector can reduced the inhibition of sulfide minerals by regulators, increasing the adsorption of collector and improve the hydrophobic of sulfide minerals.
     (5) Enhanced flotation technology of low-grade nickel sulfide ore
     Combining the synchronous hydrophobic mechanism of sulfide minerals and synchronous dispersion/inhabitation mechanism of gangue minerals, the enhanced flotation technology of low-grade nickel sulphide ore was proposed, for the low-grade nickel sulfide ore containing0.68%of Ni, using this new technology, the Ni and Cu grade were6.84%and0.91%in the obtained concentrate, Ni, Cu recovery were81.3%and81.4%. on the basis of ensure the quality of concentrate, largely increase the metal recovery.
引文
[1]何焕华,蔡乔方.中国镍钴冶金.北京:冶金工业出版社,2000
    [2]International Nickel Study Group. World Nickel Statistics Bulletin. http://www.insg.org/stats.aspx
    [3]Kuck P. H. Nickel. U.S. Geological Survey.2009
    [4]金川镍钻研究所,峨眉、郑州矿产综合利用研究所.金川镍矿工艺矿物与工艺关系.1987
    [5]甄世杰.金川高镁型低品位硫化镍矿生物浸出的应用基础与技术研究:[博士学位论文].长沙:中南大学,2010
    [6]李永军.中国镍钻工业现状及发展趋势.伦敦,2005
    [7]Elias M. Nickel laterite deposits -geological overview, resources and exploitation. In:Cooke D R, Pongratz J, eds. Giant Ore Deposits: Characteristics, Genesis, and Exploration. Hobart:2002.205-220
    [8]Dalvi A D, Bacon W G, Osborne R C. The past and the future of nickel laterites. In:William P I, David M L, eds. PDAC 2004 International Convention:Trade Show & Investors Exchange, Charlotte:International Laterite Nickel Symposium,2004:1-27
    [9]罗伟.腐泥土型红土镍矿高效提取及阻燃型氢氧化镁的制备研究:[博士学位论文].长沙:中南大学,2009
    [10]李江涛,库建刚,程琼.某硫化铜镍矿浮选试验研究.矿产保护与利用,2006,(1):37-39
    [11]Yuce E A, Bulut G, Boylu F, et al. Process flowsheet development for beneficiation of nickel ore. Mineral Processing and Extractive Metallurgy Review,2008,29(1):57-67
    [12]法克清.应用闪速浮选技术处理某铜镍矿石的研究.有色金属(选矿部分),1998,(2):11-14
    [13]金大安.金川铜镍矿闪速浮选工业试验后的思考.矿冶,1999,8(1):35-38
    [14]胡熙庚.有色金属硫化矿选矿.北京:冶金工业出版社,1987
    [15]常永强.金川二矿区贫矿石弱酸性介质选矿工艺试验研究.中国矿山工程,2004,33(2):7-9
    [16]冯其明,张国范,卢毅屏.蛇纹石对镍黄铁矿浮选的影响及其抑制剂研究现状.矿产保护与利用,1997,(5):19-22
    [17]Mulaba-Bafubiandi A F, Medupe O. An assessment of pentlandite occurrence in the run of mine ore from BCL mine (Botswana) and its impact on the flotation yield. In:Fourth Southern African Base Metals Conference, Swakopmund,2007:57-76
    [18]T·雅尔辛.镍矿石的磁浮选.国外金属矿选矿,2001,38(9):14-24
    [19]Watling H R. The bioleaching of nickel-copper sulfides. Hydrometallurgy, 2008,91(1-4):70-88
    [20]Tong L L, Jiang M F, Yang H Y, et al. Dynamic corrosion of copper-nickel sulfide by Acidithiobacillus ferrooxidans. Transactions of Nonferrous Metals Society of China,2009,19(2):438-445
    [21]Nakazawa H, Koizumi M, Sato H. Bacterial leaching of copper-nickel sulfide ores from Jinchuan Mine, China. Shigen to Sozai,1992,108:731-735
    [22]Nakazawa H, Hashizume T. Effect of silver ions on bacterial leaching of flotation concentrate of copper-nickel sulfide ores. Shigen to Sozai,1993, 109:81-85
    [23]温建康,阮仁满,孙雪南.金川低品位镍矿资源微生物浸出研究.矿冶,2002,11(1):55-59
    [24]Ke J, Li H. Bacterial leaching of nickel-bearing pyrrhotite. Hydrometallurgy, 2006,82:172-175
    [25]Riekkola-Vanhanen M. Talvivaara black schist bioheapleaching demonstration plant. Advanced Materials Research,2007,20-21:30-33
    [26]Kinnunen P H M, van der Meer T, Nevatalo L M, et al. Bioleaching of a complex sulfide ore in boreal conditions. In:Harrison S T L, Rawlings D E, eds. Proceedings of the 16th International Biohydrometallurgy Symposium. Cape Town:2005:245-253
    [27]Talvivaara Mining Company PLC. Talvivaara Mining Company annual results review for year 2010.2011
    [28]Lu Z Y, Jeffrey M I, Zhu Y, et al. Studies of pentlandite leaching in mixed oxygenated acidic chloride-sulfate solutions. Hydrometallurgy,2000,56(1): 63-74
    [29]Maurice D, Hawk J A. Ferric chloride leaching of a mechanically activated pentlandite-chalcopyrite concentrate. Hydrometallurgy,1999,52(3):289-312
    [30]Balaz P, Boldizarova E, Achimovicova M, et al. Leaching and dissolution of a pentlandite concentrate pretreated by mechanical activation. Hydrometallurgy, 2000,57(1):85-96
    [31]Xie Y, Xu Y, Yan L, et al. Recovery of nickel, copper and cobalt from low-grade Ni-Cu sulfide tailings. Hydrometallurgy,2005,80(1-2):54-58
    [32]Brown J A, Papangelakis V G. Interfacial studies of liquid sulphur during aqueous pressure oxidation of nickel sulphide. Minerals Engineering,2005, 18(15):1378-1385
    [33]黄开国.甘肃金川镍矿可持续发展选矿问题浅谈.国外金属矿选矿,2001,38(1):31-32
    [34]胡秀梅.金平镍矿1号岩体贫镍矿石工艺矿物学研究:[硕士学位论文].昆明:昆明理工大学,2006
    [35]曾令熙,黄亚琴,张志成.四川杨柳坪低品位镍矿工艺矿物学特征.矿物岩石,2007,27:23-27
    [36]廖乾.金川低品位镍矿矿物学特性及选矿工艺技术研究:[硕士学位论文].长沙:中南大学,2010
    [37]程少逸,赵礼兵,袁致涛,等.金川三矿区低品位铜镍矿石工艺矿物学研究.金属矿山,2011,(2):85-89
    [38]周民,郭万书,张天权.金川镍闪速炉冷修技术改造.有色金属(冶炼部分),2011,(2):2-5
    [39]Legrand D L, Bancroft G M, Nesbitt H W. Oxidation/alteration of pentlandite and pyrrhotite surfaces at pH 9.3:Part 1. Assignment of XPS spectra and chemical trends. American Mineralogist,2005,90(7):1042-1054
    [40]Acres R G, Harmer S L, Beattie D A. Synchrotron PEEM and ToF-SIMS study of oxidized heterogeneous pentlandite, pyrrhotite and chalcopyrite. Journal of Synchrotron Radiation,2010,17(5):606-615
    [41]Nanthakumar B, Kelebek S, Katsabanis P D. Impact of oxidation on flotation of Ni-Cu sulphide ore with respect to grinding. Mineral Processing and Extractive Metallurgy,2007,116(3):197-206
    [42]Soto H, Laskowski J. Redox conditions in the flotation of malachite with a sulphidizing agent. Transactions of the Institution of Mining and Metallurgy, Section C:Mineral Processing and Extractive Metallurgy,1973,82(802): 153-157
    [43]Peng Y, Wang B, Bradshaw D. Pentlandite oxidation in the flotation of a complex nickel ore in saline water. Minerals Engineering,2011,24(1):85-87
    [44]Newell A J H, Bradshaw D J. The development of a sulfidisation technique to restore the flotation of oxidised pentlandite. Minerals Engineering,2007,20: 1036-1049
    [45]Newell A J H, Skinner W M, Bradshaw D J. Restoring the floatability of oxidised sulfides using sulfidisation. International Journal of Mineral Processing,2007,84(1-4):108-117
    [46]Nanthakumar B, Kelebek S. Stagewise analysis of flotation by factorial design approach with an application to the flotation of oxidized pentlandite and pyrrhotite. International Journal of Mineral Processing,2007,84:192-206
    [47]Hodgson M, Agar G E. Electrochemical investigations into the flotation chemistry of pentlandite and pyrrhotite. Process water and xanthate interactions. Canadian Metallurgical Quarterly,1989,28(3):189-198
    [48]Wang X H, Forssberg E K S. Mechanisms of pyrite flotation with xanthates. International Journal of Mineral Processing,1991,33(1-4):275-290
    [49]Guler T. Dithiophosphinate-pyrite interaction:Voltammetry and DRIFT spectroscopy investigations at oxidizing potentials. Journal of colloid and interface science,2005,288(2):319-324
    [50]Wiese J, Harris P, Bradshaw D. Investigation of the role and interactions of a dithiophosphate collector in the flotation of sulphides from the Merensky reef. Minerals Engineering,2005, (18):791-800
    [51]Natarajan R, Nirdosh I. Effect of molecular structure on the kinetics of flotation of a Canadian nickel ore by N-arylhydroxamic acids. International Journal of Mineral Processing,2009,93(3-4):284-288
    [52]V·A·钱图利亚.浮选俄罗斯Cu-Ni-Pt矿石的新药剂及药剂制度.国外金属矿选矿,2007,(8):32-35
    [53]冯其明,张国范.新型捕收剂BS-4对镍黄铁矿捕收性能及作用机理.中南工业大学学报,1999,(3):243-247
    [54]刘存华.提高金川铜镍矿铜回收率的探讨.中国矿山工程,2004,(33):16-19
    [55]代淑娟,孟宇群,陈宏.提高某镍业公司选厂镍精矿品位的研究.金属矿山,2006,(6):40-43
    [56]向平,李永战.高效硫化矿捕收起泡剂PN405.国外金属矿选矿,2002,(5):42-62
    [57]张文翰.BF系列捕收剂在金川公司选矿厂的应用.甘肃冶金,2003,(增刊):57-59
    [58]方启学,卢寿慈.硫化镍铜矿多金属共生贫矿石的浮选.有色矿冶,1995, (3):11-15
    [59]王淀佐.浮选剂作用原理及应用.北京:冶金工业出版社,1982
    [60]Wellham E J, Elber L, Yan D S. The role of carboxy methyl cellulose in the flotation of a nickel sulphide transition ore. Minerals Engineering,5(3-5): 381-395
    [61]Bremmell K E, Fornasiero D, Ralston J. Pentlandite-lizardite interactions and implications for their separation by flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,252:207-212
    [62]龙涛,冯其明,卢毅屏.羧甲基纤维素对层状镁硅酸盐矿物浮选的抑制与分散作用.中国有色金属学报,2011,21(5):1145-1150
    [63]李治华.含镁脉石矿物对镍黄铁矿浮选的影响.中南矿冶学院学报,1993,24(1):36-44
    [64]黄开国,陈万雄,彭先淦.一种低品位镍矿石的浮选工艺.中国有色金属学报,1999,9(3):601-605
    [65]王景双,黄晓毅.新型镍矿捕收剂浮选试验研究.江西有色金属,2008,22(3):12-14
    [66]Bicak O, Ekmekci Z, Bradshaw D J, et al. Adsorption of guar gum and CMC on pyrite. Minerals Engineering,2007,20(10):996-1002
    [67]郭昌槐.六偏磷酸钠对含镍磁黄铁矿浮选的影响.有色金属(选矿部分),1985,(6):15-19
    [68]张明强.蛇纹石与黄铁矿异相分散的调控机理研究:[硕士学位论文].长沙:中南大学,2010
    [69]朱玉霜,朱建光.浮选药剂的化学原理.长沙:中南工业大学出版社,1987.
    [70]邢方丽,肖宝清.新疆某低品位铜镍矿选矿试验研究.有色金属(选矿部分),2010,(1):20-25
    [71]Laskowski J S, Liu Q, Bolin N J. Polysaccharides in flotation of sulphides. Part I. Adsorption of polysaccharides onto mineral surfaces. International Journal of Mineral Processing,1991,33(1-4):223-234
    [72]Wang J, Somasundaran P. Study of galactomannose interaction with solids using AFM, IR and allied techniques. Journal of Colloid and Interface Science,2007,309:373-383
    [73]Martinovic J, Bradshaw D J, Harris P. J. Investigation of surface properties of gangue minerals in platinum bearing ores. The Journal of The South African Institute of Mining and Metallurgy,2005,105(5):349-356
    [74]Beattie D A, Huynh L, Kaggwa G B N, et al. The effect of polysaccharides and polyacrylamides on the depression of talc and the flotation of sulphide minerals. Minerals Engineering,2006,19(6-8):598-608
    [75]Beattie D A, Huynh L, Mierczynska-Vasilev A, et al. Effect of modified dextrins on the depression of talc and their selectivity in sulphide mineral flotation:Adsorption isotherms, AFM imaging and flotation studies. Canadian Metallurgical Quarterly,2007,46(3):349-358
    [76]Valdivieso A L, Lopez A A S, Song S, et al. Dextrin as a regulator for the selective flotation of chalcopyrite, galena and pyrite. Canadian Metallurgical Quarterly,2007,46(3):301-309
    [77]Valdivieso A L, Cervantes T C, Song S, et al. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector. Minerals Engineering,2004,17(9-10):1001-1006
    [78]Leung A, Wiltshire J, Blencowe A, et al. The effect of acrylamide-co-vinylpyrrolidinone copolymer on the depression of talc in mixed nickel mineral flotation. Minerals Engineering,2011,24(5):449-454
    [79]Kirjavainen V, Heiskanen K. Some factors that affect beneficiation of sulphide nickel-copper ores. Minerals Engineering,2007,20(7):629-633
    [80]王毓华.组合药剂对镍黄铁矿的抑制作用.有色金属(选矿部分),1990,(1):16-19
    [81]孟书青,王毓华,胡熙庚.亚硫酸氢钠和石灰组合剂与铜镍硫化矿表面的作用机理.中南矿冶学院学报,1990,21(6):595-601
    [82]王毓华,孟书青,胡熙庚.HA和石灰组合剂对铜镍硫化矿浮选分离的影响.中南矿冶学院学报,1991,22(3):250-261
    [83]Bozkurt V, Xu Z, Finch J A. Effect of depressants on xanthate adsorption on pentlandite and pyrrhotite:Single vs mixed minerals. Canadian Metallurgical Quarterly,1999,38(2):105-112
    [84]张国范,卢毅屏,冯其明.抑制剂EP降低镍精矿中氧化镁含量研究.矿产保护与利用,1999,(3):28-31
    [85]高玉德,胡春晖.降低金川镍精矿氧化镁含量的研究.广东有色金属学报,2000,10(2):4
    [86]夏述良.金川二矿区富矿石提高镍精矿品位降低精矿氧化镁含量的研究和应用.国外金属矿选矿,1998,(4):27-29
    [87]Chandra A P, Gerson A R. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Advances in colloid and interface science,2009, 145(1-2):97-110
    [88]Wang X H, Bolin F E. Pyrrhotite activation by Cu(Ⅱ) in acidic to neutral pH media. Scandinavian Journal of Metallurgy,1989,18(6):271-279
    [89]Buswell A M, Nicol M J. Some aspects of the electrochemistry of the flotation of pyrrhotite. Journal of Applied Electrochemistry,2002,32(12):1321-1329
    [90]Bradshaw D J, Buswell A M, Harris P J, et al. Interactive effects of the type of milling media and copper sulphate addition on the flotation performance of sulphide minerals from Merensky ore Part I:Pulp chemistry. International Journal of Mineral Processing,2006,78(3):153-163
    [91]Yoon R H, Basilio C I, Marticorena M A, et al. A study of the pyrhotite depression mechanism by diethylenetriamine. Minerals Engineering,1995, 8(7):807-816
    [92]Kelebek S, Wells P F, Fekete S O. Differential flotation of chalcopyrite, pentlandite and pyrrhotite in Ni-Cu sulphide ores. Canadian Metallurgical Quarterly,1996,35(4):329-336
    [93]Parolis L A S, van der Merwe R, Groenmeyer G V, et al. The influence of metal cations on the behaviour of carboxymethyl celluloses as talc depressants. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,317(1-3):109-115
    [94]Burdukova E, Van Leerdam G C, Prins F E, et al. Effect of calcium ions on the adsorption of CMC onto the basal planes of New York talc-- A ToF-SIMS study. Minerals Engineering,2008,21(12-14):1020-1025
    [95]Fornasiero D, Ralston J. Cu(Ⅱ) and Ni(Ⅱ) activation in the flotation of quartz, lizardite and chlorite. International Journal of Mineral Processing,2005, 76(1-2):75-81
    [96]O'Connor C T, Malysiak V, Shackleton N J. The interaction of xanthates and amines with pyroxene activated by copper and nickel. Minerals Engineering, 2006,19(6-8):799-806
    [97]Shackleton N J, Malysiak V, O'Connor C T. The use of amine complexes in managing inadvertent activation of pyroxene in a pentlandite-pyroxene flotation system. Minerals Engineering,2003,16(9):849-856
    [98]Malysiaka V, Shackleton N J, O'Connor C T. An investigation into the floatability of a pentlandite-pyroxene system. International Journal of Mineral Processing,2004,74:251-262
    [99]Kelebek S, Tukel C. The effect of sodium metabisulfite and triethylenetetramine system on pentlandite-pyrrhotite separation. International Journal of Mineral Processing,1999, (57):135-152
    [100]冯其明,陈荩.硫化矿物浮选电化学.长沙:中南工业大学出版社,1992
    [101]Heiskanen K, Kirjavainen V, Laapas H. Possibilities of collectorless flotation in the treatment of pentlandite ores. International Journal of Mineral Processing,1991,33(1-4):263-274
    [102]Buckley A N, Woods R. Surface composition of pentlandite under flotation-related conditions. Surface and interface analysis,1991,17: 675-680
    [103]Hamilton I C, Woods R. An investigation of surface oxidation of pyrite and pyrrhotite by linear potential sweep voltammetry. Journal of Electroanalytical Chemistry,1981,118(10):327-343
    [104]Uhlig I, Szargan R, Nesbitt H W, et al. Surface states and reactivity of pyrite and marcasite. Applied Surface Science,2001,179(1-4):222-229
    [105]Cruz R, Gonza'lez I, Monroy M. Electrochemical characterization of pyrrhotite reactivity under simulated weathering conditions. Applied Geochemistry,2005,20(20):109-121
    [106]Miller J D, Li J, Davidtz J C, et al. A review of pyrrhotite flotation chemistry in the processing of PGM ores. Minerals Engineering,2005,18(8):855-865
    [107]Buckley A N, Woods R. The surface oxidation of pyrite. Applied Surface Science,1987,27(4):437-452
    [108]Zhu X M, Li J, Wadsworth M E. Characterization of surface layers formed during pyrite oxidation. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1994,93:201-210
    [109]Chernyshova I V. An in situ FTIR study of galena and pyrite oxidation in aqueous solution. Journal of Electroanalytical Chemistry,2003,558:83-98
    [110]Tao D P, Richardson P E, Luttrell G H, et al. Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes. Electrochimica Acta,2003,48(24):3615-3623
    [111]Schaufuβ A G, Nesbitt H W, Kartio I, et al. Reactivity of surface chemical states on fractured pyrite. Surface Science,1998,411(3):321-328
    [112]Schaufuβ A G, Nesbitt H W, Kartio I, et al. Incipient oxidation of fractured pyrite surfaces in air. Journal of Electron Spectroscopy and Related Phenomena,1998,96(1-3):69-82
    [113]孙水浴.硫化矿的浮选电化学及无捕收剂浮选:[博士学位论文].长沙:中南工业大学,1990
    [114]Valli M, Persson I. Interactions between sulphide minerals and alkylxanthates 8. A vibration and X-ray photoelectron spectroscopic study of the interaction between chalcopyrite, marcasite, pentlandite, pyrrhotite and troilite, and ethylxanthate and decylxanthate ions in aqueous solution. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1994,83(3):207-217
    [115]Khan A, Kelebek S. Electrochemical aspects of pyrrhotite and pentlandite in relation to their flotation with xanthate. Part-I:Cyclic voltammetry and rest potential measurements. Journal of Applied Electrochemistry,2004, (34): 849-856
    [116]冯其明.硫化矿矿浆体系中的电偶腐蚀及对浮选的影响(Ⅰ):电偶腐蚀原理及硫化矿矿浆体系中的电偶腐蚀模型.国外金属矿选矿,1999,(9):2-4
    [117]冯其明.硫化矿矿浆体系中的电偶腐独及对浮选的影响(Ⅱ):电偶腐蚀对磨矿介质损耗及硫化矿物浮选的影响.国外金属矿选矿,1999,(9):5-9
    [118]欧乐明,冯其明.硫化矿物浮选体系中外控电位电极与矿物颗粒间的电偶腐蚀作用及其浮选.科学技术与工程,2004,4(8):668-671
    [119]Rao M K Y, Natarajan K A. Effect of electrochemical interactions among sulfide minerals and grinding medium on chalcopyrite flotation. Minerals and Metallurgical Processing,1989,16(3):146-151
    [120]Gu G H, Dai J P, Wang H, et al. Galvanic coupling and its effect on origin potential flotation system of sulfide minerals. Journal of Central South University of Technology,2004,11(3):275-279
    [121]Ekmekqi Z, Demirel H. Effects of galvanic interaction on collectorless flotation behaviour of chalcopyrite and pyrite. International Journal of Mineral Processing,1997,52:31-48
    [122]Cheng X, Iwasaki I. Effects chalcopyrite and pyrrhotite interaction on flotation separation. Minerals and Metallurgical Processing,1992,9(2):73-79
    [123]Legrand D L, Bancroft G M, Nesbitt H W. Oxidation of pentlandite and pyrrhotite surfaces at pH 9.3:Part 2. Effect of xanthates and dissolved oxygen. American Mineralogist,2005,90(7):1055-1061
    [124]陈建华,冯其明,卢毅屏.电化学调控浮选能带模型及应用(Ⅱ)——黄药与硫化矿物作用的能带模型.中国有色金属学报,2000,10(3):426-429
    [125]陈建华,冯其明,卢毅屏.电化学调控浮选能带模型及应用(Ⅲ)——有机抑制剂对硫化矿物能带结构的影响.中国有色金属学报,2000,10(4):529-533
    [126]Chen J, Wang L, Chen Y, et al. A DFT study of the effect of natural impurities on the electronic structure of galena. International Journal of Mineral Processing,2011,98(3-4):132-136
    [127]李玉琼,陈建华,陈哗.空位缺陷黄铁矿的电子结构及其浮选行为.物理化学学报,2010,26(5):1435-1441
    [128]陈建华,曾小钦,陈晔.含空位和杂质缺陷的闪锌矿电子结构的第一性原理计算.中国有色金属学报,2010,20(4):765-771
    [129]Chen Y, Chen J. The first-principle study of the effect of lattice impurity on adsorption of CN on sphalerite surface. Minerals Engineering,2010,23(9): 676-684
    [130]Chen J, Chen Y. A first-principle study of the effect of vacancy defects and impurities on the adsorption of O2 on sphalerite surfaces. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,363(1-3): 56-63
    [131]陈建华,钟建莲,李玉琼.黄铁矿、白铁矿和磁黄铁矿的电子结构及可浮性.中国有色金属学报,2011,21(7):1719-1727
    [132]Grice J D, Ferguson R B. Crystal structure refinement of millerite (β-NiS). Canadian Mineralogist,1974,12:248-252
    [133]Pearson A D, Buerger M J. Confirmation of the crystal structure of pentlandite. American Mineralogist,1956, (41):804-805
    [134]王淀佐,胡岳华.浮选溶液化学.长沙:湖南科学技术出版社,1988
    [135]Warner T E, Rice N M, Taylor N. Thermodynamic stability of pentlandite and violarite and new Eh-pH diagrams for the iron-nickel sulphur aqueous system. Hydrometallurgy,1996,41:107-118
    [136]Dean J A. Lange's Handbook of Chemistry(15 edition). New York: McGraw-Hill,1999
    [137]王淀佐.硫化矿浮选与矿浆电位.北京:高等教育出版社,2008
    [138]覃文庆.硫化矿物颗粒的电化学行为与电位调控浮选技术.北京:高等教育出版社,2001
    [139]Acres R G, Harmer L S, Beattie D A, et al. Synchrotron PEEM and ToF-SIMS study of oxidized heterogeneous pentlandite, pyrrhotite and chalcopyrite. Journal of Synchrotron Radiation,2010,17(5):606-615
    [140]孙水裕,王淀佐.无捕收剂浮选的半导体能带理论讨论.北京矿冶研究总院学报,1993,(3):38-44
    [141]陈建华,王檑,陈晔.空位缺陷对方铅矿电子结构及浮选行为影响的密度泛函理论.中国有色金属学报,2010,20(9):1815-1821
    [142]Woods R, Yoon R H, Young C A. Eh-pH diagrams for stable and metastable phases in the copper-sulphur-water system. International Journal of Mineral Processing,1987,20:109-120
    [143]Zhang Q, Xu Z, Bozkurt V, et al. Pyrite flotation in the presence of metal ions and sphalerite. International Journal of Mineral Processing,1997,52(2-3): 187-201
    [144]Peek E, Barnes A, Tuzun A. Nickeliferous pyrrhotite -- "Waste or resource?". Minerals Engineering,2011,24(7):625-637
    [145]Rath R K, Subramanian S, Pradeep T. Surface Chemical Studies on Pyrite in the Presence of Polysaccharide-Based Flotation Depressants. Journal of Colloid and Interface Science,2000,229(1):82-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700